

H.I.D.E.: A Virtual Reality Debugging Environment

Nicolas Slack
Department of Informatics

University of Sussex

Nicolas.slack@gmail.com

Kate Howland
Department of Informatics

University of Sussex

k.l.howland@sussex.ac.uk

Abstract
This paper presents a prototype virtual reality debugging environment, aimed at novices, that provides

a 3D visualisation of code and supports gestural navigation through the visualisation. This prototype is

implemented for the HTC Vive, and has the capability to expand into a variety of 3D visualisations,

programming languages, and VR platforms. We describe how our design builds on previous research

on debugging to provide support for observing, exploring and hypothesizing activities by focusing on

flow-of-control and data visualisations. We present preliminary results from pilot user testing and

highlight key areas for future development.

1. Introduction
Debugging is an inevitable and challenging aspect of programming, and there is evidence that

visualisation tools can provide useful support for users in the task, particularly for novice programmers.

With the recent growth in virtual and augmented reality environments, there is potential for

development of 3D representations that allow programmers to ‘walk through’ their code as part of the

debugging process. This work explores the potential for alternative methods of displaying data and

control flow in a virtual environment, with a view to identifying fruitful future directions for virtual

reality debugging support. We present a prototype system, H.I.D.E (Humanised Interactive

Development Environment), and some preliminary user testing findings.

The following section gives a brief background on how this work builds on existing research on

debugging support. Following this, an overview of H.I.D.E is given, highlighting the key aims and

functionality of the system. Finally, we explain our initial findings from pilot testing and their relevance

before concluding, and pointing to key areas for future work.

2. Background
Debugging is an arduous task that all programmers at any level must undertake at some point, and a

significant quantity of time allocated to it on any project. The motivation behind our system was to

explore how a virtual reality environment could provide support to increase debugging efficiency, by

building on existing understandings of common behaviours exhibited by programmers. Empirical

studies have produced several relevant findings on debugging behaviour. As highlighted by Ko and

Myers [1], there is a broad consensus that debugging is an exploratory task that can be broken down

into six distinct and interleaving activities: hypothesizing what went wrong; observing runtime data;

restructuring data; exploring the restructured data; diagnosing code; repairing code.

Ko and Myers [2] found that around half of the errors novice programmers made with the novice

programming environment Alice were due to false assumptions in hypotheses made while debugging

existing errors. In later work they reported on the questions asked by novice programmers whilst

debugging, noting that “85% of questions were about a single object. The remaining concerned multiple

objects’ interactions” [1, p. 153]. This set the foundation for our thinking. If programmers are producing

incorrect assumptions, and are primarily focussing on single objects or multi-object interactions, we

asked how data could be displayed in a fashion to better facilitate their understanding.

Romero and colleagues noted in [3] that “experienced programmers, when comprehending code, are

able to develop a mental representation that comprises different perspectives … as well as rich mappings

between them”. However, this mental representation places a cognitive load upon programmers,

increasing the quantity of data they need to process. Ideally, a system should form these mappings in a

fashion that can be easily read without inducing additional cognitive load. Such a system would be

especially useful for novices, as they do not have the experience to form these mappings. Romero et al.

highlight the ‘double challenge’ faced by novices:

“…. As well as trying to learn abstract concepts about programming, they have to master the

decoding, representation coordination and step-and-trace skills required to use debugging

environments.” [3, p.993].

Traditionally, debugging environments are deployed onto standard hardware. These environments use

the standard interfaces; keyboards, mice, and monitors. However, there are many rapidly evolving

technologies that present alternative methods of interfacing with computers. Virtual reality and

Augmented reality devices (Such as the HTC Vive and Microsoft Hololens) are but a few examples.

These devices present interaction possibilities not present in traditional input devices, such as haptic

control, true 3D environments, and depth perception. Exploring how these new possibilities could be

used to support novice debugging is the foundation of our system.

3. H.I.D.E Overview
H.I.D.E (Humanised Interactive Development Environment) is a system developed in Unity, deployed

to the HTC Vive that visualises LUA scripts in a 3D virtual environment. H.I.D.E focusses on providing

support for the observing, exploring and hypothesizing stages of debugging. These activities are the

ones most likely to benefit from visualizations, and there is

potential to reduce the cognitive load of programmers by

making mappings visible.

H.I.D.E represents each lexical token within a program’s

lexical token tree as a 3D object within the space. When

looking directly at, or highlighting a token with an input

device, the system will show the data value of that token at

that point in the program execution. For example, when

looking directly at the token representing ‘x’ on the first

line, the value shown in the display will be ‘7’. However, when observing ‘x’ on the third line, the

value shown in the display will be ‘12’. Similarly, when observing the ‘if’ statement, if the

condition evaluates to true, the system will display ‘Is Entered’ to alert the user that this

statement’s body will be executed.

Figure 2 shows a view from an early

build of the HIDE system, displaying

an equality test. The user in this

instance is looking directly at the

equality symbol in the middle, while

highlighting the two data values on

either side. As can be seen, this

equality is testing if ‘n == 0’. The

left-hand sphere represents ‘n’ in this

instance, and its current value at this

point in the program execution is ‘1’.

As such, the display shows false.

Below is an example use case of H.I.D.E:

“A programmer is struggling to discover why her factorial function is returning incorrect values.

However, while looking at the code alone she cannot discover the error. She loads the program into

HIDE, and follows the manipulation of the input variable through in HIDE, using it’s highlighting

and context-sensitive readouts. She discovers that 5! is returning 121 instead of 120. After following

the execution through visually, she quickly spots that the base case is returning 2 instead of 1”

Though the example is simplified to an extreme, it demonstrates the potential benefit of the tool. HIDE

is designed to help programmers spot logical errors or human errors, that are difficult to see when

1| x = 7;

2| if (example ==

true) then

3| x = 12;

4| end

Figure 1 – An example LUA script

Figure 2– An image captured from an early build of H.I.D.E

looking at traditional readouts. Program code can be navigated using the touch pads on the Vive

controller, and code objects can be highlighted by pointing a controller at them and holding the trigger

button. The system casts rays from the headset and controllers to detect which code object is currently

being held in focus, and displays the appropriate readout.

4. Evaluation
We conducted a pilot user test, aimed at exploring how users interacted with the system, and their ability

to understand the data displayed. The testing session was designed to assess how quickly participants

comprehended what a small script was doing in two different environments – notepad++ and our

system.

4.1 Method
Two undergraduate Computer Science students took part in testing. They each had 2-3 years

programming experience, but neither had programmed in the Lua language before. Participants were

given a brief orientation period, and then asked to debug two different scripts in the two different

environments, with the ordering reversed. The time allowed for attempting to debug the short script in

each system was 5 minutes. We asked participants to narrate their thought process throughout the

experiment, and collected their informal observations about the system by audio recording the session.

At the end of the 5 participants were asked to explain what they believed the program did, if they had

not tried during the 5-minute period.

4.2 Results
Table 1 shows the time it took each participant to debug the scripts in each environment, whilst Table

2 shows participant feedback comments (transcribed from audio files).

Table 1 – Preliminary test results

Participant file1 Notepad++ time file 2 H.I.D.E time

1 test1.lua 4m 33s test2.lua Unsuccessful

2 test2.lua Unsuccessful test1.lua End of test

Table 2 – Participant comments

Participant 1 Participant 2

Within a short amount of time, it’s easy to

understand what is happening
Some parts made sense, but there is a lot going on

Extra-dimensional indentation is useful Layout is too spread out

Large code bases may cause it to fall apart in

terms of readability

Having to look at objects instead of data being

explicitly displayed is frustrating

Could be useful in a teaching environment, or

a small tech company

It could be difficult to understand

It is another way of sharing or debugging code Unsure of where to use the system, but could be

useful in smaller companies

Is more intuitive than some ways of

displaying code

More of a secondary approach to traditional

debugging

Difficult to judge what detail is needed System is an alternative method of viewing code,

from a new perspective

Main issues currently are colour and layout

oriented. The layout is well presented, but

rough around the edges

Vive is a good hardware platform to deploy the

system to

It’s good fun, and would be a good teaching

aide

Colour and transparency was not clear

Good for exploring a code base

4.3 Discussion
Neither participant successfully found the bug using the HIDE environment. Future versions of this

study should allow more time for familiarisation with the system and the debugging task to allow further

investigation of whether the system can support bug identification. However, participant comments

gave some useful initial feedback. Both subjects described the system as intuitive, especially the

dimensionality, which bodes well for developing the idea further. The system naturally leans towards

collaborative efforts, as the visualisation could be seen by multiple parties simultaneously which would

aide in mutual understanding of information. Colour, however, was highlighted as counter-intuitive, as

such it will need further consideration.

The broader implications of this system for virtual reality are apparent. Users found having to look at

an object to bring up information frustrating, and that the data was too spread out. This seems to stem

from the low resolution of the headset, paired with a narrow field of view. The data can seem

overwhelming with such a narrow perspective. In future systems, data must be very carefully filtered

and abstracted to prevent cognitive overloading.

5. Conclusion

Our system creates a 3D environment within which users can view program code, to aide in their

understanding of program structure. The visualisation aides in the formations of hypothesis regarding

program errors, and assists users in comprehending the flow of data and control through a program. The

current system presented requires additional refinement at the implementation level.

The system utilises a virtual reality headset to provide a novel approach to viewing program code, and

presents opportunities for teaching inexperienced programmers the foundations of programming in a

more interactive and engaging way.

The current system is limited to LUA, and does not fully support cross-file dependencies. However, the

system has the potential to grow into a multitude of areas. Areas that require data input include; Running

a script of function with a set of inputs, taken from natural language input, Modification of program

code inside the environment, and integrated automated testing (such as Monte-Carlo or Unit testing).

Areas that do not require input that could be expanded upon are; Multiple users in the same

environment, Cross-platform compatibility (Such as the Occulus rift and Hololens) and Multi-language

support for both programming and natural languages.

The system has identified a promising field for further study regarding alternative methods of displaying

data. The inherent ease of use when dealing with multi-sensory environments has great potential for

increasing efficiency, as well as communicating data between entities faster.

6. References
1. Ko, A.J. and Myers, B.A., 2004. Designing the Whyline: a debugging interface for asking questions

about program behavior. In Proceedings of the SIGCHI conference on Human factors in computing

systems (pp. 151-158). ACM.

2. Ko, A.J. and Myers, B.A. 2003. Development and evaluation of a model of programming errors,

IEEE Symposia on Human-Centric Computing Languages and Environments, 2003, Auckland,

New Zealand, (pp. 7-14).

3. Romero, P., du Boulay, B., Cox, R., Lutz, R. and Bryant, S., 2007. Debugging strategies and tactics

in a multi-representation software environment. International Journal of Human-Computer

Studies, 65(12), pp.992-1009.

4. "Moonsharp". Moonsharp.org. N.p., 2017. Web. 15 Dec. 2016.

