

Investigating high-achieving students’ code-writing abilities through the SOLO
taxonomy

Ayman Qahmash
Department of Computer

Science
University of Warwick

A.Qahmash@warwick.ac.uk

Mike Joy
Department of Computer

Science
University of Warwick

M.S.Joy@warwick.ac.uk

Adam Boddison
National Association of

Special Educational Needs
Adamb@nasen.org.uk

Abstract
Computer Science Educationalists have implemented educational taxonomies which enhance the
pedagogy for introductory programming modules. The SOLO taxonomy has been applied to measure
students’ cognitive abilities in programming by classifying students’ exam answers. However, SOLO
provides a generic framework that can be applied in different disciplines, including Computer Science,
and this can lead to ambiguity and inconsistent classification. In this paper, we investigate high-
achieving students’ coding abilities and whether they tend to manifest specific SOLO categories. We
address the challenges of interpreting SOLO and the limitations of code-writing problems by analysing
three specific programming problems (Array Creation, Linear Search and Recursion) and solutions to
those problems presented by a group of nine students. Results for the first programming problem show
that six students’ responses fell into the highest possible category (Multistructural) and the remaining
three were categorised in the second highest category (Unistructural). For the second problem, eight
students’ responses fell into the Multistructural category, while only one response was categorised as
Unistructural. For the third problem, two students provided Multistructural solutions and five students’
solutions were Unistructural, but two further students showed a lack of understanding program
constructs in their solutions, which were then categorised as Prestructural.

Keywords: programming, code-writing, SOLO

1. Introduction
Educational taxonomies have been implemented in many educational domains to enhance pedagogy,
assessments and teaching methods, all of which affect students’ learning, knowledge and skills. There
have been many attempts to apply different taxonomies, and these have been valuable in providing
insights into computer science education (CSE) to understand different educational factors. Well-
developed educational taxonomies, such as Bloom, revised Bloom and SOLO (Bloom, 1956;
Krathwohl, 2002; Biggs, 2014), have been applied to measuring students’ outcomes as well as to
classifying exam questions based on what they are supposed to measure. Although an educational
taxonomy provides a generic framework that can be implemented in various disciplines, educators may
not always come to a constant agreement on classifications (Fuller, 2007). In this study, SOLO has been
chosen for classifying students’ learning outcomes as SOLO provides a hierarchy for measuring
assessments and classifying students’ responses.
This paper is structured as follows. A brief background of educational taxonomies are introduced,
followed by a discussion of taxonomies within the context of Computer Science and our justifications
for applying an educational taxonomy are discussed. Research questions, methods, procedures and
analyses are outlined in the methodology section, and finally, results are presented in the discussion
section.
2. Background
The structure of the Observed Learning Outcome (SOLO) taxonomy (Biggs, 2014) aims to distinguish
students’ cognitive levels, which are required during their learning process. The first level is
Prestructural (P), where a student is provided with a new problem and irrelevant information. At this
stage, the student has not understood the problem and tries to use simple information to solve it. The
second level is Unistructural (U), as the student starts to focus on one single aspect that can be used to
solve the problem. The third level is Multistructural (M), where the student starts to understand more
than one factor that may help to solve the problem. The fourth level is Relational (R), which focuses on
the qualitative development as the student starts to understand and identify relations between several
aspects. The fifth level is Extended Abstract (EA), where the student manifests the ability to

hypothetically think about other new factors that may help to solve the problem. In addition, the student
may show the ability to generalise, evaluate and/or apply the knowledge to other problems.
Another widely used educational taxonomy is that of Bloom, which focuses on three main domains:
cognitive, affective and psychomotor (Bloom, 1956). The first level is Knowledge which refers to a
student’s ability to recall basic knowledge, facts, concepts and terms, whereas the second level,
Comprehension, describes a student’s ability to understand, translate and interoperate facts and
concepts. A student can demonstrate a meaningful description of a problem in their own words. The
third level is Application which indicates that a student can apply abstract knowledge to a new problem.
The fourth level is Analysis, where a student exhibits the ability to decompose a complicated problem
into integral parts and to understand the relationships between all parts. The fifth level is Synthesis
which describes a student’s ability to compose integral elements into a new meaningful solution. The
highest level is Evaluation, which refers to making judgements based on acquired knowledge and
experience. A revised Bloom taxonomy has since been introduced by Krathwohl (2002), and which
provides a two-dimensional framework consisting of knowledge and cognitive processes. The revised
knowledge dimension includes an extra fourth subcategory, compared to the original taxonomy. Similar
to the original taxonomy, the cognitive process dimension consists of six levels. However, the revised
taxonomy renames the categories as verbs, and Synthesis swaps places with Evaluation and is renamed
to be Create as shown in Fig. 1.

Figure 1: Original and revised Bloom’s taxonomies.

2.1 Bloom in Computer Science
In the computer science field, several studies have been conducted to apply Bloom’s taxonomy to
curriculum design, assessment design, and student outcome measurements. Dolog (2016) used Bloom’s
taxonomy to revise a software engineering curriculum to meet required and desirable student skills and
competencies. Johnson (2012) evaluated the assessment in a Linux course using a revised Bloom
taxonomy by analysing all verbs that had been used in 10 quiz questions and 39 assignments. The results
indicated that 99% of the quiz questions were about memorising, whereas 11 out of 39 assignments
were categorised as knowledge (recall) and only two assignments were at the evaluation level.
Johnson and Fuller (2006) conducted a study that applied Bloom’s taxonomy in order to investigate
computer science students’ cognitive abilities. The study encountered a problem of inconsistent
categorisations, for two reasons. Firstly, determining a cognitive ability, which required the student
being assessed, needs a deep understanding of how a course can be taught. Secondly, it has been claimed
that applying Bloom’s taxonomy to programming problems proves to be a challenging process due to
insufficient frameworks and a lack of CSE knowledge on how to apply Bloom’s taxonomy (Whalley et
al., 2006).
2.2 SOLO in Computer Science
SOLO has been applied to computer science and education, where student performance has been
assessed in a few specific aspects of programming, e.g. assisting with students’ code comprehension,
code writing and algorithm design. Lister et al.’s study (2006) introduced a taxonomy which provides
an interpretation of how SOLO could be applied to students’ answers to code comprehension problems
using multiple-choice questions (MCQs). However, MCQs were not adequate to elicit responses at the
Relational level. Therefore, the study was extended to analyse different types of questions in which 108
students were asked to explain a segment of code in plain English, allowing students’ responses to be
categorised (based on SOLO) by three academics. In addition, eight expert academics were asked to

answer the ‘explain in plain English’ questions in order to compare both students’ and experts’
responses on each SOLO level. Results showed that half of the students provided Multistructural
answers, in which students were only able to explain the code line by line without indicating the purpose
of the code. Meanwhile, seven out of eight experts provided answers that can be categorised at the
Relational level. Later, Lister et al. (2010) applied SOLO to measure student performance in code
writing, relying on Biggs (1999) verbs descriptions that are suitable for each level. In addition, Hattie
and Purdie’s study (1998) provides examples of how SOLO can be applied to language translation.
SOLO levels can be determined by how certain phrases are interpreted rather than by translating words
in isolation without understanding either the relation between the words or the context. For example,
word-by-word translation, which is Unistructural, might provide meaningful translation that does not
reflect the purpose of the original phrase. In the context of code-writing questions, a student may
provide a direct translation of a certain program specification which does not result in correct code,
whereas applying some changes to produce translation which is close to a direct specification might
result in valid code. Based on Hattie and Purdie’s theoretical framework, SOLO categories for code
writing were proposed as shown in Table 1.

phase SOLO category Description

Q
ua

lit
at

iv
e Extended Abstract –

Extending [EA]
Uses constructs and concepts beyond those required in the exercise to
provide an improved solution

Relational –
Encompassing [R]

Provides a valid well structured program that removes all redundancy and
has a clear logical structure. The specifications have been integrated to
form a logical whole.

Q
ua

nt
ita

tiv
e

Multistructural –
Refinement [M]

Represents a translation that is close to a direct translation. The code may
have been reordered to make a valid solution.

Unistructural – Direct
Translation [U]

Represents a direct translation of the specifications. The code will be in the
sequence of the specifications.

Prestructural [P] Substantially lacks knowledge of programming constructs or is unrelated to
the question.

Table 1: SOLO categories for code-writing tasks (Lister et al., 2010).

Initial analyses of 30 students’ code-writing answers were conducted to develop the proposed
taxonomy. Students were asked to write code involving three conditional statements in which providing
a direct translation for sequenced conditional statements was considered Unistructural. However, when
students considered removing redundancy, solutions tended to increase on the SOLO scale, becoming
Relational. The students’ responses fell into only Unistructural and Multistructural. However, a second
analysis of a different code-writing question was conducted for 59 students. The question related to
theatre ticket sales, and was more complicated than the previous question. In this case, two students’
responses were categorised as Relational. Although the proposed SOLO taxonomy provides a
theoretical basis for analysing students’ approaches to answering code-writing questions, it is evident
in the study results that levels of questions may limit students’ responses to certain SOLO categories.
If a student is asked to write a program to assign a value to a variable and print out the value, it is clear
that the student’s response will be Unistructural — there will be no chance to provide a response at any
upper level. Thus, it has been recommended that further replications of this study applied to different
code-writing questions be conducted (Lister et al., 2010).
Whalley et al. (2011) proposed a refined SOLO taxonomy which overcomes previous research
limitations in which mapping a very contextual code-writing question to the previous SOLO taxonomy
resulted in difficulties in maintaining consistent mappings (Lister et al., 2010). In this study, a grounded
theory approach had been adopted to analyse nearly 750 students’ responses to three code-writing
questions (Discount problem, Average calculation, and Printing a box of asterisks) in order to conduct
a SOLO mapping. The mapping process started with developing empirical categories consisting of
silent programming elements (SPEs) to extract program constructs, syntactical elements and code
features by conducting constant coding of students’ codes. Coding process allow expert computer
science educators to identify silent programming elements which could emerge from students’ code.
Producing SPEs could be advantageous and is practical for different code-writing questions. The next
stage was to extract broad features that reflect a general code quality which can appear in most code,
such as code redundancy and efficiency. The extracted features can indicate the level of code abstraction

based on subjective evaluations. Finally, based on the SOLO taxonomy proposed by Lister et al. (2010),
three researchers categorised students’ responses to investigate whether using SPEs makes the mapping
process efficient.
The study produced a refined taxonomy because an issue regarding the definition of the Multistructural
level had been raised during the analysis stage. A previous definition of Multistructural indicated that a
‘response represented a translation that is close to a direct translation. The code may have been
reordered to make a “valid” solution’ (Lister et al., 2010). However, during the analysis of the Average
calculation problem, some responses managed to provide a direct translation that was a correct solution,
but which could be less integrated. While the response is categorised as Multistructural, it tends to be
over-categorised and should be Unistructural. Therefore, Multistructural was redefined as ‘a translation
that is close to a direct translation. The code may have been reordered to make a more integrated and/or
valid solution.’
It is clear that Whalley et al. provide a rigorous methodology, conducting a grounded theory approach
to analyse a large set of data which requires a constant coding process to produce SPEs that can be
reproduced for different code-writing questions. The mapping process requires expert computer science
educators who are capable of identifying multiple alternative solutions or SPEs in which common
features can be extracted. Students’ responses might be classified as Unistructural, which should
indicate at least a single concept or SPE, whereas a Multistructural response should indicate a student’s
understanding of multiple concepts or SPEs, which may or may not provide an integrated solution.
However, a Relational response should indicate that all concepts and SPEs have been integrated,
manifesting a comprehension of the relationships between all elements and features. Computer science
educators should understand that classifying students’ responses is based on the level of translated
specifications that are required to satisfy code implementations. In other words, the level of required
specifications in a certain question affects students’ response classifications but not necessarily that the
classification could measure student knowledge.
It has been claimed that the mapping process used in previous research (Whalley et al.,2011;
Jimoyiannis, 2013) has not been consistent in defining programming constructs at the Unistructural
level. Therefore, developing the building blocks may overcome the previous research limitations in
order to identify programming constructs for the Unistructural level only. The building blocks should
be derived from the current course curriculum while considering the knowledge that has been acquired
by students. Iterative and vector questions were analysed while applying the proposed building blocks
and results showed that 44% of students’ performances achieved a Relational level and 3% were at a
Unistructural level.

3. Methodology
Content analysis provides a systematic approach to understand and analyse documents, transcriptions,
audios and videos. Bryman (2015) defines content analysis as an approach to quantify content based on
predetermined categories in which analysis procedures should be systematic and replicable. Another
feature of content analysis is that can be integrated with other approaches (Bryman, 2015) such as, in
our case, the SOLO taxonomy.
3.1 Research questions

• How to assess students’ cognitive abilities for code-writing problems?
• Do high-achieving students tend to manifest specific SOLO categories for code-writing

problems?

Data consisting of nine students’ exam scripts from a level 1 programming course were selected based
on the students’ performance in programming and mathematics. Students proved to achieve high
performance based on their grades, therefore, we were interested to analyse their responses based on
the SOLO taxonomy. The programming course covers programming fundamentals, Object Oriented
Programming, design, constructions, and testing, using the Java programming language. Three code-
writing questions were selected, each of which included different programming constructs. We adapted
Whalley et al.’s (2011) analysis approach, as shown in Fig. 2, to develop the SPE for each question, to
which students’ responses were coded by three independent researchers. The SPE could be identified
based on syntactical elements. Then, each researcher extracted general constructs, elements and

features. Those features could be abstract and imply certain code quality. The final step was to use the
developed SPEs to categorise students’ responses using the SOLO taxonomy. To ensure that all
researchers followed same analysis steps, the analysis procedure was developed and distributed. At the
end, each researcher consolidated their findings and discussed issues that might have affected the
mapping process.

Figure 2: Bottom-up analysis approach.

3.2 Code-writing problems
3.2.1 Array Creation
The first problem was about writing a method that takes a single integer, n, as an argument to create an
array of size n with random values between 0 and 100. Students should write valid code to demonstrate
their knowledge of array declaration, initialisation and iteration. In addition, the code can be
implemented using Java built-in Math or Random objects and their functions to generate random values
to be stored in the array. We assumed that those objects had been introduced to the students in the
course. However, the question included a non-direct translation of the specifications as the array must
include values between 0 and 100 inclusive. In this case, Math objects have a Random method that
returns a double value, greater than or equal to 0.0 and less than 1.0, which needs to be multiplied by
101 and converted to integer. Thus, the array will include values from 0 to 100. We decided that the
question should be categorised Multistructural. Sample of Student solution are shown in Table 3.

N Code

1

Table 2: Sample of student solution for Array Creation problem.

Coding the students’ answers is the next step to develop the SPEs derived from students’ program code
to identify program constructs and syntaxes that be used to implement such a program to solve a
problem. As shown in Table 4, the main program constructs consist of method declaration, array
declaration, iteration, initialization with random values, and a return statement. In most solutions, the
methods were declared correctly to return the created array. However, some methods were declared to
be ‘static’, which was not required in the question specifications. For the array declaration, all solutions
declared the array with size n in a one line statement, which is more efficient than using two line
statements. All solutions implemented the array iterations using one finite loop whereas there were two
options to generate random values to be stored in the array. Both Math and Random Java objects were
implemented, however some solutions were not able to generate random values between 0 and 100
including 100 as specified in the question.

Construct Element Feature

Method declaration
Public int[] array (int n) Typical
Public void array (int n) Void method

Array declaration int [] array = new int[n]; Efficient
Array iteration 1x for loop Finite loop

Random value
generation

Using Math object Inclusive range
Exclusive range

Using Random object Exclusive range

Return statement Return array; Included
Missing

Table 3: Program constructs and features for Array Creation problem.

Based on the resulting SPEs and features extracted from students’ codes, Table 5 shows the SOLO
mapping.

Construct Feature Solutions by Student’s number
55 14 36 91 98 78 42 79 49

Method declaration Typical x x x x x x x x
Void method x

Array declaration Efficient x x x x x x x x x
Array iteration Finite loop x x x x x x x x x

Random value generation Inclusive range x x x
Exclusive range x x x x x

Return statement Included x x x x x x x
Missing x x

SOLO mapping (1st researcher) M U M M U U U U U
SOLO mapping (2nd researcher) M U M M U U U U U
SOLO mapping (3rd researcher) R U R M U U U U U

Final and agreed SOLO mapping M U M M U U U U U
Table 4: SOLO mapping for Array Creation problem.

3.2.2 Linear Search
The second problem was to write a method that takes an array and an argument, s, as arguments, and
performs a linear search on the array finding the index when s is found or returning -1 if s is not found.
We agreed that the question’s specification can be translated directly and should be categorised as
Multistructural.
All students demonstrated a clear understanding of the question and produced code that included main
constructs. As shown in Table 6 in code number 2, the student’s code tended to have a redundant
declared variable to be returned, thus we consider it as redundancy in the return statement.
Different constructs extracted from students’ code included method declaration, array iteration,
selection and the return statement. Students’ solutions were then categorised based on derived features
as shown in Table 8.

N Code

1

Table 5: Sample of student solution for Linear Search problem.	

Construct Element Feature

Method declaration
public int linearArray(int []
array, int s) Typical
public void linearArray(int []
array, int s) Void method

Array iteration for(int i=0;i<s;i++) Finite loop
Selection If statement Valid condition

Return statement int find = -1;
Return find;

Redundant
non-redundant

Table 6: Constructs and features for Linear Search problem.

Construct Feature Solutions by Student’s number
78 98 91 79 14 49 42 36 55

Method declaration Typical x x x x x x x x
Void method x

Array iteration Finite loop x x x x x x x x x
Selection Valid condition x x x x x x x x x

Return statement Redundant x x
non-redundant x x x x x x x

SOLO mapping (1st researcher) M M M M M M M U U
SOLO mapping (2nd researcher) M M M M M M M M M
SOLO mapping (3rd researcher) M M M U M M M M U

Final and agreed SOLO mapping M M M M M M M M U
Table 7: SOLO mapping for Linear Search problem.	

3.2.3 Recursive method
The third question was about writing a recursive method that calculates the sum of the differences
between opposing pairs (i.e. the difference between A[0] and A[n-1], A[1] and A[n-2], etc.). The
question aimed to measure a student’s ability to implement a recursive method, which is considered to
be a difficult concept to be understood by novice programmers. Thus, we agreed to categorise this
question to be Rational, as the question included additional complex constructs along with applying the
recursion concept. A typical solution passes to the method an array together with a variable that keeps
track of the array index that traverses incrementally from left to right. Then, it is important to have a
second variable which keeps track of the array index that traverses in the opposite way. In addition,
edges of the array must be checked, in order to calculate differences between the edges. Table 9 shows
student code which meets the question’s specifications and is considered to be valid code, and Table 10
shows constructs, elements and features extracted from students’ code. Most important constructs which
differentiate students’ solutions for the SOLO mapping are edges, difference calculation and recursive
method invocation. Given the fact that the nature of recursion involves a degree of abstraction, novice
students encounter difficulties implementing recursive methods (Wirth, 2014). Therefore, students’
solutions manifest different levels of SOLO categories ranging from the lowest to the highest (which is
Rational in this question). Two students were not able to understand the question requirements and
provided solutions lacking constructs related to the question. Table 11 shows students’ SOLO
categorisations.

N Code

1

Table 8: Sample of student solution Recursive problem

Construct Element Feature

Method declaration

Public int oppPairs(int [] array, int
pos) Typical
Public int oppPairs(int [] array) Missing argument
Public void oppPairs(int [] array,
int pos) Void method

Variable assignment int pos2=array.length() -1-pos; Efficient
edges If (pos2<pos) Valid

Difference calculation
int diff = array[pos2]-array[pos] +
array[pos2-j]-array[pos+i]; Invalid
int diff = array[pos2]-array[pos] +
oppPairs(array,++pos); Efficient

recursive invocation oppPairs(array,++pos) Valid argument
invalid argument

Return statement Return array; non-redundant
Table 9: Constructs and features for Recursive problem.

	
	
	

Construct Feature Solutions by Student’s number
49 14 79 91 98 78 55 36 42

Method declaration

Typical x x x x x
Void method x x x
Missing
argument x

Variable
assignment Efficient x x

edges Valid x
invalid x

Difference
calculation efficient x x

recursive
invocation

Valid argument x x x x x x
Invalid
argument x

Return statement Non-redundant x x x x x x x x
SOLO mapping (1st researcher) P P U U U U U R R
SOLO mapping (2nd researcher) P P M M M P U R R
SOLO mapping (3rd researcher) U U U U U U U M R

Final and agreed SOLO mapping P P U U U U U R R
Table 10: SOLO mapping for Recursive problem.

4. Discussion
Despite the effort applied to developing a SOLO taxonomy for code-writing questions, mapping
students’ responses based on a specific SOLO taxonomy has a degree of ambiguity and inconsistency.
SPEs had therefore been introduced by Whalley et al. (2011) to minimise the mapping ambiguity and
inconsistency. In addition, limitations of code-writing questions affect the mapping of students’
responses as certain types of question do not allow for high order thinking to be manifested in the
students’ code. For example, if the question tends to measure student knowledge on how to declare a
variable and assign a value to the variable, the student makes direct translations of what is required.
Clearly, the student’s code can not be categorised EA as the question is limited to specific requirements.
We find that identifying program constructs and extracting the quality features allow more constant
mapping provided by all researchers, and we held a consolidation meeting to refine extracting program
constructs and features for question three. In addition, we evaluated the importance and the weight of
certain constructs that might have affected the mapping process. For example, there was a concern
raised by one researcher questioning method declaration using the modifier static, and thus the mapping
had to be slightly changed. For instance, in Table 11, student 36 manifested three main constructs
(edges, difference calculation and recursion invocation) and had a slight error while checking the edges,
and the student’s response categorised Relational the same as responses that manifested all three
constructs. The student’s response that was categorised Relational should manifest all main constructs
and features showing understanding of the relationship between them (Whalley, 2011).
Another challenge was the choice of the questions as we had been limited to only three code-writing
questions that had been included in the exam script. Limitations of questions prevented students’ ability
to be manifested and categorised in a higher category. The three questions had been categorised
Multistructural, Multistructural and Relational respectively, thus those categories represented the
highest categories for each question. In addition, we agreed to consider SOLO categories for each
question when mapping students’ responses, so if a student’s response had been categorised higher than
the question level, the category should be degraded. We agreed to categorise the questions based on the
level of translations and concepts needed to be measured. Therefore, mapping students’ responses for
code-writing questions should be accorded to the level of translations of required specifications in the
code-writing questions (Whalley, 2011).
Our aim was to investigate high-performing students’ responses according to the SOLO taxonomy.
Despite the limitations and challenges addressed earlier, results show that high-performing student
manifest the ability to understand code-writing problems and provide solutions that might be
categorized at the highest possible SOLO category. In question one (Array Creation), six students’
responses fell into the highest possible category whereas the rest of students’ responses were categorised
in the second highest category (Fig. 3). In question two (Linear Search), eight students’ responses
resided in the Multistructural category, which is the highest category for question two, while one

responses were categorised as Unistructural as shown in Fig. 4. As we mentioned earlier, question three
focused on recursion which is one of the most difficult concepts for novice programmers. Therefore,
question three was categorised as Relational where students’ responses might manifest a degree of
abstraction that might vary from one student to another in which responses could be categorised at
different levels. Fig. 5 shows that two students provided solutions categorized at the highest possible
level where five students’ solutions manifested direct translations with invalid solutions categorized as
Unistructural. Two students showed a lack of understanding program constructs in their solutions which
had been categorised as Prestructural.

5. Conclusion	
Educational taxonomies provide a framework for CSE to categorise students’ cognitive abilities in the
computer science field. Several attempts have been made to apply Bloom’s taxonomy to categorise
student code, but have resulted in a great deal of ambiguity as Bloom does not provide descriptions that
can be interpreted easily in computer science. However, the SOLO taxonomy has been applied to
classify students’ codes and algorithm designs. In this paper, we have adapted Whalley et al.’s (2011)
framework, which has allowed us to code students’ responses for code-writing questions and to develop
SPE and quality features which have assisted us to categorise students’ responses. Including the first
author, two researchers have replicated the analysis procedures to ensure that analysis has yielded
consistent results. The number of high-achieving students’ responses were categorised at the highest
possible level for two of the three questions which were analysed, although only two students’ responses
were categorised at the second highest and highest levels for the remaining question (which focused on
the complex concept of recursion).

Figure 3: Students numbers mapped into SOLO

for Array Creation problem.

Figure 4: Students numbers mapped into SOLO

for linear search problem.

Figure 5: Students numbers mapped into SOLO for Recursive problem.

References
Anderson, L. W., Krathwohl, D. R., Airasian, P., Cruikshank, K., Mayer, R., Pintrich, P., & Wittrock,

M. (2001). A taxonomy for learning, teaching and assessing: A revision of Bloom’s
taxonomy. New York. Longman Publishing.

Biggs, J. B. (1999). Teaching for quality learning at university. Buckingham: Open University Press.

Biggs, J. B., & Collis, K. F. (2014). Evaluating the quality of learning: The SOLO taxonomy (Structure
of the Observed Learning Outcome). Academic Press.

Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956). Taxonomy of
educational objectives, handbook I: The cognitive domain.

Bryman, A. (2015). Social research methods. Oxford university press.

Dolog, P., Thomsen, L. L., & Thomsen, B. (2016). Assessing Problem-Based Learning in a Software
Engineering Curriculum Using Bloom’s Taxonomy and the IEEE Software Engineering Body
of Knowledge. ACM Transactions on Computing Education (TOCE), 16(3), 9.

Fuller, U., Johnson, C. G., Ahoniemi, T., Cukierman, D., Hernán-Losada, I., Jackova, J., & Thompson,
E. (2007). Developing a computer science-specific learning taxonomy. In ACM SIGCSE
Bulletin (Vol. 39, No. 4, pp. 152-170). ACM.

Ginat, D., & Menashe, E. (2015). SOLO Taxonomy for Assessing Novices' Algorithmic Design.
In Proceedings of the 46th ACM Technical Symposium on Computer Science Education (pp.
452-457). ACM.

Hattie, J.A. and Purdie, N. 1998. The power of the solo model to address fundamental measurement
issues. In Teaching and Learning in Higher Education, Edited
by: Dart, B. and Boultonlewis, G. Victoria, Australia: ACER.

Jimoyiannis, A. (2013). Using SOLO taxonomy to explore students’ mental models of the programming
variable and the assignment statement. Themes in Science and Technology Education, 4(2), 53-
74.

Johnson, C. G., & Fuller, U. (2006). Is Bloom's taxonomy appropriate for computer science?.
In Proceedings of the 6th Baltic Sea conference on Computing education research: Koli Calling
2006 (pp. 120-123). ACM.

Johnson, G., Gaspar, A., Boyer, N., Bennett, C., & Armitage, W. (2012). Applying the revised Bloom's
taxonomy of the cognitive domain to linux system administration assessments. Journal of
Computing Sciences in Colleges, 28(2), 238-247.

Krathwohl, D. R. (2002). A revision of Bloom's taxonomy: An overview. Theory into practice, 41(4),
212-218.

Lister, R., Clear, T., Bouvier, D. J., Carter, P., Eckerdal, A., Jacková, J., ... & Thompson, E. (2010).
Naturally occurring data as research instrument: analyzing examination responses to study the
novice programmer. ACM SIGCSE Bulletin, 41(4), 156-173.

Lister, R., Simon, B., Thompson, E., Whalley, J. L., & Prasad, C. (2006). Not seeing the forest for the
trees: novice programmers and the SOLO taxonomy. ACM SIGCSE Bulletin, 38(3), 118-122.

Wirth, M. (2014). The Canny Skipper-A Puzzle For Demonstrating Data Structures And Recursion.
In Proceedings of the Western Canadian Conference on Computing Education (p. 16). ACM.

Whalley, J., Clear, T., Robbins, P., & Thompson, E. (2011). Salient elements in novice solutions to
code writing problems. In Proceedings of the Thirteenth Australasian Computing Education
Conference-Volume 114 (pp. 37-46). Australian Computer Society, Inc..

Whalley, J. L., Lister, R., Thompson, E., Clear, T., Robbins, P., Kumar, P. K., & Prasad, C. (2006). An
Australasian study of reading and comprehension skills in novice programmers, using the
bloom and SOLO taxonomies. In Proceedings of the 8th Australasian Conference on
Computing Education-Volume 52 (pp. 243-252). Australian Computer Society, Inc..

