
Modeling cognitive processes underlying computer programming

Cătălin F. Pert, icas,
Romanian Institute of

Science and Technology
perticas@rist.ro

Bipin Indurkhya
Romanian Institute of

Science and Technology
and Jagiellonian University

indurkhya@rist.ro

Abstract
We present an approach to modeling computer programming as a cognitive process. In particular, we
apply Piaget’s four-stage model of cognitive development to study how programming is learnt by adult
programmers. For this purpose we survey software developers at different stages in their career. In
order to evaluate our approach, we analyze the gathered data through formal methods. Our approach
is interdisciplinary in that it incorporates philosophical, psychological, cognitive and computer science
aspects.

The results from this study will be used as a starting point for investigating the role of deeper cogni-
tive processes underlying programming, which can offer hints to design improved neural architectures
inspired from biology and cognitive science. Our vision is to use such models to generate programs
automatically given the intention of the user.

The preliminary goal is to set connections between empirical evidence of how programmers write code,
the cognitive processes implicated in software development and the corresponding mechanisms inte-
grated in modern neural architectures. In the future, we plan to explore the potential of such enhanced
neural models to solve tasks involving generation of computer programs.

1. Introduction
In recent years, there has been much interest in automatic generation of programs (Parisotto et al. (2016),
Balog et al. (2017), Ling et al. (2016), Ling et al. (2017), Yin & Neubig (2017)). These computer
programs are either induced - meaning that a neural network learns to behave like the desired program,
or synthesized - the neural network is trained to output a program in a language of choice. We are
interested in broadening these studies by designing and experimenting with computational agents capable
of learning more diverse patterns of code.

Motivated by the past successes of neural architectures inspired from the human thought process and
brain structures, we begin exploring cognitive mechanisms underlying programming, which can be mod-
eled mathematically and ultimately implemented in a neural structure yielding a computational agent
capable of writing useful code.

In the research described here, we are interested in modeling the cognitive processes underlying computer
programming, and then using this model to automatically generate programs given the user intentions.
We take our point of departure from our earlier work on relating Piaget’s interaction view of cognition
with software engineering (Indurkhya (2002); Indurkhya (2003)). We incorporate more recent research
on applying Piaget’s theories to model programming (Corney et al. (2012); Lister (2011); Swidan &
Hermans (2017); Teague & Lister (2014)). Then we take steps in the following direction:

• Research on how programming is viewed: paradigms, styles, conventions, abstractions

• Integration of research in survey design

• Collecting data for survey

• Modeling survey data for sub-groups and concepts analysis

• Investigation of extracted concepts from a cognitive perspective

• Implementation of cognitive processes inside a computational agent that generates programs

PPIG 2018 16 www.ppig.org



2. Philosophy of Programming
Over the years, programming has been viewed in a myriad of ways. For example, Graham (2003) argues
against the traditional view that programming is a science, and relates the process of programming with
the process of sketching or painting, thus linking coding or hacking to creative activities, rather than
logico-deductive reasoning. (See also Hermans (2017)) Some of the pioneers of computer science, such
as Edsger Dijkstra and Donald Knuth, have also subscribed to this view.

For instance, Dijkstra (1971) emphasizes the importance of good taste and style in programming by mak-
ing the following analogy: teaching programming like a teacher of composition at conservatory - instead
of teaching how to compose a particular symphony, help pupils find their own style. Similarly, Knuth
(1968) titled his monograph, which laid the foundation of computer science, The Art of Computer Pro-
gramming. He argued that computer programming is an art, because it applies accumulated knowledge
to the world, because it requires skill and ingenuity, and especially because it produces objects of beauty.

Indurkhya (2002) noted, "Software is a rather unique entity. On one hand it can be considered a math-
ematical object — its component parts and operations of construction are rigorously defined, and the
output result of a piece of software can be predicted precisely, at least in principle. On the other hand, it
is also an empirical object — a piece of software executing on a machine is a physical object that can,
as most of us must have experienced on many occasions, produce unexpected and unforeseen behavior.
Moreover, as with any physically machinery, one can experimentally tinker with a piece of software and
observe the consequences empirically."

Such is the case with machine learning, computational physics and other computational sciences, which
involve programming for the purpose of simulating theoretically defined processes. The building blocks
of these fields of study are mathematical models and simulation methods. For instance, a typical neural
network is equipped with both a mathematical model represented by the structure of the neurons (lay-
ering, fully-connected, shared weights, recurrent and skip connections) and their operations (weighted
sums, non-linear activations); as well as with a learning/optimization method (gradient descent, nearest
neighbors).

Thus, neural networks, which combine symbolic software with numerical software, are programming
entities which reside as objects in two separate spaces: the mathematical world - an architectural, bi-
ologically inspired object; and the empirical, experimental world implementing the dynamics of the
interaction of complex systems, which to some extent replicate the human thought processes.

3. Psychological Factors in Style Formation
By interviewing different groups of programmers and non-programmers, we seek to gather evidence to
support the view that our motivations, background and everyday activities shape the type of programmer,
engineer or computer scientist we can become. Moreover, the tools we use, and the people we interact
with, develop and influence our vision of a skilled programmer. Later on, if our training path is success-
ful, we get to use these skills in new creative ways. However, getting to the creative stage requires, but is
not guaranteed by years of experience, mentors with insights, and a healthy learning process.

In his book, Mastery, Greene (2012) presents the stories of creative geniuses from a similar perspective:
how their background, motivations and mentors shaped their path to mastery. The apprenticeship model
developed during the Renaissance period is of key importance here. There is a nice story - Zarnescu
(2007) about C. Brancusi leaving the workshop of A. Rodin, both of them being very influential sculptors
of the 19th century. Brancusi stated that "nothing grows under the shade of big trees". Their styles are
obviously very different - as can be seen in Figure 1 - almost as if Brancusi was purposely trying to
distance himself from the influence of Rodin.

PPIG 2018 17 www.ppig.org



A. Rodin C. Brancusi

Figure 1 – Left: A. Rodin’s Thinker Right: C. Brancusi’s Madame Pogany

A first glance at the two artworks reveals that Rodin put many details in his work, while Brancusi was an
essentialist. Thus, Rodin’s work reveals intent, while Brancusi’s work implies it and leaves some room
for interpretation. We can extrapolate this simple idea to programming.

It is very common for programmers to be fond of certain programming languages because they differ in
style and expressiveness. For instance, someone who wants more control of variable types and syntax
checks - a ’detailist’ will prefer C++ or Java, while someone who prefers simplicity - an ’essentialist’
will prefer Python or Ruby. Of course, the complexity of these programming languages goes beyond this
trivial example, but our purpose is to argue that programming exhibits a style component.

Identifying more specific programming styles can be done by surveying across entire programming com-
munities. It is interesting to notice that historically programming styles translated into programming
paradigms. These paradigms evolve gradually inside programming communities and can lead to the de-
velopment of new programming paradigms. From this point of view, software engineering exhibits both
a cultural component, as well as an innovation component.

4. Cognitive Development through Stages
We aim to analyze the evolution of a programmer from a beginner to an expert in terms of Piagetian
stages of cognitive development. In particular, our goal is to tease out changes in the thought processes
of learners that allow them to make quantum improvements to progress to the next level. Towards this
goal, we plan to conduct an empirical study based on the surveys of non-programmers and programmers
at different levels (from novice to expert).

There have been similar studies in the past for incipient stages of learning to program (novice pro-
grammers) - Lister (2011), Corney et al. (2012), Teague & Lister (2014), Swidan & Hermans (2017).
However, these studies have mainly focused on the educational aspect of programming (how to teach pro-
gramming); whereas we are interested in studying developmental shifts which span longer time frames,
from apprenticeship to mastery.

These developmental shifts reveal changes in how certain already existing cognitive processes are used
in coding by experienced programmers, while they are not by novice programmers. Some of these
processes can actually be learned quickly and prove very useful, but because they are not required until
a later stage, their development is paused. However, the ones involving more effort to grasp, but are
required for reaching a more immediate stage, are more heavily invested into.

4.1. Stage One: Simple Reflexes
Understanding the building blocks. It has been argued that mathematics is grounded in human activities
(Mathematics, Form and Function, Mac Lane (1986); Where mathematics come from, Lakoff & Nunez
(2000); The Number Sense, Dehaene (1996)). Piaget has also argued that mathematical concepts arise
gradually from sensorimotor actions in Biology and Knowledge, Piaget (1971). Based on this, we hy-
pothesize that how we write programs is highly influenced by our interests and by our simple interactions
with the computer.

PPIG 2018 18 www.ppig.org



Human Activity Related Math Idea Math Technique Programming Construct
Collecting Object Collection Set, class, multi-set, list,

family
Array, list, objects and
instances

Connecting Cause and Effect Ordered pair, relation,
function, operation

Dictionary, Graph
algorithms

Endless repetition Infinity, Recursion Recursive set, infinite set For and while loops,
recursion

Figure 2 – An extension to connections drawn from Mathematics, Form and Function

To test this hypothesis, we conduct short interviews of some recently ’self-made’ programmers, who
had different jobs before but decided to learn programming without any formal computer science educa-
tion, and eventually managed to get jobs as software developers. We expect our analysis to reveal that
what they were doing before drove their current interests in programming. Moreover, their concept of
programming is influenced by the tasks they were doing before via analogies.

Figure 10 shows some information extracted from the interviews conducted. Most investigated cases
in the ’self-made’ sub-group revealed that programming is viewed as a tool - the means to achieve a
goal. Side interests related to programming are either derived from their background or technology
trends common in their work group. Their other side interests influence their interactions and role within
their work-group, as well as their developmental vision - whether they are theoretically inclined, heading
towards research directions, or practically inclined, thus preferring the engineering side of programming.

4.2. Stage Two: Pre-Operational
Functional thinking. According to Piaget, at this stage children do not yet understand concrete logic and
cannot mentally manipulate information. Children’s interest in playing and pretending also takes place in
this stage. However, the child still has trouble seeing things from different points of view. The children’s
play is mainly categorized by symbolic play and manipulating symbols.

To study the cognitive processes underlying programming corresponding to this second stage, we choose
to observe the behavior of a few summer interns at a research institute. Generally, internships are used
by modern day companies to create proof of concepts for some ideas for which internal staff cannot be
allocated. Interns are viewed as helpers, who are motivated by learning practical skills in a working
environment, in a similar fashion to the apprenticeship model detailed by Greene (2012).

Given their motivation for learning and a lack of practical experience, we could consider their activities
as playing in a work environment, which would correspond to Piaget’s pre-operational stage. The interns
typically do not see their work from a business perspective, which is consistent with Piaget’s observation
that children do not see things from a different perspective at this stage.

Figure 12 displays some of the attributes and tasks performed by the surveyed interns. We found that
they managed to come up with good research ideas based on the topic they were provided with. Their
imagination was quite rich and given proper guidance, they showed the ability to translate some of their
ideas into actual software. However, they did not have so much success with the more complex topics
they wanted to explore, either because they were not able to articulate their vision well, or because their
technical expertise was not yet good enough.

At this stage, they still need someone to help select the most promising ideas out of the technically
feasible ones. Another important aspect was their steadiness in solving the more challenging tasks.
This seemed to be associated with both internal factors - how happy they were with their research topic
and their work flows; as well as with external topics - the amount of encouragement they received for
following their ideas.

PPIG 2018 19 www.ppig.org



4.3. Stage Three: Operational
During this stage, Piaget noted that a child’s way of thinking starts to be more adult-like. Problems are
solved in a more logical fashion. However, abstract thinking is not yet developed so children can only
solve problems that apply to concrete events or objects. Nonetheless they can generalize by making
inferences from observations.

As a setting for the third stage of development, we chose to observe the environment of high-school
programming competitions. The reason behind this choice is that good competitors are people who
already know how to program, who have developed their problem-solving skills and implementation
abilities, and who are able to generalize concepts across various types of problems.

At this stage, programmers can swiftly manipulate common patterns or templates used in programming
competition problems. Moreover, they can reliably estimate the necessary time to implement a well-
defined idea, as well as to precisely put their solution in practice. The book Psychology of Coding
Competitions, Francu (1997) is particularly addressed to such high-school students. It suggests various
strategies for training and problem solving.

The take-away message is that problem solving skills, which incorporate the ability to transform concep-
tual ideas into concrete algorithms, do not guarantee the success in competitions without a well-defined
strategy belonging to the domains of psychology, decision making and time management. These con-
cepts are mostly reflected in the thought processes of adult minds.

Towards the end of this stage, we can already observe the need for strategical thinking, which according
to Piaget, is a cognitive process that is predominantly observed in the next developmental stage. Going
back to the high-school programming competitions, we find that mentors play a key role in conveying
strategical planning and decision making. Figure 13 shows focus areas and other features of various
mentors we surveyed.

4.4. Stage Four: Formal Operational
Piaget’s theory states that abstract thinking, meta-cognition and problem solving are developed during
this stage. In programming, these thinking patterns translate into a deeper understanding of programming
concepts and how they relate to each other.

In the field of programming, the fourth stage of development is best represented by senior developers,
who typically have more than 5 years of experience (industry standard). This stage coincides with the
crystallization of the programmer’s application domain or specialization.

Senior programmers show a high degree of technical expertise in their specialization (in-depth knowl-
edge). They have a broad view of other specializations (wide knowledge). And they are able to indepen-
dently create fairly complex software or test research ideas end-to-end. Figure 11 displays information
on surveyed senior programmers.

5. Formalizing Piagetian Attributes for Concept Analysis
The surveys we have conducted so far are insightful from a psychological point of view: we can ob-
serve trends in the developmental process of a programmer and how their background and motivations
influence their learning curve and application domain.

However, different participant groups have been analyzed from different angles. At the same time, the
data gathered is expressed in natural language. This makes it hard to make rigorous empirical observa-
tions that would generalize to new participants. For this reason, we started working on a set of principles
to make such studies more generalizable and easier to interpret.

Our first principle is to convert a sample of Piaget’s developmental stages into the corresponding stages
for learning to write programs. The second principle is to have a list of skills/thinking patterns specific
to each developmental stage - Figures 3 and 4. These skills are converted into attributes, which can be
subjectively quantified based on surveys - Table 5.

PPIG 2018 20 www.ppig.org



Figure 3 – Summary of Piaget’s development stages from The Psychology Notes Headquarter -
image source.

Figure 4 – Piaget’s stages applied to programmers (our model) and the description of stage-
emergent attributes/thinking patterns.

Id CSM KT ST IMAG CCC KC AT META YoE
A.1 1.0 1.0 1.0 0.75 1.0 0.5 0.5 0.5 6
A.2 1.0 1.0 1.0 1.0 1.0 0.75 0.75 0.5 4
A.3 0.75 0.75 0.75 1.0 0.25 0.5 0.25 0.0 3
B.1 0.75 0.5 0.5 0.5 0.25 0.25 0.0 0.0 3
B.2 1.0 0.75 0.75 0.5 0.75 0.25 0.25 0.0 2
B.3 0.75 1.0 1.0 0.75 0.5 0.5 0.75 0.25 1
B.4 1.0 0.75 0.75 0.5 0.75 0.5 0.0 0.25 3
C.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.75 12
C.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.75 10
C.3 1.0 1.0 1.0 1.0 1.0 1.0 0.75 1.0 14
C.4 1.0 1.0 1.0 1.0 1.0 0.75 0.75 0.75 8

Figure 5 – Id: Programmer Ids, A’s represent interns at a programming/research job, with formal
education in computer science, but little practical experience. B’s represent programmers with
formal education in a different field, but practical software skills. C’s are senior programmers with
formal education and practical skills. Next 8 columns are subjective quantifications of different skill
levels according to our scheme for Piaget’s stages applied to programming. These are drawn from
the conducted surveys. YoE represents the number of years they have been exposed to programming.

The third principle in analyzing this data is to use a mathematical tool for drawing conclusions from the
data. Because our goal is to extract thinking patterns of programmers, and find out how these apply to
various sub-groups of programmers, we model the data through a concept lattice taken from the theory
of Formal Concept Analysis Ganter & Wille (1999) - Figure 6.

PPIG 2018 21 www.ppig.org

https://www.psychologynoteshq.com/piagetstheory/


Figure 6 – The Concept Lattice derived from Table 5 by thresholding subject-attribute connec-
tions if skill level is above 0.5. The lattice can be interpreted the following way: a subject (A.1,...,
B.1,..., C.4) has an attribute (KC, KT,..., META) if there is an ascending path from the subject to
the attribute. The unlabeled nodes represent concepts that exist in the formal context. Concepts are
formally defined as maximal subsets of subjects sharing a maximal subset of attributes.

Our findings show that there is a strong agreement between Piaget’s theory, as we modeled it for pro-
grammers (attributes and skill levels), and their corresponding years of experience. We now get to the
fourth and final principle of exploring this type of empirical surveys, which is to analyze this data through
emergent concepts (6 in this case) - Table 7.

Formal Concept Name Subjects Description
Sensorimotor + Preoperational 100% All have coordination, knowledge of

terminology, symbolic thinking & imagination.
Almost Operational Type A A.3 & below Knowledge of concepts, but low conceptual to

concrete - theoretically inclined.
Almost Operational Type B B.2 & below Conceptual to concrete, but low knowledge of

concepts - practically inclined.
Operational B.4 & below Abstract and creative thinking not yet developed

for programming.
Postoperational B.3 & below B.3 has 1 year of programming experience and a

strong mathematical background => abstract
thinking developed.

Formal Operational A.1, A.2 & C’s All these programmers have at least 4 years of
experience.

Figure 7 – Interpretation of Formal Concepts The concepts in the formal context from Figure 6 ex-
hibit a close correspondence to Piaget’s stages for programmers - 3 concepts represent exact stages
(Preoperational, Operational and Formal Operational), while the remaining 3 represent intermedi-
ate stages of development.

Even though the number of participants and attributes are limited in our study, this principled method can
be applied to more complex datasets for the discovery of human concepts in a formally defined context.
The subjectivity in the evaluation of programming skills can be overcome via triangulation or objective
evaluations, such as problem solving tests.

PPIG 2018 22 www.ppig.org



6. Cognitive Processes underlying Programming
By going into more depth, we can investigate the role of our cognitive processes in solving specific types
of problems involving the design of algorithms, their implementation and general problem-solving in
programming environments. Our brains have developed a number of complex cognitive mechanisms and
systems for finding solutions to problems, some of these are inherent, natural properties of the brain,
such as the ability to perceive and to attend to certain stimuli, while others are emergent and require
developmental transitions, such as those exemplified within Piaget’s theory.

Out of these, we investigate the role of perception and attention. These seem to play an important role, not
just in programming, but in daily human activities, as well as in computational agents designed to mimic
the human mind. Variants of these mechanisms have been formalized and integrated into applications of
neural networks.

6.1. Perception
For instance, perception at the level of neural networks has produced different kinds of architectures.
These range from the traditional multi-layer perceptron (MLP), which do not assume any correlation
between input units, to convolutional neural networks (CNN) mimicking the visual processing system by
assuming spatial correlations; and recurrent neural networks (RNN) which exploit temporal correlation
of input units.

Figure 8 – Left: CNN Perception. Right: RNN Perception.

It it interesting to notice how non-programmers view code as hieroglyphics. Even programmers find it
hard to decipher code with obfuscated or badly named variable names. Although variable and function
names do not influence the computational aspect of source code, they have a high impact on our under-
standing and perception of the code because they serve as anchors or starting points for creating internal
representations of code. Only internally well represented code can allow for useful manipulations of
source code.

Figure 9 – A. Huxley’s Cerebral Reducing Valve - image source

Internal representations of the problem setting are key ingredients in general human problem solving.
These internal representations are obtained through filtering and abstraction of innate perceptions. These
reduction mechanisms are developed for maximizing our adaptive fit and to help with efficiency and
clarity. However, because of their top-down modulation - sensory system is subordinated to conceptual
thinking system - solutions that do not fall in the common known patterns can be found in the background
of our minds, but they are eliminated. Huxley (1954) offers a nice perspective of this idea in his book
Doors to Perception, arguing that our minds tend to reduce, rather than produce - Figure 9.

PPIG 2018 23 www.ppig.org

https://www.researchgate.net/figure/Aldous-Huxleys-cerebral-reducing-valve-On-the-inlet-right-side-of-the-cerebral_fig1_323345114


6.2. Attention
Top-down modulation in cognitive systems is usually referred to as attention, which is the next process
we are interested to explore. According to Jones (1890), attention is "taking possession of the mind, in a
clear and vivid form". However, more modern psychologists - Cherry (2018), claim that attention is both
a highlighter, as well as the withdrawal from some things in order to deal more effectively with others.

Thus, attention is limited, selective and it is a core part of any cognitive system. This seems natural given
the limited number of sensors present in cognitive systems. Attention is required in order for perception
to be meaningful; attention guides perception. The interaction between these 2 systems generates the
ability to select limited, but useful information from an unbounded noisy environment. While perception
represents bottom-up information processing, attention is top-down modulation based on expectation.

Programming requires the ability to focus. Whether the object of focus is a line of code, an entire
procedure or a project, being able to write or change code functionality would not be possible without
attending to key components and places. For instance, changing one line of code might affect the desired
effect of other lines of code, not necessarily in the proximity of the changed line. It is important to pay
attention to the parts of code that are conceptually related to the changed area of code because in most
cases it is impossible to have a perfect view of the whole.

Attention plays an important role in recurrent neural networks used for machine translation (NMT). For
years it seemed hard to model long-term dependencies in recurrent neural models. The Long Short-Term
Memory (LSTM) model was specifically designed to deal with this issue and saw great success. How-
ever, the issue still persisted for sequence-to-sequence problems. The attentional mechanisms described
by Bahdanau et al. (2015) and Luong et al. (2015) significantly improved the state of the art in automatic
translation of a sentence from one language into another.

Intuitively, the improvement comes from the learnt ability to attend to certain key phrases instead of
the whole sentence. Because the neural architectures are of the encoder-decoder type, the information
extracted by using the whole sentence maps to a conceptual representation of what the sentence means
as a whole. Details such as the gender of a noun or verb tense are lost in this representation. On the other
hand, attention allows to process a sentence one phrase at a time, thus ensuring that low-level information
is correctly integrated in the translation.

Similar attention mechanisms have been tested on visual problems, such as the one presented by Xu et
al. (2016) for generating image captions, or the one by Mnih et al. (2014) for localization and detection
of handwritten digits. Neural networks implementing attention exhibit yet another advantage, which is
to provide humans the ability to see what they see. For instance, attention weights will highlight the area
in the image used for producing a given result.

7. Conclusions
We started this study by analyzing how programming is regarded and by establishing its similarities to
arts and crafts. This revealed the fact that programming has many sides to it, which are shaped by the
psychological factors influencing the person who creates programs. The development of programming
skills and tendencies was then modeled using Piaget’s cognitive theory. We applied this model to data
extracted from interviews of various groups of programmers and realized the importance of quantifiable
attributes when testing the reliability of our model. For this reason, we gathered a sample of numerical
attributes denoting a variety of skill levels in programming for different subjects. Cognitive patterns cor-
responding to Piaget’s theory were then discovered using formal context analysis. Finally, we mentioned
some cognitive processes involved in programming, which could be included in our model to improve
its generality. Our plan is to gather more data and use our concept discovery model to find recurring
cognitive patterns involved in programming, which can be integrated in an automated code generator
agent, the same way attention and perception were used to improve performance of neural networks.

8. Acknowledgement
This work was supported by the European Regional Development Fund and the Romanian Government
through the Competitiveness Operational Programme 2014-2020, project ID P_37_679, MySMIS code
103319, contract no. 157/16.12.2016.

PPIG 2018 24 www.ppig.org



References
Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural Machine Translation by jointly Learning to Align

and Translate. In 3rd International Conference on Learning Representations (ICLR).

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S., & Tarlow, D. (2017). DeepCoder: Learning
to Write Programs. In 5th International Conference on Learning Representations (ICLR).

Cherry, K. (2018). How Psychologists Define Attention. Retrieved from https://www
.verywellmind.com/what-is-attention-2795009

Corney, M., Teague, D., Ahadi, A., & Lister, R. (2012). Some Empirical Results for Neo-Piagetian
Reasoning in Novice Programmers and the Relationship to Code Explanation Questions.

Dehaene, S. (1996). The Number Sense. Oxford University Press.
Dijkstra, E. (1971). A Short Introduction to the Art of Programming. Technische Hogeschool Eindhoven.
Francu, C. (1997). Psihologia Concursurilor de Informatica. L&S Infomat.
Ganter, B., & Wille, R. (1999). Formal Concept Analysis: Mathematical Foundations. Springer.
Graham, P. (2003). Hackers and Painters. Retrieved from http://www.paulgraham.com/hp
.html

Greene, R. (2012). Mastery. Viking Press.
Hermans, F. (2017). Code as Art - Art as Code: On the Use of Poetry and Paintings in Programming

Education.
Huxley, A. (1954). The Doors of Perception. Chatto & Windus.
Indurkhya, B. (2002). On Philosophical Foundation of Lyee: Interaction Theories and Lyee. New

Trends in Software Methodologies, Tools and Techniques, IOS Press: Amsterdam, in H. Fujita and P.
Johannesson (eds.), 45–51.

Indurkhya, B. (2003). Some Philosophical Observations on the Nature of Software and their Implications
for Requirement Engineering. New Trends in Software Methodologies, Tools and Techniques, IOS
Press: Amsterdam, in H. Fujita and P. Johannesson (eds.), 29–38.

Jones, W. (1890). Principles of Psychology. Henry Holt and Company.
Knuth, D. (1968). The Art of Computer Progrmming. Addison-Wesley.
Lakoff, G., & Nunez, R. (2000). Where Mathematics Comes From. Basic Books.
Ling, W., Grefenstette, E., Hermann, K., Kocisky, T., Senior, A., Wang, F., & Blunsom, P. (2016). Latent

Predictor Networks for Code Generation. arXiv:1603.06744v2.
Ling, W., Yogatama, D., Dyer, C., & Blunsom, P. (2017). Program Induction by Rationale Generation:

Learning to Solve and Explain Algebraic Word Problems. arXiv:1705.04146v3.
Lister, R. (2011). Concrete and Other Neo-Piagetian Forms in the Novice Programmer.
Luong, M., Pham, H., & Manning, C. (2015). Effective approaches to Attention-based Neural Machine

Translation. In Conference on Empirical Methods in Natural Language Processing EMNLP.

Mac Lane, S. (1986). Mathematics, Form and Function. Oxford University Press.
Mnih, V., Heess, N., Graves, A., & Kavukcuoglu, K. (2014). Recurrent Models of Visual Attention.
Parisotto, E., Mohamed, A., Singh, R., Li, L., Zhou, D., & Kohli, P. (2016). Neuro-Symbolic Program

Synthesis. arXiv:1611.01855v1.
Piaget, J. (1971). Biology and Knowledge. University of Chicago Press.
Swidan, A., & Hermans, F. (2017). Programming Education to Preschoolers: Reflections and Observa-

tions from a Field Study.
Teague, D., & Lister, R. (2014). Blinded by their Plight: Tracing and the Preoperational Programmer.
Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., . . . Bengio, Y. (2016). Show, Attend

and Tell: Neural Image Caption Generation with Visual Attention.
Yin, P., & Neubig, G. (2017). A Syntactic Neural Model for General-Purpose Code Generation.

arXiv:1704.01696v1.
Zarnescu, C. (2007). Codul Operei lui Brancusi. Dacia.

PPIG 2018 25 www.ppig.org

https://www.verywellmind.com/what-is-attention-2795009
https://www.verywellmind.com/what-is-attention-2795009
http://www.paulgraham.com/hp.html
http://www.paulgraham.com/hp.html


Id Current Job Job Type Prog Lang Interests
C.1 Machine Learning Research Python Cognitive Sciences and AI
C.2 iOS Developer Industry Swift Hacking and Cryptocurrency
C.3 Machine Learning Research JavaScript Neural Networks
C.4 WordPress Developer Freelancer C# Robotics and Arduino

Figure 11 – Table illustrating different types of senior developers.

Id Background Current Job Side Interests Insights
B.1 design & crafts

music
front end & web
design

personal growth &
spirituality
digital art &
synthesized music

Helping the team to
learn new
technologies &
looking for new
ways to improve
built products.
Programming viewed
as a tool mostly.

B.2 social sciences full stack web
developer

politics & law Always in a search
for new challenging
tasks because it
stimulates learning.
Programming is
great because it is a
highly-demanded
job.

B.3 mathematics machine learning
programmer

neuroscience &
artificial intelligence

Reading & thinking
about new research
directions.
Programming is
great because you
can test ideas
quickly.

B.4 journalism quality assurance
tester

machine learning &
automatic testing

Reading about the
potential of AI to
disrupt & innovate
technologies.
Programming is
interesting because
of the social effects it
has.

Figure 10 – Table with illustrating data from ’self-made’ programmers, with no formal education,
such as a university degree in computer science.

PPIG 2018 26 www.ppig.org



Id Predisposition Background Suggested
Research
Topic

Articulation Effectiveness Steadiness

A.1 Technical Web Scraping Automatic
Web
Scraping
from DOM
features

high medium-high high

A.2 Tech. Creative Debugging Automatic
Bug Finding
from ASTs

high high medium-high

A.3 Creative Games Multi-Agent
Learning
Behavior in
Simple
Games

medium medium-high medium

Figure 12 – Table illustrating data from interns in their 2nd year of computer science program.

Id Focus Area Background Explored Topics Structure
H.1 Learnability High-school Teacher Basic programming

constructs and
techniques,
fundamental algorithms
and the thinking behind
them

Synthesized

H.2 Strategic Thinking and
Problem Solving

Doctorand and
Ex-Contestant

Advanced problem
solving, decision
making and strategy in
programming
competitions and
psychological
preparation

Structured

H.3 Creative Problem
Solving, Simplification,
Analogies and
Approximations

Current Contestant Hacking,
unconventional
programming, style of
thinking

Unstructured

Figure 13 – Table illustrating different types of computer science mentors.

PPIG 2018 27 www.ppig.org




