
Crafting Design Documents in First-Year CS Courses

Abstract
Computer science, at its core, is about solving problems. The "Carry out the Plan" portion of problem

solving is often examined and emphasized in CS 1 and CS 2, forgetting to emphasize the other important

aspects of the problem-solving process. This study focuses on the "Devise a Plan" or design step of

problem solving. Four terms of design data (2,797 designs) are examined to answer the question of

whether syllabus detail impacts the crafting of design documents and what are the students' attitudes

toward design. The results show that syllabus detail does impact the way students design and that

students do value design when asked in a survey. These insights have implications of when and how

design is taught and opens questions to how best assess design.

1. Introduction

Computer science, at its core, is about solving problems. As educators in computer science, the

general goal should be to teach students a systematic approach for solving problems (Raadt, 2004).

Often the focus of solving the problem, especially in the initial stages of computer science, is on

programming in a particular language. In early, first-year computer science classes, the emphasis is

placed on how to structure the code and how to write syntax, and this emphasis largely misses the bulk

of the problem-solving processes. As defined by George Polya in How to Solve It (1957), there are four

steps used to solve problems: 1) Understand the Problem, 2) Devise a Plan, 3) Carry out the Plan, and

4) Look Back. In many freshman computer science courses, the step to “Carry Out the Plan” typically

involves writing the code/program for an assignment, and the grade for the assignment is based on this

step, which removes focus from the other three steps in the problem-solving process. However, one

recent study used Polya’s problem-solving steps to teach software development and found that students

exposed to these steps were more capable to solve problems and did so in a shorter amount of time

(Allison and Joo, 2014). Grounded in Polya’s theoretical framework for solving problems, the action

research in this paper uses student engagement and attitudes in the first-year courses to evolve a strategy

and rubric for teaching the craft of creating design documents prior to coding and before learning formal

software engineering practices.

2. Related Work
 As Ginat et. al. point out, there is an abundant amount of literature on how students understand

programming and computer models, but there are few studies on how students perform task analysis

and utilize patterns (2013). The Ginat et. al. (2013) study looks at students’ utilization of patterns;

whereas, the study presented in this paper focuses on students’ ability to recognize and perform tasks

presented in a design document template and grading rubric. Instead, we are asking them to recognize

the goals of the problem by listing the requirements and assumptions, as well as “put it all together” in

a design plan, prior to coding and thinking about syntax. According to Soloway (1986), we are asking

for the explanation using stepwise refinement, but we are also asking for students to combine these

goals/plans with rules without using a specific programming language.

“To facilitate the transfer of knowledge from “Computer Science 100" to other problem-
solving activities, students must be taught explicitly that programming is a design discipline,

and as such the output of the programming process is not a program per se, but rather an
artifact that performs some desired function.”

We are interested in Soloway’s plan composition, but unlike the Fisler et. al. (2016) study, we are

interested in the crafting of the plan composition prior to coding, rather than identifying the plan
composition presented in code. At this time, we do not investigate students’ plan composition used in

the design documents because the focus here is on establishing a curriculum that promotes planning

and design early in the first-year CS classes.

 Other related work tends to revolve around a multi-institutional study published in 2004 where

students were asked to design a super alarm clock (Chen et. al., 2005), (Eckerdal, 2006), (Fincher,

Shannon Ernst
Oregon State University
ernstsh@oregonstate.edu

Jennifer Parham-Mocello
Oregon State University

parhammj@oregonstate.edu

PPIG 2018 111 www.ppig.org

2004), (Thomas, 2014). The study was conducted at 21 institutions, across four countries and garnered

314 participants with half the students being early in their computer science program and the other half

preparing to graduate. The designs were collected in a controlled and timed setting, and the results from

these studies show that design is a skill that is acquired and improved over time. Though these studies

have a wider breadth in regard to the institutions and backgrounds of the students, the research presented

in this paper does not collect data in a controlled, timed environment because the authors’ want to

investigate the craft of creating design documents in one’s own natural environment. In addition, the

authors in this research study seek to teach problem-solving techniques and skills to first-year computer

science students, rather than allowing them to acquire these skills. The common thread of the multi-

institutional studies is they assume the design of a solution is constrained to UML diagrams or

formalized notation. Whereas, this study investigates unofficial notation wherein students and

professionals express their thinking in a variety of ways which can still address the key points of design

and yield viable software solutions. Our research aligns a little more closely with a recent study

analyzing novice student design strategies using recorded sessions of students creating design

documents (Yeh, 2018); whereas, we are more interested in what students do on their own outside of a

recorded environment over the course of multiple assignments.

 Work published in the programming language community focuses on design recipes. These design

recipes come from How to Design Programs and is referred to as Program by Design (Felleisen, 2001).
Recent research used the Program by Design method in an introductory class and focused heavily on

the link between design and code with the belief that there are patterns students should employ each

time they design a function (Sperber and Crestani, 2012), (Ramsey, 2014). The work examined in the

presented study does not follow a set step by step design process nor does it examine the links to code

in as much depth as work found in relation to Program by Design. Rather, the students in the presented

study are encouraged to engage in whatever form of representation best lets them learn, whether that is

pictures, text or some combination. The idea behind this freedom of choice is to not bog students down

with learning formal notation for design so early in the process to the point where they may not see or

examine different ways of solving the problem.

 There is also work on test driven design as an alternative to recipes and other systematic approaches

(Janzen and Saiedian, 2008), (Proulx, 2009). It was found that students who engage in test driven design

see more benefits when programming however many students are reluctant to adopt test driven design,

instead preferring the test last approach (Janzen and Saiedian, 2008). In the presented study, a testing

table is submitted as part of the design before the programming assignment is submitted, attempting to

encourage students to reflect before and after implementation. The design in this study is not marketed

under a test first policy though.

 The classification system used in this study was based largely on a combination of Polya’s steps and

the rubric established by Thomas et al. (2014). Other rubrics to assess design quality exist, such as

Castro and Fisler’s SOLO Taxonomy (2017). Their rubric, though very detailed, was more closely

coupled with how the code was structured and interacted rather than the designs represented in this

paper which do not rely on examining the student’s code structure (Castro and Fisler, 2017). Their study

was also very small with only 15 participants. The presented study continues to examine the correlation

between designs and grades and the inclusion of design attributes, outlined by the authors, but over a

much larger data set. There are many more studies that focus on the detection of student patterns used

in a solution (Ginat, 2009), (Ginat and Menashe, 2015), and use the SOLO taxonomy to classify the

quality of the patterns or building blocks used by the students in an algorithmic design or actual code

written in a programming language (Ginat and Menashe, 2015), (Izu et. al., 2016). However, this

research does not focus on detecting patterns or classifying the learning based on these patterns.

However, this research study is interested in determining a way to get first-year students to engage in

multiple problem-solving steps prior to writing code, instead of skipping steps or engaging in them after

code writing occurs.

3. Motivation
Systematic problem-solving prior to coding has been the primary motivation for this research, and

before this study was conducted, first-year students at the host university had been required to submit

PPIG 2018 112 www.ppig.org

designs with their programming assignments for the past 4 years. These designs were not meant to be

formal UML write ups and were not expected to be correct. The purpose of the design was to encourage

students to think about the problem before they began programming the solution. At that time, students

had access to a description of George Polya’s problem-solving steps (see Table 1) and an example

design document for what to include given a specific problem statement (see Figure 1). The example

design document provided both a flowchart and pseudocode as a means for devising a plan, but the

students were not required to do both. However, the students were shown that the example design

document does not include code, and they were provided many more test cases to show good test

coverage for good and bad test cases.

 The students were reminded at the beginning of each assignment PDF to submit with their code a

design which included the Understand the Problem, Devising a Plan, and Testing steps. Though data

was not being collected at this point, anecdotally, teaching assistants (TAs) grading the assignment

reported that students were either not submitting designs, submitting partial designs missing some of

Polya’s steps, or submitting low-quality designs with all the steps. It was believed that this was largely

due to the low point value associated with the design as part of the assignment, as well as students

writing a design after they had already programmed the assignment. Many students supported this

hypothesis by admitting to their lack of engagement or creating the design document after writing the

program. It was clear that students were not seeing a benefit in designing as they did not engage properly

with the activity and received little enforcement or guidance on the process. This led to mandatory

recitations in the first-year CS courses focusing on design concepts and practices.

Figure 1 - Example Design Template

Understanding

the Problem

In your own words, explain what YOU think the problem is asking you to do. In this

section, document your uncertainties about the problem and anything else that you

feel was unclear or vague. This is to ensure that YOUR understanding matches MY

understanding of the problem.

Template Design/Testing Document

Problem Statement: Write a C++ program that continues to ask the user for n test
scores. These test scores should range from 0 to 100, and your program needs to
check that the scores supplied are valid numbers before moving forward. This may
include making sure the user doesn’t enter a letter or string of letters.

• Ask the user for the number of test scores he/she wants to enter.

• Repeatedly, ask the user for that number of test scores.

• For each test score received, check that the test score is a number and it is
between 0-100.

• Print an error message if the number is not in this range, and re-prompt the
user for another number.

• After receiving good test scores, then calculate the average and output it to the
screen.

Understanding the Problem:
This problem is asking me to read an unsigned whole number value, n, from the user,
and then read n unsigned real numbers, which represent test scores, from the user.
These scores need to be between 0 and 100, as well as a valid real number. If the user
doesn’t enter a valid number or a number in the range, then an error message is
printed, and the user is prompted to enter a new number without taking away from the n
valid numbers the user is entering. After the user enters n valid real numbers in the
range of 0-100, then the average is calculated and printed to the screen.

I am assuming the number of tests is an unsigned whole number.
I am assuming the test scores can be unsigned real numbers, instead of just integers.
I am assuming that errors in the user input does not count against the n numbers to
enter.

Devising a Plan/Design:

Template Design/Testing Document

Problem Statement: Write a C++ program that continues to ask the user for n test
scores. These test scores should range from 0 to 100, and your program needs to
check that the scores supplied are valid numbers before moving forward. This may
include making sure the user doesn’t enter a letter or string of letters.

• Ask the user for the number of test scores he/she wants to enter.

• Repeatedly, ask the user for that number of test scores.

• For each test score received, check that the test score is a number and it is
between 0-100.

• Print an error message if the number is not in this range, and re-prompt the
user for another number.

• After receiving good test scores, then calculate the average and output it to the
screen.

Understanding the Problem:
This problem is asking me to read an unsigned whole number value, n, from the user,
and then read n unsigned real numbers, which represent test scores, from the user.
These scores need to be between 0 and 100, as well as a valid real number. If the user
doesn’t enter a valid number or a number in the range, then an error message is
printed, and the user is prompted to enter a new number without taking away from the n
valid numbers the user is entering. After the user enters n valid real numbers in the
range of 0-100, then the average is calculated and printed to the screen.

I am assuming the number of tests is an unsigned whole number.
I am assuming the test scores can be unsigned real numbers, instead of just integers.
I am assuming that errors in the user input does not count against the n numbers to
enter.

Devising a Plan/Design:

Testing:

Value Expected Actual meet expected

n = 0 Nothing, just exit Yes

n = -1 Error message and re-
prompt the user for a good
n value

Yes

n = 1.5 Error message and re-
prompt the user for a good
n value

Yes

n = 1 Prompt user for 1 test
score

yes

n = 5 Prompt user for 5 tests yes

test score = -1 Error message and re-
prompt the user for a good
test value. This should not
count as one of the n tests.

yes

test score = 100.5 Error message and re-
prompt the user for a good
test value. This should not
count as one of the n tests.

Yes

test score = 0 Continue to prompt for
another test score.

Yes

n = 1, test score = 100 Average should be 100 yes

n = 1, test score = 100.5,
test score = 0

Error message for test
score, re-prompt for a new
test score, and only use
valid n tests in average.
Average should be 0

yes

n = 3, test score = 100,
test score = 0, test score =
50

Average should be 50 yes

PPIG 2018 113 www.ppig.org

Devising a

Plan/Design

At a minimum, provide an algorithm/pseudocode you designed to help solve the

problem. In addition, include pictures/flowcharts you used to help you devise your

plan, as well as any other design decisions you made such as how to manage your

time, how to decompose the problem, where to start first, etc. You can scan any

handwritten work and attach it to the document as needed.

Testing

Report any checking/self-reflection you did while solving the problem. For instance,

how did you make sense of the output from the implementation? This includes things

such as using a calculator to make sure the output is correct, testing to make sure your

code executes correctly and behaves the way you expect under specific

circumstances, using external sources of information such as the internet to make

sense of the results, etc. In addition, you will provide us a test plan!

Table 1- Polya’s problem-solving steps with detailed descriptions

4. Research Method
 Having a recitation with the course provided a framework for discussing and enforcing design prior

to coding, more feedback for design, and encouraged engagement with the activity by requiring a peer-

reviewed design document submitted on Canvas (an online learning management system) one week

prior to the assignment’s due date. The student’s recitation peer leader would grade and comment on

the design to encourage the student to improve their designs over time, and students conducted peer

reviews of the designs in their recitation section through Canvas to be exposed to alternative ways of

thinking, to constructively provide additional comments, and to enforce taking designs seriously.

 With a structured method for examining and enforcing student design in the first-year courses, CS 1

and CS 2, a study was conducted to see what students did when required to provide design documents

based Polya’s problem-solving steps, and how instructor guidance in a syllabus can change the

behaviour of the students. The study presented in this paper examines 2,797 designs over four 10-week

terms with the following research questions and motivations:

RQ1: Does the inclusion of categories differ with instructor guidance in the syllabus?

RQ2: What are student attitudes toward guidance on designs and their value of design?

4.1 Course Structure

 Four first-year CS courses from spring 2016 – spring 2017 (referred to as Classes A, B, C, and D

respectively) were part of this study. All courses were taught by the same instructor, providing

consistency in the implementation of the recitations. The recitations count as 20% of their total course

grade and have their own syllabus to provide grading requirements for submitted designs and peer

reviews, in addition to the explanation of Polya’s steps presented in Table 1 and the example design

document shown in Figure 1 above. The recitation syllabus evolved each term of the study to address

peer leader grading confusions and promote student engagement with the activity by adding increased

clarification and point values to the syllabus (see Table 2). The changes are influenced by McCracken

et al. (1999), who found that students do not inherently know what design is and need to be taught or

given clear definitions of design. Even though the students were given a thorough explanation of what

was required and an example design document, the researchers believe that increasing clarity of

expectations in the recitation syllabus (or grading rubric) leads to better designs.

Class Designs % of Grade Expectations of Design According to the Syllabus

Class A:

Spring

2016

5 25% “Recitation will focus heavily on design concepts. To enhance

learning, every student will have to submit their design to

Canvas for the current assignment during the first week of the

period in which the assignment is assigned… The design does

not need to be correct but show good faith effort to creating

quality design for the current assignment.”

Class B:

Fall 2016

4 40% “The design does not need to be correct but show good faith

effort to creating quality design for the current assignment,

and it MUST address 1) Understanding the Problem (2 pts), 2)

Flowchart and/or Pseudocode (4 pts), and 3) Test Cases (4

PPIG 2018 114 www.ppig.org

pts). You will receive one point for each area by turning in the

work. The remaining points for each area will be based on

how thorough and complete each section is. For example,

restating the problem for the design area 1) Understanding the

Problem will only get you one point. You must describe and

justify your understanding of what the problem is asking to

receive full credit.”

Class C:

Winter

2017

4 40% “The design does not need to be correct but show good faith

effort to creating quality design for the current assignment and

it MUST address 1) Understanding the Problem (2 pts), 2)

Flowchart and/or Pseudocode (must contain function details

and header info) (4 pts), 3) Test Cases (must contain good,

bad, and edges cases) (4 pts).…”

Class D:

Spring

2017

5 40% “The design does not need to be correct but show good faith

effort to creating quality design for the current assignment,

and it MUST address 1) Understanding the Problem (2 pts), 2)

Flowchart and/or Pseudocode (must contain function details

and header info) (4 pts), and 3) Test Cases (must contain good,

bad, and edges) (4 pts). By default, you will receive one point

for each area addressed in the design (up to 3 points for just

turning in something!). The remaining points for each area

will be based on how thorough and complete each section is.

 For example, restating the problem for the design area 1)

Understanding the Problem will only get you one point. You

must describe and justify your understanding of what the

problem is asking you to receive full credit, i.e. both points.

For test cases, you MUST have good (1 pt), bad (1 pt), and

edge (1 pt) cases to receive full testing credit, and your design

needs to include details for the logic in the functions (1 pt), as

well as information about the pre/post conditions and return

values (1 pt), and the relationship among the functions/classes

(1 pt) for full design credit.”

Table 2 - Recitation Syllabus/Grading Rubric Changes Over 4 Courses (A-D)

Classes A and D were required to turn in

designs for 5 assignments coving the following

topics.

• 2-D arrays and Files

• Classes

• Inheritance

• Polymorphism

• Linked Lists

 Classes B and C were required to turn in

designs for 4 assignments coving the following

topics.

• Repetition

• Functions

• 1-D Arrays

• 2-D Arrays

Even though the assignment topics differ in classes A and D from B and C, the research questions in

this paper are addressing the inclusion of features in the design document based on the change in

instructor guidance given in the recitation syllabus.

4.2 Participants

 The researchers obtained consent from students to examine their designs in 4 first-year CS courses

from spring 2016 – spring 2017 (referred to as Classes A, B, C, and D respectively). Table 3 shows the

consenting population differences across courses. Each course had slightly different consent rates and

grade distributions. It is important to note for analysis purposes that most of the participants in this

study are “above average” students.

Courses A B C D

PPIG 2018 115 www.ppig.org

Consent Rate 172/279 (62%) 50/120 (42%) 213/418 (51%) 177/278 (64%)

A 51% (87) 50% (25) 50% (106) 51% (90)

B 31 % (54) 22% (11) 27% (58) 24% (43)

C 13% (22) 18% (9) 14% (29) 14% (25)

D 1% (2) 6% (3) 5% (11) 5% (8)

F 4 % (7) 4% (2) 4% (9) 5% (8)

Table 3 - Demographic Details of Students in Each Class (A-D)

4.3 Classification Categories

 Based on Thomas et al. (2014), the researchers developed six categories for classifying what students

include in their design documents to evaluate the quality of design (see Table 4). Eighty-six random

designs, 10% of the data collected from spring 2016, were used to determine a suitable classification

for quantifying the design documents based on an inter-rater reliability (IRR) greater than 80%. Though

the rubric proposed by Thomas et al. (2014) had six categories with 0 to 5 representing the level of

quality (ranging from informal to expert), the research questions in this study can be answered using a

binary value to represent if the design contains certain features. Note that Code Present is seen as a

negative feature, while the rest of the categories are positive or neutral. Program design in the context

of this study should not be code specific.

Category Definition

Understanding the problem (UP) Framed the design and states what the design solves for.

Relationship Among Parts (RAP) Provided text or a picture explaining how each function and/or

classes relate(s) to each other

Logic (L) Provided details for each function and/or class, expect pseudocode

or code, with an emphasis on functionality details (.h doesn't count)

Code Present (CP) Specified specific syntax.

Diagram/Picture (DP) Drew a diagram, picture, or flowchart to represent idea

Testing (T) Provided a test plan

Table 4 - Design rubric with >80% inter rater reliability

5 Results

RQ1: Does the inclusion of categories differ with instructor guidance in the syllabus?

Syllabus changes seem to correlate with increased inclusion of some design components by the students.

A Kruskal Wallis test was run comparing each design in each term to determine if there were differences

in inclusion rate between the terms because the data was not normally distributed. A Pairwise Wilcox

test was then run to determine which terms of the four differed significantly, if at all. The hypothesis

for RQ1 is that increased detail in the design syllabus will lead to more inclusion of the categories.

Understanding the Problem and Testing were included at a higher rate each term, as shown by Figure

2. The inclusion of Understanding the Problem was found to be significantly different each term for

each design with a p-value < 0.05. For testing, there were no significant differences in inclusion for the

first three designs in courses A and B, but all other classes and designs did show significant differences.

This can be directly linked to changes in the syllabus. Recall from Table 2 that the key syllabus change

from class A to B was the enumeration of what was required in the design, namely Understanding the

Problem, Flowchart and/or Pseudocode, and Testing point values and an increased overall weight of the
designs to the recitation grade. The key difference between courses B, C, and D were details for the

Flowchart and/or Pseudocode and Testing, which profoundly affected the rate of inclusion for these

categories. These results seem to align with other research on motivating student performance using

rubrics (McCracken et. al., 1999) (Jonsson and Svingby, 2007). However, there is a plateau effect in

PPIG 2018 116 www.ppig.org

classes C and D that is likely due to many students who take class C also take class D in their first-year,

and they may already know what is expected of their designs.

Figure 2: Change in Percent Inclusion of Categories Over Time

 A place where refinement of the syllabus may still need to occur is in the Relationship Among Parts
and the Logic components. There was no significant difference across the designs or terms for the

inclusion of Logic, except for design 3 where A and B, A and C, and B and D all significantly differed

from one another. The Relationship Among Parts category showed a variety of significant difference

across the designs and terms. Figure 3 shows the percent inclusion for Relationship Among Parts over

time. Note that even without running statistics, the graph is rather sporadic. When the Kruskal Wallis

and the Pairwise Wilcox tests were run, it was discovered that there was no difference between A and

B on design 1 or C and D on design 1. This could be because the design was the first one of the term

and every student was starting in the same place with their understanding of the Relationship Among

Parts. Course B design 2 was statistically different from all of the other terms. This is potentially due

to the increased number of nonmajors in this course engaging with the Relationship Among Parts.

Design 3 saw a statistically significant difference each term, starting after course B. Design 4 and design

5 saw significant differences each term.

Figure 3: Change in Percent Inclusion of Categories Over Time

 As seen in Figure 4, students are more likely to include diagrams and pictures versus code in a

specific language. This might be due to the design document template provided in Figure 1. It is

interesting to see that diagrams and pictures decrease in design 5 for class A, while the amount of code

increases. In every course you see a downfall in diagrams and pictures included over time, but primarily

this happens the most in the last design in courses A and D. This might be due to the topic of the

assignment, which is linked lists, but this is a time when students should have an increased number of
pictures in their design. However, most terms, except class A, decrease the amount of code included in

their designs over time. This is encouraging, since the last assignment in class A and D are the same,

and we do not continue to see the same trend in class D, after the syllabus changes.

0

20

40

60

80

100

A:D1 A:D2 A:D3 A:D4 A:D5 B:D1 B:D2 B:D3 B:D4 C:D1 C:D2 C:D3 C:D4 D:D1 D:D2 D:D3 D:D4 D:D5

Change in Inclusion of Understanding the Problem and Testing Over Time

Understanding the Problem Testing

0

20

40

60

80

100

A:D1 A:D2 A:D3 A:D4 A:D5 B:D1 B:D2 B:D3 B:D4 C:D1 C:D2 C:D3 C:D4 D:D1 D:D2 D:D3 D:D4 D:D5

Change in Inclusion of Relationship Among Parts and Logic Over Time

Relationship Among Parts Logic

PPIG 2018 117 www.ppig.org

Figure 4: Change in Percent Inclusion of Categories Over Time

The fact that the differences are so sporadic over time indicates that Relationship Among Parts is

likely not well defined for the students. They do not know how to include it or address it in their designs.

This could be attributed to the overall idea of design still not being clear in the syllabus. When

Understanding the Problem and Testing were both given special attention and point values, there was

an observable up-tick in their inclusion rates. The design portion of the syllabus likely needs more

detail or there need to be more concrete examples for the students. The request for more examples has

been common from students, and depending on their recitation peer leader, they may or may not be

getting the necessary support they need to design successfully in this area. The later classes, C and D,

also saw an emphasis on function details and headers in the syllabus, which may have caused more

students to focus on the functions rather than the relationship between the functions.

RQ2: What are student attitudes toward guidance on designs and their value of design?

 In courses C and D, students were asked to fill out a survey at the end of the course speaking to their

experience in recitation where the design work was conducted. In class C, 166 of the 213 consented

participants responded. 67% of them wanted more guidance on design and 79% thought that creating

design was useful. In class D, 160 of the 177 consented participants responded. 64% wanted more

guidance on design and 86% thought creating design was useful. A Kruskal Wallis test was run to

determine if there was a significant difference between these percentages. There was no difference

between wanting more guidance but there was a significant difference in believing that design was

useful. Many of the students who took class C proceeded into class D. The increase value of design

corresponds with the established idea that students improve in design over time, likely because they

engage with it more as they see value. Students wanting more guidance on the design also supports the

acknowledged issue of not enough clarity in the current syllabus on design or not enough concrete

examples being provided on what quality design is.

6 Conclusions and Future Work
 The study sets out to show how instructor guidance can influence what students include in their

design documents. Despite being given an example design document and the exact problem-solving

steps to include, first-year CS students are motivated by points and specific directions. While the study

is unable to present data from before the study began, the results are still valuable. It is known that

before requiring design to be submitted one week prior to the coded program, most students would not

engage with the activity and would submit mediocre work to get a few points. By shifting the focus of

the class to prioritize 8% of the overall course grade to design, more students are engaging with the

activity.

 The binary scale, while useful to say if desirable artifacts are present, does not quantify the quality
of the presented artifact. The Relationship Among Parts and Logic categories need a non-binary scale.

The approach in Thomas et al. (2014) was too broad to achieve IRR on the designs presented in this

study. The rubric may have worked better if notation was formalized. The taxonomy proposed by Castro

0

20

40

60

80

100

A:D1 A:D2 A:D3 A:D4 A:D5 B:D1 B:D2 B:D3 B:D4 C:D1 C:D2 C:D3 C:D4 D:D1 D:D2 D:D3 D:D4 D:D5

Pe
rc

en
t

In
cl

u
d

ed

Each class design per Assignment

Change in Inclusion of Diagrams/ Pictures and Code Present Over Time

Diagrams and Pictures Code Present

PPIG 2018 118 www.ppig.org

and Fisler (2017) was too closely tied to code structure for the researchers to use in this study; however,

the level of detail and the verbiage used may be adaptable to the needs of language agnostic design. At

this time, we do not investigate the quality of the design, but we plan to make correlation between the

design and corresponding code quality in future studies, which will leverage work presented by

Stegeman et. al. (2014). The themes discovered by Yeh (2018) study are very relative to this research

and could provide a good rubric for evaluating students’ strategies for devising a plan in their design

documents.

 The changes demonstrated in the syllabus over time lead to an increase of inclusion of certain

categories which were previously being ignored. Now, most students engage with the Understanding

the Problem and Reflection stages of the problem-solving process. While the impacts of this

engagement are unknown at this time, future work hopes to examine more correlations in regard to code

produced and time spent coding or debugging. This study also demonstrates that there is a challenge to

teaching design well in the first year. However, improvements can be made between terms, and the

way students value design can be changed.

7. Acknowledgements

We will insert upon acceptance.

8. References
Allison, Mark A. and Joo, Sui F. (2014). Revisiting Polya's approach to foster problem solving skill

development in software engineers. 9th International Conference on Computer Science &

Education (ICCSE).

Castro, Francisco Enrique Vicente and Fisler, Kathi. (2017). Designing a multi-faceted SOLO

taxonomy to track program design skills through an entire course. In Proceedings of the 17th

Koli Calling International Conference on Computing Education Research (Koli Calling '17).

ACM, New York, NY, USA, 10-19.

Chen, Tzu-Yi, Cooper, Stephen, McCartney, Robert, and Schwartzman, Leslie. (2005). The (relative)

importance of software design criteria. In Proceedings of the 10th annual SIGCSE conference

on Innovation and technology in computer science education (ITiCSE '05). ACM, New York,

NY, USA, 34-38.

Eckerdal, Anna, McCartney, Robert, Moström, Jan Erik, Ratcliffe, Mark, and Zander, Carol. (2006).

Can graduating students design software systems? In Proceedings of the 37th SIGCSE technical

symposium on Computer science education (SIGCSE '06). ACM, New York, NY, USA, 403-

407.

Felleisen, Matthias, Findler, Robert Bruce, Flatt, Matthew, and Krishnamurthi, Shriram. (2001). How

to Design Programs: An Introduction to Programming and Computing. MIT Press, Cambridge,

MA, first edition

Fincher, S., Petre, M., Tenenberg, J., K. Blaha, D. Bouvier, T. Chen, D. Chinn, S. Cooper, A. Eckerdal,

H. Johnson, R. McCartney, A. Monge, J. Mostrom, K. Powers, M. Ratcliffe, A. Robins, D.

Sanders, L. Shwartzman, B. Simon, C. Stoker, A. Tew, and T. VanDeGrift. (2004). A multi-

national, multi-institutional study of student-generated software designs. In A. Korhonen and

L. Malmi, editors, Proceedings of the Fourth Finnish/Baltic Sea Conference on Computer

Science Education, pages 11-19, Koli, Finland, October2004.

Fisler, Kathi, Krishnamurthi, Shriram, and Siegmund, Janet. (2016). Modernizing Plan-Composition

Studies. In Proceedings of the 47th ACM Technical Symposium on Computing Science

Education (SIGCSE '16). ACM, New York, NY, USA, 211-216.

Ginat, David. (2009). Interleaved pattern composition and scaffolded learning. In Proceedings of the
14th annual ACM SIGCSE conference on Innovation and technology in computer science

education (ITiCSE '09). ACM, New York, NY, USA, 109-113.

Ginat, D., Menashe, E., and Taya, A. (2013) Novice Difficulties with Interleaved Pattern Composition.

In: Diethelm I., Mittermeir R.T. (eds) Informatics in Schools. Sustainable Informatics

PPIG 2018 119 www.ppig.org

Education for Pupils of all Ages. ISSEP 2013. Lecture Notes in Computer Science, vol 7780.

Springer, Berlin, Heidelberg

Ginat, David and Menashe, Eti. (2015). SOLO Taxonomy for Assessing Novices' Algorithmic Design.

In Proceedings of the 46th ACM Technical Symposium on Computer Science Education

(SIGCSE '15). ACM, New York, NY, USA, 452-457.

Izu, Cruz, Amali, Weerasinghe, and Pope, Cheryl. (2016). A Study of Code Design Skills in Novice

Programmers using the SOLO taxonomy. In Proceedings of the 2016 ACM Conference on
International Computing Education Research (ICER '16). ACM, New York, NY, USA, 251-

259.

Janzen, David and Saiedian, Hossein. (2008). Test-driven learning in early programming courses. In

Proceedings of the 39th SIGCSE technical symposium on Computer science education

(SIGCSE '08). ACM, New York, NY, USA, 532-536.

Jonsson, Anders and Svingby, Gunilla. (2007). The use of scoring rubrics: Reliability, validity and

educational consequences. Educational Research Review, v2, issue 2, 130-144.
Lishinski, Alex, Yadav, Aman, Enbody, Richard, and Good, Jon. (2016). The Influence of Problem

Solving Abilities on Students' Performance on Different Assessment Tasks in CS1. In

Proceedings of the 47th ACM Technical Symposium on Computing Science Education

(SIGCSE '16). ACM, New York, NY, USA, 329-334.

McCracken, Michael, Newstetter, Wendy, and Chastine, Jeff. (1999). Misconceptions of designing: a

descriptive study. In Proceedings of the 4th annual SIGCSE/SIGCUE ITiCSE conference on

Innovation and technology in computer science education (ITiCSE '99), Bill Manaris (Ed.).

ACM, New York, NY, USA, 48-51.

Polya, G. (1957). How to Solve It: A New Aspect of Mathematical Method, Princeton, NJ: Princeton

University Press,

Proulx, Viera K. (2009). Test-driven design for introductory OO programming. In Proceedings of the

40th ACM technical symposium on Computer science education (SIGCSE '09). ACM, New

York, NY, USA, 138-142.

Ramsey, Norman. (2014). On teaching “how to design programs”: observations from a newcomer. In

Proceedings of the 19th ACM SIGPLAN international conference on Functional programming

(ICFP '14). ACM, New York, NY, USA, 153-166.

Raadt, Michael de, Toleman, Mark, and Watson, Richard. (2004). Training strategic problem solvers.

SIGCSE Bull. 36, 2 (June 2004), 48-51.

Soloway, E. (1986). Learning to program = learning to construct mechanisms and explanations.

Commun. ACM 29, 9 (September 1986), 850-858.

Sperber, Michael and Crestani, Marcus. (2012). Form over function: teaching beginners how to

construct programs. In Proceedings of the 2012 Annual Workshop on Scheme and Functional

Programming (Scheme '12). ACM, New York, NY, USA, 81-89.

Stegeman, Martijn, Barendsen, Erik, and Smetsers, Sjaak. 2014. Towards an empirically validated

model for assessment of code quality. In Proceedings of the 14th Koli Calling International

Conference on Computing Education Research (Koli Calling '14). ACM, New York, NY, USA,

99-108.

Thomas, Lynda, Eckerdal, Anna, McCartney, Robert, Moström, Jan Erik, Sanders, Kate, and Zander,

Carol. (2014). Graduating students' designs: through a phenomenographic lens. In Proceedings

of the tenth annual conference on International computing education research (ICER '14).

ACM, New York, NY, USA, 91-98.

Yeh, Martin K. C. (2018). Examining Novice Programmers’ Software Design Strategies through

Verbal Protocol Analysis. International Journal of Engineering Education Vol. 34, No. 2(A),

pp. 458–470.

PPIG 2018 120 www.ppig.org

