Explicit Direct Instruction in Programming Education

Felienne Hermans and Marileen Smit
Delft University of Technology
{f.f.j.hermans, m.i.e.smit} @tudelft.nl

Abstract

In education, there is and has always been debate about how to teach. One of these debates centers
around the role of the teacher: should their role be minimal, allowing students to find and classify
knowledge independently, or should the teacher be in charge of what happens in the classroom, explain-
ing students all they need to know? These forms of teaching are also called exploratory learning and
direct instruction respectively. While the debate is not settled, more and more evidence is presented
by researchers that explicit direct instruction is more effective than exploratory learning in teaching
mathematics and science. These findings raise the question whether that might be true for program-
ming education too. This is especially of interest since programming education is deeply rooted in the
constructionist philosophy, leading many programmers to follow exploratory learning methods, often
without being aware of it. This paper outlines this history of programming education and additional
beliefs in programming that lead to the prevalence of exploratory forms of teaching. We subsequently
explain the didactic principles of direct instruction, explore them in the context of programming, and
hypothesize how it might look like for programming.

1. Introduction

Programming education is in fashion: in many countries around the world, programming is mandatory
now in the UK, Australia and the US. This is of course, wonderful news for the lovers of programming!
In the future, more children will be able to use their power to make computers do their bidding. How-
ever, programming is not an easy skill to learn, as evidenced, for example, by high dropout rates in
introductory programming courses. While we do not have any numbers on the success rates of courses
aimed at younger children, it is likely that there too learners are struggling.

In this paper we examine the form of teaching programming. In other fields like mathematics and
language, recent results show that direct instruction is more effective, and benefits weaker students
more.

In this paper we examine what programming believes about teaching. What are our didactic and philo-
sophical beliefs and where do they come from. We present a brief history of the didactic beliefs of
programming education, and explain why so far they have mainly leaned towards exploratory learning.

The paper also presents explicit direct instruction, since many programmers are not aware of it and might
be hesitant for that reason. We close the paper with a detailed look into how we currently implement
didactic principles of direct instruction and how we could benefit from its insights.

2. Constructionism and programming

When we program and when we teach programming, we also bring our beliefs about programming into
the classroom. Contrary to educational scientists, psychologist and the like however, computer scientists
are often unaware of their didactic beliefs, since we are not used to discussing those. There is however
one didactic philosophy that many programmers believe in, and that is constructionism. In this section
we explain why that is and what the implications of this are.

2.1. LOGO and its constructionist history
Programming education aimed at young children has a long history, starting in the sixties most notable
by Seymour Papert and his work on the LOGO programming language. While many programmers are

PPIG 2018 86 WWW.ppig.org

aware of LOGO, and have even learned to program in it, fewer people are informed about the didactic
and philosophical ideas behind LOGO. Papert was a multidisciplinary research with a BSc in philosophy
and and a PhD in mathematics, and he worked with a variety of researchers.

One of them was Jean Piaget, one of the most well-known psychologist of the last century, who pio-
neered the idea of constructivism (which is not constructionism, we will come to that in a bit!). The
basic, simplified idea of constructivism is that children build their own view of the world, among other
activities through play. Earlier researchers has seen playful exploration of children as unrelated to learn-
ing, but Piaget argued that children assimilate knowledge and then change their mental models of the
world in a process called accommodation. Piaget aimed to describe how children built knowledge, nit
not how to teach. This is where Papert comes in. He worked with Piaget for years and Piaget once said
that Papers was the one “who understood his ideas best”. Papers coined the idea of constructionism,
which is a didactic method based on constructivism. Constructionism advocates students exploring the
world around them, in a process often called discovery learning Students use their existing knowledge
to acquire more knowledge via assimilation and accomodation as Piaget described those. The role of
the teacher is more of a coach than a lecturer providing step-by-step guidance. Students often engage in
project-based learning, making connections between different ideas and scientific fields rather than rely-
ing on predefined courses and boundaries of fields (Alesandrini & Larson, 2002). From this philosophy
also LOGO was born, in his book Mindstorms (Papert, 1980), Papert describes the great ease with which
young children learn French if they live in France. With LOGO, Papers wanted to create a mathland
in which it is similar easy to learn mathematics and programming. While we do not often discuss this
didactic basics of programming education, many programmers do belief this philosophy, thinking that if
we just let children program, they will learn how a programming language works with ease. And while
modern programming languages for children, for example Scratch, were not directly created by Papert,
it was created by the same research group at MIT, and once you know about the constructionist beliefs
Papert used to design LOGO, you see the same in the Scratch interface and the accompanying books
and lessons. They too emphasize trying and exploring over detailed explanations of how things work in
detail.

2.2. No collective memory of programming lessons

A second reason that there is massive buy-in into the constructionist mindset is a different one. Most
professional programmers today are in the thirties and forties. That means that, when they learned to
program, there were no programming courses, or websites. Most programmers taught themselves pro-
gramming to a certain extent, and having taught oneself is a source of great pride for many programmers.
Some job ads even specifically search for new employees that have been “programming since they were
12”. As such, the programming community really lacks a collective memory of how one would give
programming lessons. In many cases people that teach programming are programmers themselves, and
thus they repeat the childhood experience of those teaching, resulting in very exploratory lessons, or, as
was common in the eighties, by giving children large programs to copy, leaving the exploration up to
the children.

And while it is great that there are children that can teach themselves, it does not mean that all children
can learn programming that way. Like there certainly are some children that teach themselves to write
or to bike, the large majority of children need some amount of help in learning various skills.

2.3. Programming skill is innate

In addition to the above, there are additional beliefs that fit the constructionist way of thinking. One
of these is the widespread belief that not everyone is born for programming. Many people belief that
programming is a skill that is not for everyone. While this seems too obvious to mention, it differs from
general beliefs about reading and writing. Almost everyone believes that everyone with normal intel-
ligence can learn how to read and write, even though of course not everyone is the next J.K. Rowling.
This already differs from general beliefs about mathematics, where more people think that it is not ‘for
everyone’. Programming here is more aligned with mathematics. This belief also ties into construction-
ist views on education, because if some people are born with the programming genes, they can teach

PPIG 2018 87 WWW.ppig.org

themselves in an exploratory fashion.

A closely related belief is the one that people that love programming, love the act and technology pro-
gramming, rather than loving what programming can do for them. Again the comparison with language
and mathematics help us place those beliefs. We learn to read and write for what it allows us to do, write
love letters and petitions and dissertations and stories. Teachers stress this role of writing by having
children read and write a variety of texts. With mathematics, of course it is also stressed what we can
do with it, but, fewer people accept this, and the belied that there are people that love mathematics for
mathematics is way more prominent than in language. Here too programming aligns with mathematics.
This too aligns with an exploratory learning. If there are people that are born for programming and that
love it naturally, we should not have a boring instructor stand in the way of their process!

This, of course, is a matter of ‘chicken and egg’. It is hard to know whether people believe this because
they were implicitly taught about constructionism and thus believe or because the constructionist beliefs
fit will into our community because of these prior beliefs.

2.4. Implications

Because of the constructionist tradition, the lack of a memory of programming lessons and the fact
that people belief that some people are naturally drawn to programming leads to the fact that many
programming lessons are what we call implicitly constructionist. Rather than being designed consciously
constructed at exploratory teaching—which can surely have value and is regarded as a superior form
of teaching by some, and as equally good as explicit direct instruction by others—people teach in a
constructionist fashion by accident, without being aware of its strengths and weaknesses, and without
considering alternatives. The role of this paper is not to reject constructionist teaching as a form of
teaching, but it is to present direct instruction as precisely such an alternative. Similar to other fields
where people argue about these core philosophies, this will happen in programming too, and that is fine.
As such, we will present explicit direct instruction, summarize research that has found it beneficial and
hypothesize how it could look like for programming.

3. Explicit direct instruction

Like with all teaching methods, are different forms of direct instruction and teachers follow methods
with varying levels of strictness. The basic idea of direct instruction is that it is teacher-led, the teacher
determines what happens and in what order, and directs information at students, hence the name directed.
The lessons are structured and sequenced and have clear learning goals. One of the forms, which is often
criticized is Direct Instruction with capitals (DI) as pioneers by Engelmann and Becker (Engelmann,
Becker, Carnine, & Gersten, 1988). DI prescribes, among other things, quite rigid teacher scripts and
that is probably where the bad name of direct instruction stems from. Scripts read aloud by robot-like
teachers, that cannot be right! However more modern forms of direct instruction comprise a lot more
than plenary lectures. Most notably Explicit Direct Instruction (EDI) as described by Hollingsworth
and Ybara (Hollingsworth & Ybarra, 2009) presents eight didactic principles that strengthen each other:
They are clearly expressing the learning objectives, activating prior knowledge developing skills and
developing concepts, explaining the importance of a lesson, and a sequence of guided practice with
the teacher, practicing in groups at the plenary closure, followed by independent practice.

PPIG 2018 88 WWW.ppig.org

Figure 1 — The 4 steps of an EDI lesson: 1. The teacher explains, 2. the teacher demonstrates, 3.
students try together, 4. students do it individually.

EDI lessons can be best summarized by Figure 1, where we see that an EDI lesson is more than the
delivery of a canned script, it is a form of teaching that relies on metacognition of the teacher. They
have to know what form of teaching they are using, why to use it and when to move to the next
step (Hollingsworth & Ybarra, 2009). It is a form of teaching that activates students, and requires
them to work together with the teacher in step 2 and together with peers in step 3. By no means does
EDI mean that students sit back and listen.

3.1. Comparing direct instruction and exploratory learning
From its inception, proponents of direct instruction have presented its benefit in studies. For an overview
of several early studies, we refer the interested reader to Binder and Watkins (Carl & L., n.d.).

The debate still continues, but also more recent recent metastudies have demonstrated direct instruction
to be more effective than less structured forms of teaching such as those based on exploratory, discovery
or constructionist approaches (Klahr & Nigam, 2004; Kirschner, Sweller, & Clark, 2006).

What is more is that direct instruction can be an equalizing from of teaching. Irrespective of prior
knowledge, all children are exposed to the same instruction, and practice together, so all students have
the same opportunity to gain knowledge and to practice. In exploratory teaching, the students that
already have some prior knowledge will be beter able to ask the right questions, and to attach new
facts to existing knowledge, or to update mental models. Studies have demonstrates the performance of
weaker students within a class especially suffers when exploratory methods are used, while they are the
students that enjoy this form of teaching the most!

4. Explicit direct instruction in programming

Knowing that direct instruction seems to be a superior and more equal form of teaching, the final question
that this paper aims to answer is ‘how would direct instruction for programming lessons look like?’
When we explore the seven design principles of EDI, how would we implement those in programming
classes?

4.1. How programming differs from other subjects

So far we have (implicitly) assumed that programming and other fields such as language or mathematics
are the same, and that teaching methods from those fields like direct instruction will also work for pro-
gramming. While we absolutely believe the latter, there are some notable ways in which programming
differs from other subjects which we will touch upon in the remainder of this section. For starters, when
we present a student with a traditional programming environment, they can use all elements of the lan-
guage. They can try to explore language concepts that have not been covered in class and try this. While
of course, students in mathematics can also ask about percentages with you as a teacher are talking about
multiplication, in programming students can venture on a path of their own. This inhibits, to a certain
extent, the level of control teachers have over the learning trajectory of students. Secondly, compilers

PPIG 2018 89 WWW.ppig.org

and interpreters are relentless. When we are teaching grammar, we might disregard spelling errors for
the duration of the lessons to focus on grammar (not all teachers agree they should so unnoticed, but
most agree we can give errors outside of the scope of the current lesson or subject lower weight). When
we are teaching loops however, and a student has forgotten to indent their code consistently, Python will
not comply.

; : Star Wars: Building a Galaxy With Code il I've finished my Hour of Cod =
r ‘ o g v o1

[] A ..dﬂ > "We need that scrap metal s BB-8, can you get it?”

Blocks Workspace: 'O startOver </> Show Code

whenrun
move right v

| Add asecond "move

. move
right” command to your
code. Then click here to e

run it

Figure 2 — The first screen students see when they try the Star Wars Hour of Code lesson.

4.2. EDI design principles applied to programming

Taking the differences between programming and other subjects into consideration, we now inspect the
seven EDI design principles and explore how they are currently implements in programming lessons, or
how they could be.

4.2.1. Learning Objectives

EDI lessons start with a well-defined statement that explains what students will be able to be after the
lesson, in words that they can understand. So something like “after this lesson you will know monads”
is not useful when the students have not seen a monad before. Research demonstrates that the presence
of learning objectives increased performance (Hattie, 2008). Examining popular programming lessons,
we see that learning objective are missing in many cases. For example, consider the programming
environment of code.org, of which the first lesson is pictured in Figure 2. It is arguable a quite structured
and sequenced learning experience, where a learner is not exposed to all possible programming blocks,
but only a small subset. Even this learning environment though has contextual goals “getting the scrap
metal”, but does not explain the learning goal of the lesson.

4.2.2. Activating Prior Knowledge

By repeating existing knowledge in the beginning of a lesson, the teacher moves knowledge from the
students’ long-term memory to their working memory such that it can be used to connect new knowledge
too. Seeing the connection between different parts of programming, between concepts like a method and
a class, but also, at a lower level, the difference between and if and and if-else is important, and in this
respect we believe that programming education does relatively well. Concepts are presented together
and in relation to each other commonly.

4.2.3. Concept Development

Concept development means explaining the concepts that are present in the learning objective. So if the
objective is to learn monads, this part of the lesson concerns explaining what a monad is and when to use
one. This part is commonly present in programming lessons, in some cases, especially at the university
level, it is the only part used in the plenary part of teaching.

PPIG 2018 90 WWW.ppig.org

4.2.4. Skills Development

Skills development is teaching students the steps or processes that are used to teach the learning objec-
tive. It is an interesting aspect, because it raises the question what the skills are that one needs to master
programming. One could argue that the most low level skills that children need are basic computer
skills: using the mouse, clicking, using copy and paste and undo. In our experience teaching children
programming, they rarely have those skills even in high school, and courses do not teach them. At higher
levels, such as university, student might lack understanding of an operating system impeding their pro-
gramming ability. A next step, closer to programming itself is the use of an IDE. That is surely a skill
that helps students become more efficient in programming, and yet is not often addressed as topic of
lessons or exercises. Looking at programming itself, there are skills (rather than concepts) that we also
rarely teach, for example the correct use of syntax. In many programming lessons, as explained above,
the concepts play a central role, while syntax is an afterthought. Students are assumed to pick up where
colons go and when to use which brackets. Another example of a code skill in programming that we do
not teach is reading and interpreting error messages.

At the highest level of skills, we could place strategies for programming. How is a problem approached
and what steps does a professional programmer take when addressing a problem. We observe in pro-
gramming lessons, that this too is something that is rarely vocalized or practiced.

We think skills development is the teaching practice where programming can benefit the most from
direct instructional practices.

4.2.5. Lesson Importance

Lesson importance concerns explaining to students why the content of a lesson is important to them.
While this might feel a bit boring, research shows that understanding the why of a lessons helps students
engage (Hattie, 2008). Here too programming education could use some help. Where lesson importance
is addressed, it is often within the scope of programming, for example “a loop is useful because it allows
you to execute a computation multiple times”. This practice is probably related to the fact that program-
ming believes that children have an interest in programming for the sake of programming, rather than in
what it can help them create. Communicating why concepts and skills matter outside of programming
(not an easy task!) will help students engage with programming lessons more.

4.2.6. Guided Practice

Guided practice is solving a problem together with students, represented by step 2 in Figure ??. In
programming there is the practice of live coding, where a teacher or instructor programs in front of
a classroom, but in many cases the plan for the live coding is made ahead of the lesson rather than
collaboratively with the students. Also, problem solving strategies are not always discussed.

It is used in language education more commonly, where a teacher demonstrates, for example, how to
write a story, while explaining their approach and asking students for input. A common technique for
this is observational learning, where a teacher (or peers) demonstrates a task before learners attempt it.
In writing education in fact, teacher modeling is the most prevailing way of using models for learning.
Usually in the instructional phase (Koster & Bouwer, 2016). In this teaching method the teacher thinks
out loud, they explain and demonstrate parts of the writing task. Pupils are expected to adopt the same
line of reasoning when they will executing a writing task individually afterwards. It is shown an effective
instructional method to teach writing strategies (see e.g. (Fidalgo, Torrance, Rijlaarsdam, van den Bergh,
& Alvarez, 2015; Graham, Harris, & Mason, 2005; Koster & Bouwer, 2016)).

This effectiveness of this method is explained by the existence of the mirror neuron system in our brain.
This system makes the brain demonstrate identical neural activity when we observe others performing a
task as if we perform the task ourselves (see e.g. (Rizzolatti, 2005; Rizzolatti & Craighero, 2004)). In
this way, the brain already ‘learns’ how to perform a task, and primes the execution of similar tasks.

This is definitely a didactic practice where programming could improve in a relatively easy way. From
live coding it is not a large step towards making decisions and strategies explicit.

PPIG 2018 91 WWW.ppig.org

4.2.7. Lesson Closure

At the end of an EDI lesson, the teacher tests whether students master the demonstrated skills, of example
with questions or by having them work on small, constraint problems. This has been explored for
programming, for example in the form of worked examples (Gray, St. Clair, James, & Mead, 2007), but
to say this is a practice that is common would be untrue. Most programming lessons both in schools and
universities move towards independent practice soon after a plenary lecture.

It will not be all that easy however to start the practice of having students work on a small task in a col-
laborative fashion, since we are not used to teach in this way. Programming exercises, especially in the
phase when students are still getting familiar with syntax, are most commonly performed alone. Also
selecting or creating the right worked examples for the task at hand is not easy. While lots of improve-
ment could be achieved by having students practice (and fail) in a more controlled environment, it will
not be easy to convince teachers to do so. Here, the fact that students can use the entire programming
language is a confounding factor. Maybe we need more programming systems where teachers can limit
the possible statements and thus can exert more control, very much like code.org does it, but for text
based languages, and controlled by the teacher.

4.2.8. Independent Practice

Independent practice is the part of a lesson where students work on larger programs independently.
This part of learning is common in programming education, both at schools and at universities, but it is
commonly the only part of practice that students encounter.

5. Concluding remarks

In this paper we have explored the constructionist history of programming, our lack of a shared memory
of programming lessons, and related beliefs about programming, which we argue together have caused
our field to teach in an exploratory way, without programmers being aware of this. We also summarize
an alternative technique called explicit direct instruction, and present its benefits. We close the paper
with a reflection on the current state of the art of programming through the lens of EDI and an outlook
on how we could use more principles from direct instruction into our teaching.

6. References

Alesandrini, K., & Larson, L. (2002). Teachers bridge to constructivism. The Clearing House: A
Journal of Educational Strategies, Issues and Ideas, 75(3), 118-121. Retrieved from https://
doi.org/10.1080/00098650209599249 doi: 10.1080/00098650209599249

Carl, B., & L., W. C. (n.d.). Precision teaching and direct instruction: Measurably supe-
rior instructional technology in schools. Performance Improvement Quarterly, 3(4), 74-96.
Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/73.1937
-8327.1990.tb00478.x doi: 10.1111/j.1937-8327.1990.tb00478.x

Engelmann, S., Becker, W. C., Carnine, D., & Gersten, R. (1988). The direct instruction follow through
model: Design and outcomes. Education and Treatment of Children, 11(4), 303-317. Retrieved
from http://www. jstor.org/stable/42899079

Fidalgo, R., Torrance, M., Rijlaarsdam, G., van den Bergh, H., & Alvarez, M. L. (2015). Strategy-
focused writing instruction: Just observing and reflecting on a model benefits 6th grade students.
Contemporary Educational Psychology, 41, 37-50.

Graham, S., Harris, K. R., & Mason, L. (2005). Improving the writing performance, knowledge,
and self-efficacy of struggling young writers: The effects of self-regulated strategy development.
Contemporary Educational Psychology, 30(2), 207-241.

Gray, S., St. Clair, C., James, R., & Mead, J. (2007). Suggestions for graduated exposure to program-
ming concepts using fading worked examples. In Proceedings of the third international workshop
on computing education research (pp. 99-110). New York, NY, USA: ACM. Retrieved from
http://doi.acm.org/10.1145/1288580.1288594 doi: 10.1145/1288580.1288594

Hattie, J. (2008). Visible learning. Routledge.

Hollingsworth, J., & Ybarra, S. (2009). Explicit direct instruction (edi): The power of the well-crafted,

PPIG 2018 92 WWW.ppig.org

well-taught lesson. SAGE Publications. Retrieved from https://books.google.nl/
books?id=01iamQ21R8h0C

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does
not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and
inquiry-based teaching. Educational Psychologist, 41(2), 75-86. Retrieved from https://
doi.org/10.1207/s15326985ep4102_1 doi: 10.1207/s15326985ep4102_1

Klahr, D., & Nigam, M. (2004). The equivalence of learning paths in early science instruction: Effects of
direct instruction and discovery learning. Psychological Science, 15(10), 661-667. Retrieved from
https://doi.org/10.1111/3.0956-7976.2004.00737.x (PMID: 15447636) doi:
10.1111/j.0956-7976.2004.00737.x

Koster, M., & Bouwer, 1. (2016). Bringing writing research into the classroom: The effectiveness of
tekster, a newly developed writing program for elementary students (Unpublished doctoral disser-
tation). ICO.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY, USA: Basic
Books, Inc.

Rizzolatti, C. (2005). The mirror neuron system and imitation. Perspectives on Imitation: Mechanisms
of imitation and imitation in animals, 1, 55.

Rizzolatti, C., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27,
169-92.

PPIG 2018 93 WWW.ppig.org

