Proceedings of the

30th Annual Workshop
of the

Psychology of Programming Interest Group
(PPIG 2019)

28 - 30 August 2019
Newcastle University, UK

s 7
o AN " 1l
NP, AT iy

Whe £7 i
s %% gy

o

Edited by
Mariana Marasoiu, Luke Church and Lindsay Marshall

PPIG 2019 ppig.org

PPIG 2019 Call for Papers

Following last year’s successful engagement with craft and art, this year we are particularly interested in
aspects of interdisciplinarity. The Psychology of Programming is itself an interdisciplinary effort, as well as a
multi-disciplinary effort. Previous discussions have substantially engaged with other disciplines, including
education, engineering, music, magic, data analysis, collaboration and creativity, and yet there are so many
other fields left to consider. Perhaps now is the time to consider the psychology of animal programming?

We also welcome research that discusses the psychology of programming in the wider context, drawing on
issues such as sustainability, economy, politics, media, culture and society.

We have open minds, and enjoy conversations around creative and risky ideas more than polished
‘correctness’. If you think we might be interested, give us a try.

If you’re stuck to think of things we might find interesting, here are some themes to prompt:

Music(al) programming

Liveness and interactivity in programming
Programming education and craft skill acquisition
Human centered design and evaluation of programming languages, tools and infrastructure
Programming and human cognition
Team/co-operative work in programming

End user programming

Distributed programming, programming distribution
Culture and programming

New paradigms in programming

Code quality, readability, productivity and re-use
Mistakes, bugs and errors

Notational design

Data programming

Unconventional interactions and quasi-programming
Non-human programming

Technology support for creativity

Looking forwards to seeing you there,
Lindsay, Luke, Mariana

PPIG 2019

ppig.org

PPIG 2019 Programme & Proceedings Index

Wednesday 28" of August

09:30 - 13:30 Doctoral Consortium

13:30 - 14:00 Registration with nibbles

14:00 - 14:15 PPIG Open & Welcome

14:15 - 15:30 Collaborative Keynote

15:30 - 16:00 Coffee Break

16:00 - 17:00 Session 1
Coding to Learn and Create: New Modes of Programming for Learners
Who Have Been Left Out
Colin Clark, Clayton Lewis, Simon Bates and Sepideh Shahi
Beyond a Faster Horse: the UX of a Paperless Biochemistry Laboratory
Christopher Martin, Kate Kilgour and Angus Lamond

19:00 PPIG Dinner at The Earl of Pitt Street

Address: 70 Pitt St, Newcastle upon Tyne NE4 5ST

Thursday 29" of August

10:00 - 11:00 Session 2
Software design as multiple contrasting dialogues
Marian Petre, André van der Hoek and David Bowers
Undergraduate students’ learning approaches and learning to program
Melanie Coles and Keith Phalp

11:00 - 11:30 Coffee Break

11:30 - 13:00 Session 3
Parlez-vous Java? Bonjour La Monde != Hello World: Barriers to
Programming Language Acquisition for Non-Native English Speakers
Brett Becker
Usability of Probabilistic Programming Languages
Alan Blackwell, Luke Church, Tobias Kohn, Martin Erwig, James Geddes,
Andy Gordon, Maria Gorinova, Atilim Giines Baydin, Bradley Gram-Hansen,
Neil Lawrence, Vikash Mansinghka, Brooks Paige, Tomas Petricek, Diana
Robinson, Advait Sarkar and Oliver Strickson
Towards a Consensus about Computational Thinking Skills: Identifying
Agreed Dimensions
Bostjan Bubnic and Tomaz Kosar

13:00 - 14:00 Lunch

14:00 - 15:30 Session 4

Toward meaningful algorithmic music-making for non-programmers
Matt Bellingham, Simon Holland and Paul Mulholland

16

22

30

40

53

69

84

PPIG 2019

15:30 - 16:00

16:00 - 17:00

17:30 - onwards

ppig.org

Winter is Coding: On Programming, the freeze response, and how
design can help
Michael Nagle

The Naturalist's Friend - A case study and blueprint for pluralist data
tools and infrastructure
Antranig Basman

Coffee Break

Panel Discussion

Evaluating Programming Systems Design
Jonathan Edwards, Stephen Kell and Tomas Petricek, Luke Church

Sightseeing: walk through the city and along the quayside, followed by dinner

Friday 30" of August

10:00 - 11:00

11:00 - 11:30

11:30 - 13:00

13:00 - 14:00

14:00 - 15:30

15:30 - 16:00

16:00 - 17:00

17:00 - 17:30

Session 5 - Doctoral Consortium short talks

Clinical Decision Support System Design with Probabilistic
Programming Languages
Diana Robinson

Open Piping: a Visual Workflow Environment
Charles Boisvert

Constructing a Model of Expert Parallel Programmers' Mental
Representations Formed During Parallel Program Comprehension
Leah Bidlake

Challenging users’ perceptions of decision boundaries in machine
learning systems
Rob Bowman

Coffee Break
Session 6

Probes and Sensors: The Design of Feedback Loops for Usability
Improvements
Luke Church and Emma Soderberg

Cognitive Dimensions of Modular Noise Improvisation
James Noble

Mapping the Landscape of Literate Computing
Bjarke Vognstrup Fog and Clemens Nylandsted Klokmose

Lunch
PPIG Games
Coffee Break

Keynote
Ben du Boulay

PPIG Close

94

106

117

119

121

124

138

148

PPIG 2019 ppig.org

Coding to Learn and Create: New Modes of Programming for Learners Who Have Been Left
Out (Work in Progress)

Colin Clark Sepideh Shahi Simon Bates Clayton Lewis
Inclusive Design Inclusive Design Inclusive Design University of Colorado Boulder
Research Centre Research Centre Research Centre clayton.lewis@colorado.edu

OCAD University OCAD University OCAD University
cclark@ocadu.ca sshahi@ocadu.ca sbates@ocadu.ca
Abstract

While learning to code is increasingly becoming mandatory for elementary school students in many
countries, learners with disabilities—especially those with complex or intersectional disabilities—are often
excluded. These learners depend on assistive technologies to participate in class, communicate with family,
and share with their friends. For this reason, we argue that students with disabilities can significantly benefit
from the process of learning how to express themselves using computational means, and have the most at
stake in becoming producers of technologies rather than simply consumers. Indeed, working with these
learners raises significant questions about what coding actually entails, and the motivations and goals for
learning how. The Coding to Learn and Create project is designing new educational coding tools that
support learners with disabilities. With an emphasis on collaborative and artistic activities, we are exploring
new forms of programming that support the development of life and learning skills while enabling creative
expression and participation.

Introduction

Computers are, of course, everywhere around us today. Software mediates our experience with many
aspects of social, school, and work life, yet its inner logics and processes can often be inscrutable to those
of'us on the outside. Job opportunities continue to grow for software developers and other technical workers,
while the increasing role of automation in certain forms of labour, coupled with fears that so-called
“artificial intelligence” may impact the role of human agency in many jobs, has invoked a feeling in many
that our educational systems may well be unprepared for the future of work (Vilorio 2014, Smith &
Anderson 2014). Educators and policymakers have, in response, argued for the need to teach children
technical skills such as coding early in their education, as a way to prepare them for employment in an
uncertain, technology-driven economy'. In many cases, these appeals schematically link the value of
“learning to code” with “STEM” (science, technology, engineering and mathematics) skills, often with a
thin gloss of creativity or art applied on top. Less directly instrumental in its argument (i.e. coding == jobs),
but far more wide-reaching in its belief in the importance of purely computational modes of learning is the
“computational thinking” movement, which claimed that “computational thinking is a fundamental skill for
everyone” and it should be as educationally essential as “reading, writing, and arithmetic... to every child’s
analytical ability” (Wing 2006).

With this, perhaps, as the motivating backdrop, coding education has become an increasingly prioritized
area of the educational curriculum for young children in many countries. In Canada, where several of the
authors live, coding is mandatory in three provinces and has been included in the curriculum in several
others. Despite this recent emphasis placed by policymakers, computer scientists, and educators on
introducing students to coding at a young age, many learners are excluded from the opportunity to learn
due to a lack of accessible tools and instructional methods. Students with disabilities—especially those who

' See, for example, the rationales of the CS4All https://www.csforall.org/ movement in the U.S. and Canada’s
CanCode program:

https://www.canada.ca/en/innovation-science-economic-development/programs/science-technology-partnerships/cancode.html

PPIG 2019 ppig.org

have cognitive, communication, or physical disabilities—are often unable to participate in today’s
classroom coding activities, or are relegated to passive roles while their peers actively engage in solving
problems together computationally. Yet these students, who often depend on assistive technologies to
participate in class, communicate with family, and share with their friends may have the most to gain from
learning how to be creators of their digital worlds, not just passive users. For example, a learner who
depends on augmentative and assistive communication (AAC) software may benefit from understanding
how communication boards are modelled, created, and installed, and how word prediction algorithms work,
so that they can make their own custom vocabularies (e.g. to tell jokes with, or share secrets with their
friends but not their parents). Or learners with mobility impairments may be able to use a coding
environment connected to a robot to experiment with new forms of agency in the physical world, or learn
how to give better instructions to their caretaker.

Working with students with disabilities thus raises interesting questions about what coding actually is as a
practice, what it’s for, how it is manifested materially, and how it can be productively implicated with other
learning and personal activities. By working with learners who are currently on the margins of
computational creativity, and addressing the barriers that prevent them from engaging with computational
media equally alongside their peers, new possibilities for programming languages and tools may be revealed
that benefit all learners—and other programmers and users, too.

The Coding to Learn and Create Project

The Coding to Learn and Create project’ (https://codelearncreate.org) is aiming to address the barriers to
participation in coding education by students with disabilities, particularly those who are most likely to be
assumed (incorrectly) to be incapable of coding, such as those with cognitive disabilities (Taylor et al.
2017). The goal of the project is to empower all learners to be creators of their digital worlds, to express
themselves using code and art, and to apply these skills to other areas of learning and daily life.

While coding is too often seen instrumentally as a means to develop skills that will support future
employment and career opportunities, our approach is to investigate the broader potential for coding to
contribute to the development of social, daily living, and creative skills—coding to learn (Popat et al. 2019).
The argument here is that participation in coding lessons may help support students with complex
disabilities especially to develop collaborative and communication skills, strategies for problem solving,
task sequencing, spatial awareness, and metacognitive skills such as those involved in giving instructions
to others. Participation in coding activities also helps these learners develop a greater sense of belonging
and equality with their peers in the school community. We are interested in ways that computational modes
of expression can support creativity and learning, rather than simply treating the arts as a secondary concern
whose role is largely to make technological concepts more appealing for kids.

The project is establishing an open, evolving repository of inclusive coding resources and activities®. These
resources will be released as Open Educational Resources (OERs), and will provide educators with
strategies, teaching tools, lesson plans, and techniques to help them teach more inclusively, and to adapt
current coding curriculum and programming environments to better match their students’ diverse creative,
social, and skill development goals. These resources will also include collaborative arts-based programming
activities (such as computational drawing, music, and performances) that will provide new ways for
students to learn programming while creatively engaging with their peers and the physical environment—

? The Coding to Learn and Create project is led by the Inclusive Design Research Centre at OCAD
University with Bridges Canada, and is funded by a grant from Innovation, Science, and Economic
Development Canada’s Accessible Technology Program.

> An early version of this Educator’s Toolkit is available at https://resources.codelearncreate.org/

PPIG 2019 ppig.org

either directly or through avatars such as robots or simulations. This repository of inclusive coding OERs
will be open to contribution from others, and will be designed to support reuse and adaptation.

In addition, we are co-creating, with educators, students, and their families, a new programming
environment that is designed to support those who are currently unable to effectively use current coding
environments. This environment will consider programming as an accessible and collaborative activity in
which students may each have their own personalized interface or representation of a program, while also
being able to work on shared projects and learning activities together. Additionally, teachers and students
will be able to define personalized goals, rewards, and learning scaffolds that will help to support
incremental skill development.

To accomplish this, the Coding to Learn and Create project is organizing a series of co-design sessions,
collaborative programming workshops, and hackathons to design, test, and refine the project’s learning
resources and programming tools. These events act as participatory research methods that enable the
evaluation, expansion and refinement of the project’s deliverables in a collaborative way that is also
grounded in the realities of teaching programming to very diverse students, both in the context of inclusive
classrooms and congregated, disability-specialized schooling.

The following sections outline two of the key design methods we are employing throughout the project:
participatory co-design with students and teachers, and continuous prototyping. We discuss ideas and
strategies for how we’ll engage learners in the process of creating new coding tools, describe our first
prototype of an accessible turtle graphics programming environment, and summarize several areas of
computation and creative expression that we will explore with our community.

Co-Designing Accessible Coding

The Motivation for Co-Design

Traditional design practices rarely engage users as participants in a substantive manner throughout the
process, particularly those with extreme needs. During the initial discovery phase, researchers may engage
users in activities such as interviews, focus groups, and observation sessions to better understand their needs
and behaviors in a specific context. Later on in the process, they may also engage people in usability testing
sessions and focus groups to get their feedback about solutions that have largely already been built. These
efforts, however, do not give users the means to be directly involved in the creation and development of a
solution that will inevitably impact them later.

For the Coding to Learn and Create project, we aim to take a different approach, applying a co-design
process in order to more actively involve our participants as co-designers within every stage of the research,
design and development process. In addition to co-design activities, we will also apply other more
conventional research methods, such as surveys and interviews to further expand our reach and gather data
that can complement the ideas generated throughout our co-design activities.

Planning for Co-Design

We consider that everyone is creative and capable of contributing to design and problem solving. However,
when a creative action takes the form of designing, building, drawing, performing or using other creative
media to express ideas, many people think (or have been told) that they do not have the proper skills,
expertise, or training to contribute to such activities. This becomes even more challenging when our co-
designers are from marginalized populations, such as those with different learning, cognitive and physical
needs. They may feel uncomfortable sharing their ideas or be afraid of contributing thoughts that might be
perceived as less good, not right, inappropriate, or irrelevant. To minimize this barrier, we will start with
small-scale activities, encouraging students to participate in tractable problem-solving tasks, building up
trust, and inviting them to experiment with different ways of contributing in order to find their favorite

PPIG 2019 ppig.org

medium. This approach helps them develop confidence and gives them—and us—ample opportunities for
experimentation, determination of roles and modes of participation, and time to fine-tune the collaborative
problem-solving process together.

The other aspect that may impede participation is the accessibility of the medium. Even the most confident
individuals may not be able to fully participate in a co-design process if they are not provided with tools
and activities that meet their needs. For example, learners with disabilities may require different ways of
accessing and communicating information, such as via voice commands, gestural commands, eye gaze,
communication boards, single switches or other assistive devices to be able to communicate with each
other. Thus, without access to such assistive technologies—and materials that are compatible with them—
they won’t be able to fully participate. To this end, we are endeavouring to ensure that our tools and
activities are multimodal and support a wide range of input and output methods, and are working closely
with the students and their care providers to determine the appropriate tools and formats.

Co-designing with people who have cognitive, learning, or communication disabilities can be fraught with
unique challenges. Depending on the context and the participants’ needs, there will be situations where a
student will not be able to independently participate in the co-design process, and may require assistance
from or mediation by their caregivers. This may impact a student’s agency and can raise questions about
how truly involved they are in a co-design process. To address this issue, our team will work closely with
the care providers to ensure students’ insights are captured as they prefer and try to avoid overly interpreting
their ideas. This requires a different approach to facilitation and engagement. For example, we have
observed that inexperienced facilitators or assistants have a tendency, when asking questions of students
with communication disabilities, to rush or anticipate the student’s responses. Some students need more
time to consider a question and respond to it, and the task of clarifying or interpreting a student’s response
often requires further questions and prompts. During our co-design engagements, we will provide educators
and their assistants with communication strategies that give students sufficient time to think about their
responses and avoid rushing them to respond or asking leading questions. This may involve tailoring the
length of a session, or reducing the number of topics discussed to a more tractable scope. In addition, during
the sessions themselves, we will look out for opportunities to provide students with on-the-fly adaptations
that may be a better fit for their direct participation, and which will minimize the risk of misinterpreting
their ideas.

At this early phase of the project, we are in the midst of reaching out to different communities and building
relationships with various schools and organizations that work with students with complex learning,
cognitive and physical needs. In the meantime, through collaboration with our initial group of partners and
contributors, we are developing a “palette” of different co-design activities that will suit different
contributors and situations, and which can be further refined as we work more closely with our co-designers
and their care networks. Some of these activities are described in the next section, where we outline a
process for working with students and teachers to build a more accessible and educational coding tool.

A Process for Discovering What Kids Want to Learn

To design and develop an accessible educational coding environments for kids, first we need to reassess
our assumptions about coding—what it is, and how it should be taught to learners with diverse needs—and
to start our work from their goals, interests, and perspectives. We will specifically recruit learners who have
been marginalized or excluded from coding education due to their different needs or abilities, who will
have an opportunity to share their experiences and express their visions of coding and how it could impact
their lives.

Once we break out of our unquestioned assumptions about coding and consider alternative models for
existing systems, we can start building new coding tools and resources. At this phase, we will work with
our co-designers to design, build, and test various coding environment prototypes and tools to help actualize
different models of coding that are multimodal and accessible for a wide range of needs.

PPIG 2019 ppig.org

Teachers and educational assistants who have relevant experience in coding will be involved throughout
this process in different capacities. Since they are familiar with their students' needs and preferences, we
will work with teachers directly to ensure our co-design activities and tools are accessible for all
participating students. Teachers will also play an instrumental role in helping us to understand curriculum
requirements, educational goals, and the practical, day-to-day challenges teaching coding to students with
disabilities. They will also help bridge the communication gap and help our team to work with their students
through the co-design process.

At each phase of the co-design, we are planning to use a series of individual and collaborative activities in
order to engage students in a reflection and discovery process about their perception of coding, and to
involve them in generating ideas that will support the design of new coding tools. These hands-on,
interactive and multi-modal activities involve a mix of individual and small group participation, providing
each student a chance to think on their own before collaborating with their peers. These activities build on
each other to gradually introduce the students to the tools and processes used in our co-design process. The
insights and ideas generated through these activities will help our team to better understand how students
perceive computers and computational processes and how they prefer to learn about and engage with these
processes.

The first activity in this series invites students to identify the computers they encounter in their day to day
life. They are encouraged to think beyond the stereotypical concept of computers and try to identify any
other forms of computation that have an impact on their lives.

A follow-up activity, inspired by Judy Robertson’s work in classrooms (Robertson 2019), aims to further
investigate the students’ understanding of computers and how they perceive computation. Thus, they are
tasked with imagining and expressing how a computer works. During this activity, students may touch upon
different concepts related to coding and computational processes from their perspective.

This activity will engage students in an ideation process. Here, we encourage them to think about how they
would most like to interact with those different computers they have identified in their lives. They will be
provided with several challenging scenarios to help them think outside of their ordinary relationships with
computers and consider some of the accessibility challenges that coders may face. For example, some of
these scenarios may include giving commands to a computer that can’t hear the student/a computer that
can’t see the student/ a computer that is out of their reach or even invisible to them, etc.

In the last activity, students are encouraged to work together to determine how they prefer to learn about
computers and interacting with them. In this activity they are asked to be critical and to discuss what is not
working in their current coding classes, what could be changed or improved and how they envision the
future of coding education.

Once our co-designers have participated in these activities and feel more comfortable with working in a
collaborative setting, we will introduce them to more advanced activities that involve interactive coding
tools. At this stage, students will have a chance to:

e try out the different prototypes we are designing and developing

e sketch different user scenarios based on their personal experiences with computers to test different
aspects of each prototype and identify their accessibility barriers

e share ideas about how they can change, improve, or redesign the prototypes in a way that suits them
best. Students are encouraged to document their reasoning for each suggestion, and to imagine
changes they would make to the prototypes.

PPIG 2019 ppig.org

The insights and ideas generated through these activities will help our team to better understand how
students perceive computers and computational processes and how they prefer to learn about these
processes. To better identify the gaps in the current computer science and coding education for kids, we are
also planning to work with teachers, particularly special education educators with relevant experience.

In addition to our planned co-design engagements, we will also reach out to a broader range of teachers
across Canada using a survey that has been designed and distributed to more than a hundred schools. In this
survey, teachers have an opportunity to discuss challenges that they face with regard to coding education,
working with students who have special needs, and opportunities they see for improving or revamping the
current coding tools and curricular activities designed for their students. The survey participants can opt-in
for an interview to further discuss their perspectives about a more inclusive and accessible coding
education.

Continuous Prototyping as a Co-Design Method

We have started work on a prototype of a new coding environment. This prototype is not the thing that we
are ultimately building, but rather, a thing to help us make the things that we will co-design with our
community of students, educators, and families. Building an early prototype gives us a concrete platform
on which to try out design ideas and technical approaches, and helps us when talking with others about the
potential approaches and directions of the project. It serves as an invitation to participate—“this is the sort
of thing that we want to build with you.” In this way, we have aimed to build something that sits somewhere
between a design sketch and a product. Functional enough that we can try real interactions out (such as
having a group of students program a robot to make art), but not so set that it limits our conceptions about
what a coding environment could be.

10

PPIG 2019 ppig.org

Coding to Learn and Create Prototype

Commands 4 N\

A [€][3][+

Program

A [€][r][€][r
RING

Program:

forward left forward left forward left
forward left

Run | | Step | | Restart

Available actions: forward, left, right.

Write your program actions in the box above and separate them by
spaces. For example, to draw a square, use: forward left forward
left forward left forward left

Connect to Dash

Connect to Sphero

Figure 1: The Coding to Learn and Create Prototype. https://prototype.codelearncreate.org/

The prototype is built with web technologies and the Infusion JavaScript framework (Basman, Lewis, Clark
2015). This technology platform was selected for the prototype to enable ideas to be implemented quickly
and to enable us to run the prototype on the wide range of hardware devices for which web browsers are
available and common in educational settings (including desktop computers, laptops, tablets, and
Chromebooks). In addition to running on multiple hardware devices, web technologies have well-supported
assistive technology integration and some built-in user control of web page presentation (such as zooming
or setting of text size). The prototype is architected as a composition of loosely coupled parts, using
Infusion’s “Inversion of Control” and “Model Relay” supports. Features of the prototype, such as editors,
or robot integrations, can be added, removed, or replaced in a straightforward manner, with minimal
coupling to other parts of the system. Enabling the convenient implementation of alternatives and the
replacement of parts as the prototype is evolved.

As we work with educators, students, and families to co-design the new coding tools, we will assess the
technology choices that we have made for the prototype and select technology platforms for the end product
development that best fit the needs of our community, ensuring that what we build will work on the devices
and integrate with the technologies that students are using.

1"

PPIG 2019 ppig.org

Turtle Graphics and Robots

The prototype currently provides a simple turtle graphics system and a simple language consisting of three
operations (currently called “actions” in the environment): move forward, turn 90 degrees to the left, and
turn 90 degrees to the right. We have chosen to begin with a turtle graphics model due to its familiarity,
potential for making visual art, historical usage in coding education, and compatibility with commonly
available robots.

In addition to drawing a turtle on the screen, we have implemented integrations with several off-the-shelf
coding robots, including the Dash robot from Wonder Workshop and the Sphero robot. Students can
connect up to one of each of these robots to the prototype and when a program is run, the robot(s) will move
accordingly. The robot integrations are built using the Web Bluetooth API (Web Bluetooth specification).
A “Sketch Kit” add-on is available for the Dash robot that enables the attaching of a pen to Dash. With this
attachment, a student can use the prototype to make drawings on paper. We are continuing to explore
collaborations with robot manufacturers, with the goal of enabling our software to work with the different
robots that are available for purchase and which are being used by students and in schools.

Concurrent Notations

One of the areas that we would like to explore with the project is providing multiple concurrent
programming notations. Eventually, this will allow a student (or educator or family member) to select the
notation, or notations, that are best for their learning needs—while still being able to collaborate with
students who may prefer a different notation. In the current prototype, we offer two notations. \

The first notation we implemented is a simple text notation, where a program consists of a list of words,
separated by whitespace (where each word is one of the available actions “forward”, “left”, and “right”).
For example, to draw a square, the following program could be used “forward left forward left forward left
forward left”. The second notation is a symbolic notation consisting of a sequence of symbol blocks, one
symbol block per action. The user interface for working with the symbolic notation consists of a palette of
actions (move forward, turn left, and turn right), program manipulation commands (insert space into the
program, and delete a step), and a program area. Although drag and drop is typically used in block-based
programming environments, this user interface pattern can be problematic for some students with physical
disabilities. Rather than using drag and drop for building programs with the symbol blocks, we chose to
implement an alternative two-step interface similar to the “hybrid method” described in (Milne and Ladner
2018): step 1) select the action to be performed in the palette and step 2) select the target within the program
to apply the action to. We have designed the interface to have large targets (symbol program blocks and
buttons) to ensure that they can be used without needing very fine motor control, or by those using assistive
technologies such as eye gaze control.

Our prototype programming environment has a single underlying program model, currently consisting
simply of a JavaScript array of words. Each notation is implemented as a bi-directional mapping to and
from the shared program model. This enables the student to work in either notation and have the other be
updated automatically. In the future, our programming environment will provide programming
functionality beyond a simple sequence of actions, such as subroutines, looping, and variables. When these
features are added, our programming model will of course need to become more complex to accommodate
this functionality. There are many notations that we would like to try out, and the questions of a) which
notations and programming models are most useful to our students and b) how to, or if we can, implement
useful mappings between these notations will be topics that we will be tackling over the course of the
project.

Some candidate notations for exploration include:

12

PPIG 2019 ppig.org

e Aninterface for controlling a robot, or turtle on-screen, that can act both as a direct ‘remote control’
and a programming environment. Where actions, such as movement, maintain their ‘liveness’ and
can be used both to send commands directly to a robot and within a program.

o An interface that facilitates both direct manipulation and programming. For example, where a
student could draw a shape directly, rather than with movement commands and then process their
drawing programmatically, such as to repeat it with variation (for example with variation in
position, rotation, colour, or line thickness). Or where programming commands are derived from
the drawn shapes.

e An interface that combines programming instructions with physical control input devices. Where,
for example, a parameter could be controlled by pushing or squeezing a ball.

e Dataflow programming as an alternative to imperative programming, where values within a system
are related to one-another through connections and transformations.

e Notations for time-based media such as animations, music, and controlling of robots (for example
a dance performance).

e Liveness within the programming environment, for example where a program is continuously
running and updates to the program take effect immediately (rather than having to press a “Run”
button).

Further Topics to Explore
In developing our co-design activities, there are a number of other matters we hope to explore with teachers
and students, and to implement in our new educational programming environment.

Connections between coding and art and music.

One of the schools with which we are working has had great success in engaging students with physical
and cognitive disabilities in art activities, some producing extraordinary results. At Beverly Public School
in Toronto, artists Hien Quach and Patrick Moore developed a series of art creation processes that were
personalized to the needs and abilities of their students. These processes were applied by the art class to
create a series of large-scale mixed media canvases that were exhibited at the Coding to Learn and Create
project launch event. These art projects suggest a potentially germane link between art and computation,
where the students can learn about, perform, and create their own formalized processes and instructions for
creating art in digital or physical media using code.

13

PPIG 2019 ppig.org

Figures 2 and 3: Process-based artwork created by the students at Beverly Public School.

We hope to link coding to other art activities, using the turtle graphics prototype as a starting point for
some. The experience of artist Jim Johnson using a form of turtle graphics (see discussion in Repenning et
al., 1998) provides inspiration. The turtle Johnson used was able to respond to lines as well as draw them,
a possibility we may wish to explore.

Much has been done in producing music under program control, and we hope to explore this medium as
well. Here we may be able to draw on some of our own work (##Flocking, Nexus), adapting the systems in
response to the experiences of and with students in the new project.

More elements of computation.

A number of extensions to the core design of our turtle graphics prototype can be seen in prior systems, and
serve to enrich the exposure to computational ideas that these systems provide. We expect to add a facility
for saving and reusing sequences of commands, thus providing a simple form of subroutine. If we add the
ability to give the saved sequences names we provide a form of procedural abstraction. Other extensions
can provide arguments for some operations, such as a repeat action for which a number of repetitions can
be specified. One can then move to support parameters for user-defined subroutines, and further to allow
values calculated and stored in variables to be used as arguments. As with other aspects of the work, how
much or little we explore in these directions will depend on the response of the students, both with respect
to what they want to do, and with respect to what they understand and adopt.

Further abstractions.

Arguably there are other ideas about computing that are important in understanding its pervasive role in the
world, but that may not play much part in practical work. One idea is that a single kind of data, numbers,
or bits, can represent indefinitely many, very different kinds of things. Another is that a relatively small set
of quite simple operations, on numbers or bits, that is, machine instructions, serves to emulate an enormous
range of activities. Certainly the role of computers would be very different, and far more limited, if these
ideas did not work out. Will our students be interested in these ideas? Can we develop the ideas in an
engaging and clear way?

Back to the arts.

Moving back from computation as we know it, we think that some further computational ideas, or aspects
of them, can be exercised within artistic expression. An inspiration is the loop machine, a simple device
that records and plays back sounds, in such a way that a complex performance can be built up in layers,
with later sounds added to ones already recorded. The loop machine demonstrates the ability to store and
retrieve information, in a concrete way, while enabling new kinds of musical performance. We think it may
be possible to extend this idea into the visual domain, allowing drawings to be captured, replayed, and
mixed. Parallels between the two kinds of loopers may help to communicate parts of some of the ideas
above, about how computers can represent and operate on different kinds of information in similar ways.

Conclusion

The Coding to Learn and Create project is designing new educational coding tools and teaching resources
to support students who have been left out of learning how to code. With a particular emphasis on students
with complex, intersectional disabilities such as cognitive, learning, and physical disabilities, the project

14

PPIG 2019 ppig.org

aims to reconsider the goals, motivations, and materials of how software creation is taught in light of the
unique learning, creativity, and communication needs of these students. By recentring coding as a means
for supporting art, life skills development, and expressive communication, the project aims to support
learners with disabilities in engaging creatively and collaboratively as producers of computational media.
The project’s approach is rooted in community-based, open source co-design practices in which educators
and students will have a significant voice in shaping the direction and outcomes that we create. We welcome
participants from a broach range of backgrounds, including computer scientists, artists, educators, and
researchers.

References

Basman, Antranig, Colin Clark, and Clayton Lewis. "Harmonious Authorship from Different
Representations (Work in Progress)." In Proc. PPIG 2015 Psychology of Programming Annual Conference.
Bournemouth, England, 15th-17th July. 2015. [PDF]

Milne, Lauren R., and Richard E. Ladner. 2018. Blocks4All: Overcoming Accessibility Barriers to Blocks
Programming for Children with Visual Impairments. In Proceedings of the ACM Conference on human
factors in computing systems (CHI ‘18). ACM, New York, NY, USA. [PDF]

Popat, Shahira, and Louise Starkey. "Learning to code or coding to learn? A systematic review." Computers
& Education 128 (2019): 365-376.

Repenning, A., loannidou, A., & Ambach, J. (1998). Learn to communicate and communicate to learn.
Journal of Interactive Media in Education, 1998(2). [PDF]

Robertson, Judy. “Answering Children's Questions About Computers.” Communications of the ACM,
January 2019, Vol. 62 No. 1, Pages 8-9. https://cacm.acm.org/magazines/2019/1/233512-answering-
childrens-questions-about-computers/fulltext

Smith, Aaron, and Janna Anderson. "Al, Robotics, and the Future of Jobs." Pew Research Center 6 (2014).

Taylor, Matthew S., Eleazar Vasquez, and Claire Donehower. "Computer programming with early
elementary students with Down syndrome." Journal of Special Education Technology 32, no. 3 (2017):
149-159.

Vilorio, Dennis. "STEM 101: Intro to tomorrow’s jobs." Occupational Outlook Quarterly 58, no. 1 (2014):
2-12.

Web Bluetooth specification, Web Bluetooth Community Group https://webbluetoothcg.github.io/web-
bluetooth/

Wing, Jeannette M. "Computational thinking." Communications of the ACM 49, no. 3 (2006): 33-35.

15

PPIG 2019 ppig.org

Beyond a Faster Horse: the UX of a Paperless Biochemistry Laboratory

Chris Martin Kate Kilgour Angus I. Lamond
Lamond Lab Lamond Lab Lamond Lab
University of Dundee University of Dundee University of Dundee
crmartin@dundee.ac.uk k.j.kilgour@dundee.ac.uk a.i.lamond@dundee.ac.uk
Abstract

It is astounding though possibly not surprising, that the default cognitive prosthesis in the modern
laboratory environment is the paper notebook. In many walks of life, the 50+ year-old promises of
technology are increasingly a reality: spoken dialogue systems a commodity, central-heating systems
that can anticipate need and context-aware delivery of advertising as you walk past a shop. With all of
this capability, why are paper notebooks still the best option for many working in science laboratories?
This paper describes a study designed to try and understand why paper remains prevalent. It seeks to
understand what feature set and design decisions are required to inform the design of an Electronic Lab
Notebook (ELN) capable of displacing the paper notebook.

1. Introduction

Henry Ford famously posited: “If I had asked them what they wanted, they would have said a faster
horse”. The type of transformation to personal transportation brought about by the motor car is in some
ways similar to what we seek to achieve with the electronic notebook (ELN). We are not simply looking
for a digitised version of what scientists currently do in a note book, One Note or Evernote already
provide this and are used with mixed success. We are looking for a transformative tool that understands
the array of stakeholders engaged in science and the complex environment and geography where this
work takes place. The challenge of UX is not to simply ask users what they want, rather it is to work
with them to understand what they need. This work in progress paper is arranged as follows. First, the
context for the ELN will be described, outlining the locations and range of equipment used, by whom
and crucially what type of tasks need to be supported and documented. This paper will then go on to
describe the approaches proposed to capture stakeholder insights. Finally, some preliminary finding
shall be presented.

1. Many ordinary users in an extraordinary environment

A biochemistry laboratory is a nuanced, complex and sometimes hostile environment. Depending on
the task at hand, there may be a range of health and safety requirements that can inhibit the typical
user’s abilities. At a minimum, a user will employ gloves, eye protection, and a lab coat. Depending on
the substances used, they may require to work in a fume hood. This is an enclosed compartment with a
sliding-front window, or sash, that can be drawn down to prevent contaminants entering the working
area, or conversely, protect against toxic fume exposure or chemical spills. In some cases, these
precautions are in place to protect scientists, though often these precautions aim to preserve the integrity
of the experimental sample. It is also common for areas to be dedicated for the sole purpose of a single
activity, such as tissue culture. Therefore, it is likely that the execution of an experiment will take place
in a range of locations which are dependent on the particular action being performed.

This environment is peppered with equipment; in some cases, it will be for the sole use of an individual,
e.g. microfuges, shakers, heat blocks or pipettes. Where equipment is more expensive, or perhaps used
intermittently, it will be shared with others. This may be a resource for dedicated laboratory use, or for
use within a wider department or an entire institution. In addition to the equipment used to manipulate
and interact with experimental samples, there will be a range of plasticware consumables such as pipette
tips, tubes, columns, and tube racks. There will also be various chemicals and biochemicals used at
different stages of the experiment. Some of these items will be stored at room temperature on shelves
and many will be stored in refrigerators or freezers. It is typical for an individual scientist to have one,
or more, personal refrigerator and freezers. The owning scientist can then use these to store personal
stocks of everyday items or experimental samples they are currently working with. Other items may be
stored in communal locations within a laboratory space. For long term storage, there will be institution-
wide resources that can be utilised.

16

PPIG 2019 ppig.org

The laboratory is inhabited by a range of intelligent, driven individuals that must execute experiments
methodically as they interact with the wide range of complex instruments, equipment, chemicals and
bio-chemical stock described previously. There will likely be an array of different stakeholders in a
laboratory environment. This can include principal investigators, postdoctoral researchers, Ph.D.
students and undergraduate students. Additionally, in some cases. there also may be support technicians
and laboratory managers. Although this network of stakeholders strive to fulfil a common, overarching
goal of delivering insights via high-quality science, their individual contributions will vary and thus the
supporting tools must fit a range of user needs. Occasionally, there will be overlapping and
complementary goals, and in other cases goals may conflict.

Science is a highly collaborative environment, not only within laboratory groups but across different
geographic sites. Modern scientific studies tend to employ a multifaceted approach requiring a wide
range of expertise often found across multiple institutes. Currently, a lot of computer-supported
collaborative work is supported via fairly primitive tools such as email and online file stores. Perhaps
unsurprisingly, spreadsheets feature heavily. This is a good example of a single-use data repository; a
spreadsheet manifest which describes the contents of a sample delivery is disposable and has a very
short half-life. Once the delivery is received, the manifest file is of little value and will most likely be
archived or discarded.

The design, execution and reporting of an experiment will happen across a range of locations, over an
extended time period and with various stages requiring different types of support. The collection of
stakeholders described will perform different roles in supporting these tasks. Each role will have
different expectations and require different levels and types of assistance to produce good science. The
cornerstones of good science are robustness, reliability reproducibility. We can assist in forming a
foundation for this through effortless access to experimental designs and meticulous capture of
experimental metadata. The current approach with personal, paper-based notebooks only serves to
support the individual in isolation. This is not at all surprising, as the notebook is a cognitive prosthesis
for the individual as they discharge their duties. We propose that, with a rich understanding of the
interconnected web of stakeholders, it is possible to design a system that can provide a highly flexible,
personal support tool that can also inform the wider challenge of collaboration, research project-
management and facility management.

In summary, our problem space is high dimensional and complex. We have a range of different
stakeholders contributing different effort to a central goal. The physical environment is varied and
presents some significant design challenges. Within this environment, there is a vast array of specialist
equipment and consumables, all utilised to perform high-quality scientific research which must be
consistently executed and meticulously documented. Projects can have durations varying from months
to years and often involved collaborator’s spanning different geographic locations. This study aims to
improve the understanding of the work the scientist performs, discover the everyday tools and
technologies they currently employ and explore the different priorities of various stakeholder groups to
inform features required of an ELN.

2. Study design

Although the software development team has over 10 years of experience delivering software solutions
for scientists, we were keen not to limit our findings by our experience and assumptions. To that end,
this study has been designed to be open and unbounded but adheres to many of the characteristic of a
Semi-structured qualitative study (Blanford, 2013). User time is a valued commodity and to ensure
maximum return, a phased focus group (Gill et al, 2008) was devised to address the following three
questions:

1. What tasks make up a typical day of work for a biochemical scientist?
2. What tools and technologies are routinely used to support the tasks described in Q1?
3. What are the scientists priorities for an ELN?

Participants for the pilot were recruited from the Lamond Lab group and verbally consented at the
beginning of the session. Participants were guided through three tasks addressing each of these research
questions. A facilitator introduced each task and offered points of clarity and rationale. The study had

17

PPIG 2019 ppig.org

a purposeful, well-defined structure, however the intention was always to capture core data whilst
seeding relevant, reflective discussion within the group. The session was audio recorded and a second
facilitator was also present to take notes as well as prompting the group with regards to timings, etc.

What do you need to do this?
Task Name:

Where do

you do it? Equipment Room Meeting Room

Office Chemical Store Wet Lab

Can you describe the task?

How Long?
How Often?

please turn me over thank you

Figure 1 — Task postcard, front and rear.

Questions 1) and 2) were addressed using a lightweight, staged, survey card approach. To address
question 1), participants were given a stack of custom-designed postcards where they could fill out the
task’s name, location in which it’s performed, duration and frequency. This was intended to be a quick-
fire activity. To reduce participant effort and encourage a flow state (Nakamura & Csikszentmihalyi,
2014), the postcard (fig 1) design offered checkboxes with common locations and visual analogue scales
(Krosnick & Fabrigar, 1997) representing duration and frequency. When the completion of cards by
participants came to a natural rest, the facilitator directed participants to turn their cards over, where a
small free-text box asks participants to provide a brief description of the task and indicate items that are
necessary to perform the task. This takes a little more effort. Upon completion of these postcards, each
participant is encouraged to identify their most frustrating task and share this with the group to seed a
wider discussion. To address question 2), the front face of the card captured identical metadata to
question 1), whereas the reverse face of the card requested a description of the tool’s use with space to
list associated pros and cons. When participants had completed the support-tool cards, they were asked
to order them from most useful tool to least useful tool. Each participant was asked to describe their
most indispensable tool.

To address question 3), a closed set of 13 terms, pertinent to ELN, was generated. As a group, the
facilitator leads a collaborative insertion-sort of the terms. When a new card is presented, the term is
described by the facilitator and a shared understanding of its meaning is agreed on by the group. The
new card’s importance is then discussed in relation to each existing card in the list, generating a
prioritised list. The purpose of this exercise is threefold. Firstly, to ensure the development and design
teams understand the key vocabulary as defined by the users. Secondly, to create a prioritised list of
important features that can directly feed into our development process as we begin construction of our
product. In future, It will be interesting to observe the differences, if any, there are between stakeholder
groups. Thirdly and finally, performing this exercise as a group was a conscious design decision to
encourage externalised reasoning. If there is a split of opinion in the group, each party must articulate
their argument for and against. This type of collaborative reasoning also helps users understand the
compromises that must be made as part of the development process.

3. Preliminary findings

The study design described was piloted with six scientists from the Lamond Laboratory based in the
Centre for Gene Regulation and Expression within the School of Life Sciences at the University of
Dundee. These scientists were all experienced, postdoctoral researchers who were working on various
projects in a subfield of molecular biology known as proteomics. The session lasted for 1 hour 22
minutes and there were no deviations from the design described previously.

18

PPIG 2019 ppig.org

3.1. Task card findings

For the initial exercise, 30 task cards were completed. These cards were sorted post hoc by the facilitator
into five emergent themes. Sample Preparation was described on 16 cards, with a wide range of noted
durations, from one hour to three days; these activities are performed frequently and exclusively in the
“wet” laboratory. Sample Processing - processing samples on the mass spectrometry (MS) instruments
- was the second-most reported task with six completed cards; the duration of these tasks ranged from
two hours to two weeks and they were also reported as frequently occurring, unsurprisingly occurring
exclusively in the instrument room, where the MS instruments are housed. Tissue Culture was the
third-most reported task with three completed cards where durations ranged from 30 minutes to one
day, occurring anywhere from daily to monthly. This activity happens in a separate, secure “wet”
laboratory space which provides a stronger degree of control over air flow, etc. Data Analysis was the
fourth-most reported task with three cards with durations from three hours to multiple weeks. This
activity is discharged in the office space generally involves a range of domain-specific software
packages which process the raw files generated by the MS instruments. Literature Review was also
reported on one card, with a duration of three hours at a weekly frequency.

There was some consensus in the group around tasks that frustrate; these included activities that are
perceived to waste time, failed quality controls, instrumentation/equipment failures and external
dependencies such as engineer call-outs. MS systems are incredibly fragile and require regular,
preventative maintenance and cleaning. The task cards and discussion indicated that a large portion of
a scientist’s time is spent doing bench work, performing experimental steps using equipment and
consumables.

3.2. Supporting tool card findings

For the second exercise, 18 tool cards were completed and sorted into another five emergent themes.
Domain-Specific Analysis Software was reported on five cards, extending in duration from minutes
to days. These tools were reported as being employed frequently to weekly, occurring in the office.
Simple Bench Kit was reported on four cards, with a frequency of constant use in the “wet”-laboratory
location used for durations ranging from minutes to hours. Process Tracking was reported on four
cards with a frequency of constant use, durations between 1-20 minutes and with dual locations of office
and instrument room. Many participants reported using paper notebooks for process tracking. Flexibility
and portability were noted as important, positive aspects of paper notes and several participants reported
that the act of handwriting their notes assisted with memory retention. An interesting duality emerged
whereby many scientists keep a “scratch” notebook where rough notes and ideas were captured, which
were used to inform formal notes in a paper laboratory notebook, Microsoft Word document or
similar. Non-Domain Specific software, predominantly Microsoft Excel, was reported on four cards
with a frequency of constant use and duration ranging from minutes to hours. The positive attributes for
Microsoft Excel were reported as its ease-of-use, flexibility and wide range of accessibility to many
different stakeholders. The final tool noted was Internet Journals, used every day from minutes to
hours.

The flexibility and portability of paper notebooks will always be hard to compete with. The added value
of an ELN will come from opportunities which integrate additional, required support tools. The
flexibility of Microsoft Excel is tempered by the duplication required to repeat routine tasks. Arguably,
where a routine task is consistently performed in Microsoft Excel, e.g. calculating volume required for
desired solution concentration, it should be possible to reduce the work done by the user to initialise
this type of spreadsheet calculation. In addition to reducing the effort required from the individual, the
likelihood of an error occurring is also reduced. Tools like Microsoft Excel can be regarded as
unmanaged and therefore any audit trail is very much at the discretion of the user, dependent upon their
personal habits of file management such as organisation and backup. An additional opportunity to
reduce the scientist’s work, whilst simultaneously improving metadata capture, is to model all aspects
of their scientific process. If an experiment requires a specific reagent and this reagent is modelled in
the system, then there is no need for the scientist to manually note the batch numbers, etc. The user can
simply form a digital association with an existing stock item, using a pick list or even a barcode attached
to the physical stock item.

19

PPIG 2019 ppig.org

3.3. Priority sort findings

The final task of insertion card sorting stimulated a good deal of conversation. This was the final task
performed and provided a good opportunity for group discussion. The agreed upon final list of ordered
cards is presented in table 1, with accompanying remarks.

Position Term Remarks
1 Security No ambiguity or surprise that this is paramount
2 History/Audit Trail Immutability is important as “crossing.out” of mistakes needs
to be transparent and logged, much like a legal document.
3 . Calculations are done very frequently, on the fly at the bench.
Calculations
Smartphones are very frequently used as calculators.
4 Protocol Access to the software on mobile device described as essential.
. Would be ideal for dictating verbal notes, scanning barcodes,
(SOP in dev) . .
taking pictures etc.
5 Standard Operating
Procedure
6 Access to the software on mobile device described as essential.
Portability Would be ideal for dictating verbal notes, scanning barcodes,
taking pictures etc.
7 Location
Management
8 Notifications are perceived as being more of a hindrance than a
help. Very negative reaction to the idea of receiving
.) notifications, other than those from personal timers.
Notifications
Otherwise, a very useful exception for notifications would be
MS alerts for calibration/failures.
9 . Choosing which users can have access/share your experimental
Sharing

data is very useful.

Table 2 — Card Sort.

The term Standard Operating Procedure (SOP) was disambiguated with Protocol. Where a protocol
is an experimental design in-progress, which may be used numerous times, being tweaked and modified
as per the scientist's desires. In contrast, an SOP is regarded as a fixed experimental design that should
not be deviated from. In the context of academic research, a facility’s protocols are far more prevalent
than SOPs.

The term Notification evoked a strong negative response from the majority of participants. There was
a strong feeling that notifications were an unwelcome distraction and intrusion into their work. This
topic was explored further by discussing the extent to which participants tuned and managed
notifications they receive on their personal smartphones. For instance, Facebook notifications may be
turned off, SMS messages may be visible but not audible, and calls from certain numbers may have an
associated ringtone compared to unknown numbers. The range of notification configurations that
participants had on their smartphone’s was quite interesting and was used as an analogy for the ELN
app. The participants then spent some time thinking about information they would want to know about
in the form of a push notification. For example, if an instrument was booked for in a week’s time, but
has since developed a fault. Or, when a crucial reagent which is close to expiration. The important
lessons learned were that “push notifications” is predominantly an engineering term. When presented
to the user, it requires a few leaps to determine the value it may add to them. This illustrates that
potentially valuable features run the risk of being dismissed as it lacks an interpretable, obvious value
for those in the room.

20

PPIG 2019 ppig.org

4. Conclusions

The intention was to design an engagement exercise that could be delivered in one hour to a wide range
of stakeholders and deliver insight into the daily life of a laboratory-based scientist. This exercise
needed to answer simple questions relating to routine tasks and the technology employed to support
them. Despite there being an existing relationship between participants and participants being in
relatively small number, new information was certainly obtained. The run-time of the exercise was
possibly longer due to this familiarity within the group and various informal chat which was
interspersed. It is, however, important to establish a rapport with the participants to ensure a rich
dialogue. Moving forward, we intend to recruit further participants representative of the various
stakeholders in the described problem-domain. This will enable us to methodically broaden our
understanding if the rich network of stakeholders engaged in life science research.

5. References
Gill, P., Stewart, K., Treasure, E., & Chadwick, B. (2008). Methods of data collection in qualitative
research: interviews and focus groups. British dental journal, 204(6), 291.

Blandford, A. E. (2013). Semi-structured qualitative studies. Interaction Design Foundation.

Nakamura, J., & Csikszentmihalyi, M. (2014). The concept of flow. In Flow and the foundations of
positive psychology (pp. 239-263). Springer, Dordrecht.

Krosnick, J. A., & Fabrigar, L. R. (1997). Designing rating scales for effective measurement in
surveys. Survey measurement and process quality, 141-164.

21

PPIG 2019 ppig.org

Software design as multiple contrasting dialogues

Marian Petre André van der Hoek David Bowers
Open University University of California, Open University
m.petre@open.ac.uk Irvine David.bowers@open.ac.uk

andre@ics.uci.edu

Abstract

Software design is a complex pursuit — technically, cognitively, and socially. Understanding that
complexity — and managing it effectively — are ongoing challenges. Building on decades of empirical
research on professional software design, and on existing literature, this paper presents a new
characterization of software design that unpacks that complexity. The characterization drills down to
the core of design as a goal-driven activity and expresses it in terms of parallel contrasting dialogues:
(1) a dialogue between problem and solution, (2) a dialogue across application, interaction,
architecture, and implementation design, (3) a dialogue across the design cycle of analysis, synthesis,
and evaluation, (4) a dialogue between pragmatism and fitness-for-purpose, and (5) dialogues among
the team members engaged in the work of designing,. There is an inherent tension and interaction
between the dialogues, which emphasise different views. This is a mechanism by which effective
designers manage the complexity: each dialogue provides a focus (if not a simplification) for design
reasoning, but effective design maintains the interaction between dialogues and makes use of the
contrasts between them to achieve design insight. This characterisation helps to explain both why
existing software engineering methodology does not always work and what an effective ‘design
mindset’ is; the paper discusses some of the implications of viewing current software design practices
in this light.

1. Introduction
Software design is a complex pursuit — technically, cognitively, and socially.

We start with a definition of ‘design’: to decide upon a plan for a novel change in the world that, when
realized, satisfies stakeholders as fit for purpose. This is a useful definition that captures three key
characteristics: novel change, context in the world, and fitness for purpose.

The technical landscape changes continually, with shifts in technology, scale, and focus. The
technology is used to address problems in multiple domains, and to satisfy multiple stakeholders with
different expectations. Design is conducted in different social contexts, and at all stages of software
development, from greenfield design to product lines to maintenance.

Software developers tend to be clever people, but nevertheless often software is late, it doesn’t meet its
specification, it doesn’t work properly — why? And why, in contrast, are there nevertheless individuals
and teams with exceptional track records, who repeatedly deliver software on time, under budget,
working first time? In a landscape where technologies and infrastructures change orders of magnitude
faster than personnel, one thing remains of constant importance: the ability of developers to be great
designers. So what exactly sets expert software designers apart, and what enables them to achieve
repeated and enduring design and development success, regardless of the technology or infrastructure
of the moment?

The introduction of software engineering and methodology was historically a response to the ‘Software
Crisis’: the increasing need for increasingly complex software, without a population of good developers
at the ready to produce it [Haigh, 2010]. As Petre and Damian [2014] argued, software development
methodology is about systematising (process) and standardizing (process and outputs) in order to
achieve consistency and thereby provide leverage for communication, coordination, and, notionally,
quality. But consider: making things consistent is about making things conform to a norm. This is why
Damian and Petre argued that methodology can be a driver of mediocrity:

22

PPIG 2019 ppig.org

“If we assume that practitioners are competent, then what drives their decisions? What do
they take from methodology — when do they adopt it, and when do they decline it?
Methodology affords potentially valuable leverage:

structure

coordination (standardisation, consistency)

re-use

communication (common language)

sharing artefacts (especially in a potentially diverse context)

The importance of a specified methodology may be greater for less-experienced developers or
for organisations that haven’t already evolved their own mechanisms for these things.

There are times when developers interpret methodologies strictly:

e When they are first learning them.

e When they fit their context well.

e When the perceived or experienced benefits outweigh the costs.

There are also times when developers deviate from strict interpretation:

e To adapt to local needs.

e When the cost of adherence exceeds the perceived benefit.

e When the methodology (or its underpinning philosophy) is at odds with an effective
existing culture.

e When adherence is too constraining.” [Petre & Damian, 2014]

A useful analogy likens the conventional view of software development methodology to driving a
juggernaut down a highway. Methodology suppresses variation, because there is some value to be
realised from systematic constraint, consistency, convention, and standardization. It is a structured
process conceived in terms of driving toward a specified solution. However, when methodology is
embedded in a culture of strict adherence, it takes on a momentum of its own. Methodology is a support,
not a replacement, for critical thinking. And one of the things that distinguishes expert designers is just
that: persistent and effective critical design thinking.

So how do expert software designers manage the complexity? Instead of trying to manage complexity
through a fixed methodology, experts manage it by recognizing that different perspectives must be
maintained simultaneously. They use different methods and notations as lenses, changing them
deliberately, in order to address different perspectives on the design [Petre and Green, 1990]. We
characterise this management of perspectives in terms of design dialogues. These dialogues intersect,
contrast, and represent different, simultaneous perspectives on design — and accommodate shifts in the
design space as the design evolves. The dialogues may be within the designer’s mind, between a
designer and some external representation, or among colleagues. Doing so both clarifies why design is
complex and identifies key core considerations that designers keep in mind.

This characterisation is not wholly novel; it draws on and integrates ways that others have characterised
design. Itis, however, grounded in empirical studies of expert software designers and high-performing
teams which are presented elsewhere (an annotated bibliography is available at:
https://softwaredesigndecoded.wordpress.com/annotated-bibliography/).

The following sections introduce each of the dialogues in turn.

23

PPIG 2019 ppig.org

2. Problem - solution

Problem P Solution

Figure 1: The dialogue between problem and solution

In practice, software designers are presented with a “problem” — perhaps a design brief or presentation
or simple verbal cue or a problem ticket in an issue tracker — and are expected to generate a ‘design’,
the plan for change in the world that can be realized to make that change in the world happen (the
‘solution’). That ‘design’ may be realized as a schema, design document, UML diagram, mock-ups,
code, etc. — depending on the context.

However, design is typically not a straightforward transition from problem to solution; rather, there is
a dialogue that takes place between the design problem and the design solution. Dorst and Cross [2001]
articulated this co-evolution of problem and solution clearly, and Michael Jackson gave prominence to
this dialogue in his work, (particularly with Problem Frames [2001]), which stressed the importance of
understanding the problem in context and in depth, and identifying and decomposing the requirements,
in order to map them to a solution.

The design process is about managing the interplay between the problem and solution, as a ‘dialogue’
that emerges. This dialogue between problem and solution clearly includes both problem discovery and
understanding, and generating a solution, and each of those includes multiple tasks: information-
gathering, sense-making, synthesis.

Why is this dialogue necessary? Well, one could try to understand a design problem ad infinitum in the
abstract. But ‘the rubber tends to hit the road’ [Anderson, 1998] when designers consider solution and
problem in dialogue: new considerations emerge; gaps in the understanding of the problem emerge; the
problem may be re-imagined when priorities shift with deeper understanding. Hence Dorst and Cross’s
emphasis on “co-evolution”; as the understanding of the design problem evolves, so does the solution
space in which it is solved. The dialogue provides a basis for evaluating an evolving solution and its
fitness for purpose.

3. Levels of abstraction / focus

Application A
Interface |
Architecture A
Implementation |

Figure 2: The dialogue between levels of abstraction, that is, between application, interaction,
architecture, implementation.

A second dialogue takes place across different levels of abstraction and focus. Design is decision
making, involving many decisions of different kinds. Clearly, not all of these decisions are at the same
‘level’ of focus, and, actually, some of these decisions inform others. For example, if we decide that
the functionality of the system is to be fault-tolerant, that should inform the choice of platform we are
going to use. If we decide to use MVC (mode—view-controller) as the dominant architecture, that is
going to influence the data structures and APIs that we build. Etc.

Various characterisations of different levels of abstraction have been offered by other authors. We find
it useful to distinguish four high-level categories of design:

24

PPIG 2019 ppig.org

Application design: “what is the software to do?”

Interaction design: “how does one use the software to do that?” (i.e., interpreting the
functionality in terms of user interaction)

Architecture design: “how does it principally solve the problem?” (i.e., realization of both
application and interaction design into an overall software solution)

Implementation design: “what are all the details that help make it solve the problem?” (i.e.,
realization of application, interaction, and architecture design into actual code).

The reality is, just as designers engage in a dialogue between problem and solution, they engage in an
emerging dialogue among these four levels of design in an evolving solution space.

This emerging dialogue is not necessarily linear, from application to interaction to architecture to
implementation. It may shift from application to architecture and implementation, for instance, to see
if a certain piece of functionality can technically be implemented. Or it may move from interaction to
implementation, coding up a Ul independent of what the underlying architectural framework will be.
Sometimes, indeed, designers just have to try some things out. The understandings of each level are
imperfect, and they co-evolve as designers shift among the perspectives.

As designers continue to make decisions at all levels, decisions at some levels start constraining
decisions that can be made at other levels. For example: Ania could not design a report, because the
distributed database would be too slow in generating it, because data was distributed and the join was
too expensive. A level of inertia emerged from prior decisions. Sometimes, designers are in a position
where they can redo, but as more design decisions are made, they will be more constrained by what
they have already decided.

Sometimes designers will purposely co-design parts at different levels and actually be working on
multiple perspectives at the same time. For example, we often see Ul elements next to architecture
elements next to a set of functional requirements on a whiteboard, with the discussion rapidly moving
among all three of them, often juxtaposing a pair, and then making updates to each.

Sometimes, work at the implementation or architecture level allows designers to realize that new
opportunities arise at the application or interaction level (and similarly for other combinations of levels).
For example, Fred could be in the midst of coding, and realize that something that he thought could not
be built actually could, if he changes the code around, so he returns to the architecture and updates it —
and he may subsequently return to the application and ‘raise the bar’ in terms of the reliability that he
wants to achieve.

Those two dialogues — problem/solution and levels of abstraction - co-exist.

Figure 3: The first two dialogues co-exist and contrast.

25

PPIG 2019 ppig.org

4. The design cycle

ANALYZE EVALVATE

Figure 4: The design cycle.
[Figure by Yen Quach, used with permission.]

Another fundamental concept in design work is the design cycle: analyze -> synthesize -> evaluate
[e.g., Lawson, 1997, p. 37]. This can be thought of as an iterative process — or as a set of critical thinking
functions or skills — or as another form of dialogue, whose focus shifts in an iterative cycle (and in
cycles within cycles), with each focus potentially informing each of the others.

The dialogues between problem and solution, and between the levels of abstraction and focus, occur
within iterations of the design cycle dialogue, with the input from one dialogue informing the other.

Figure 5: Overlay of the three dialogues so far.

5. Pragmatism and fitness for purpose

synthesiz
pragmatis

Figure 6. Fitness for purpose / pragmatism

26

PPIG 2019 ppig.org

Another crucial conversation takes place: the dialogue of fitness for purpose playing off with
pragmatism. It is the dialogue that connects the other two dialogues to ‘reality’ — toward grounded
decision making.

Design involves challenges that ultimately lead to the need for satisficing and making trade-offs. We
cannot simply make the perfect design solution under given limitations on budget, time and effort. So,
we need to engage in a conversation of when ‘good enough is good enough’, which is a conversation
that plays out along the issue of desirability versus feasibility. This represents the trade-off between
what is ideal from the perspective of the audience and other stakeholders, and what we can actually in
the end design and build within the budget, time, effort constraints that we are given. This is where the
designer ends up being the pragmatist, the maker of choices of ‘what is in” and ‘what is out’ and ‘why’.

The fitness-for-purpose/pragmatism dialogue is at the balance point between the well-informed
understanding of the problem and the considered choices about what is prioritised in the solution. It
takes account of the problem and solution contexts: of the intended purpose, audience, environment-of-
use, and of practical constraints. It does not anticipate all possible interpretations and uses; rather it
addresses the match between the intended purpose and the feasible solution (and so it relates to the first
dialogue — between problem and solution).

6. Dialogues among team members

Figure 7: The contrasting design dialogues occur in the context of a design team — and its
discussions.

Of course, all of this happens in the context of a design team. The design cycle of analyse - synthesize
- evaluate is not only manifest in how one designer thinks in the moment, but it plays an equally
important role in how we organize design activities in a broader social design context. It might start at
a design meeting at a whiteboard. That conversation may have an overriding design cycle — with smaller
design cycles addressing sub-problems or concerns that arise as part of detailed thinking or addressing
the concrete ideas and decisions that contribute to progress. That meeting might be part of a sequence
of meetings that constitute an over-arching design process. For example, those meetings might be part
of an Agile sprint of two weeks. That spring might be part of a larger set of sprints within a given
release cycle. And so on.

To sum all of this up: We engage repeatedly the design cycle, and engage in iterations of cycles, and
in cycles within cycles. We do this at multiple levels. In doing so, we are engaging in different design
dialogues: bridging between problem and solution; considering decisions at four different levels:
application, interaction, architecture, and implementation. We integrate these dialogues in terms of the

27

PPIG 2019 ppig.org

balancing dialogue - about ‘fitness for purpose’ and pragmatism. This in terms of trade-offs between
desirability and feasibility.

It is no surprise, then, that the software development community — organizations, developers,
researchers — has tried to impose structure on it. Why? To simplify, so that designers and teams of
designers do not to have to think about everything at once. And yet, maintaining awareness of all the
different factors at play is characteristic of expert designers.

Hence this quotation from Nigel Cross: “Following a reasonably structured process seems to lead to
greater design success. However, rigid, over-structured approaches do not appear to be successful. The
key seems to flexibility of approach, which comes from a rather sophisticated understanding of process
strategy and its control...” [Cross, 2003, p. 116] A structured process helps, but not if it’s rigid, and only
with sophisticated understanding, including opportunism and modal shifts.

Cross is indicating what we refer to as the ‘design mindset” — which combines critical thinking, with an
appropriate toolset of methods and analytics, and design thinking, with an openness to opportunity and
change that drives innovation. Edward Glaser, in his seminal work on critical thinking and education
[1941], defined critical thinking as:

“The ability to think critically ... involves three things: (1) an attitude of being disposed to
consider in a thoughtful way the problems and subjects that come within the range of one's
experiences, (2) knowledge of the methods of logical inquiry and reasoning, and (3) some skill
in applying those methods. Critical thinking calls for a persistent effort to examine any belief
or supposed form of knowledge in the light of the evidence that supports it and the further
conclusions to which it tends.”

This contrasts — and interacts — well with Nigel Cross’s characterisation of design thinking:

13

.. the following conclusions can be drawn on the nature of ‘Design with a capital D’:

e The central concern of Design is ‘the conception and realisation of new things’.

e It encompasses the appreciation of ‘material culture’ and the application of ‘the arts of
planning, inventing, making and doing’.

e Atits core is the ‘language’ of ‘modelling’; it is possible to develop students’ aptitudes in
this ‘language’, equivalent to aptitudes in the ‘language’ of the sciences - numeracy - and
the ‘language’ of humanities - literacy.

e Design has its own distinct ‘things to know, ways of knowing them, and ways of finding
out about them’.” [Cross, 1982, p. 221]

Together, the two capture the both the critical and the creative aspects of the ‘design mindset’.

There is no ‘ideal’ process — although there is a need for structure. The simplifications and idealisations
help and may provide focus, but the ‘reality’ of the design process is that it is messy, with lots to consider
and juggle. The multiple contrasting dialogues (with associated methods and notations) allow expert
designers to manage focus while maintaining awareness.

7. Summary - and invitation to discuss

There is an inherent tension and interaction between these dialogues, which emphasise different views
on a (changing) design space. This is a mechanism by which effective designers manage the
complexity: each dialogue provides a focus (if not a simplification) for design reasoning, but effective
design maintains the interaction between dialogues and makes use of the contrasts between them to
achieve design insight.

This characterisation helps to explain both why existing software engineering methodology does not
always work and emphasises the importance of an effective ‘design mindset’ — actively critical, with
openness to change and opportunity. In expert practice, that mindset — and the dialogues — are supported
by socially embedded and reinforced practices that help promote creativity and mitigate bias [van der
Hoek and Petre, 2016].

28

PPIG 2019 ppig.org

This paper offers this characterisation as a proposition that is grounded in literature in the more general
field of design research and in evidence from studies of expert software designers and high-performing
teams (although we don’t present the evidence here). Our purpose is to open a discussion about the
proposition, and its implications for developing software design tools, practice, and education.

References:

Anderson, B. (1998) Where the Rubber Hits the Road: Notes on the Deployment Problem In Workplace Studies. Xerox
PARC Technical Report EPC-1998-108, later published in: Paul Luff, Jon Hindmarsh and Christian Heath (eds.),
Workplace Studies: Recovering Work Practice and Informing System Design, Cambridge University Press.

Cross, N. (2003) Designerly Ways of Knowing. Birkhduser Architecture.

Cross, N. (1982) Designerly Ways of Knowing. Design Studies, 3 (4), October, 221-227

Dorst, K. and N. (2001). Creativity in the design process: co-evolution of problem—solution. Design Studies, 22(5), 425—437.

Glaser, E.M. (1941) An Experiment in the Development of Critical Thinking, Teacher’s College, Columbia University.

Haigh,T. (2010) Dijkstra’s Crisis: The End of Algol and Beginning of Software Engineering, 1968-72,
http://www.tomandmaria.com/tom/Writing/DijkstrasCrisis_LeidenDRAFT.pdf [accessed 13 May 2014]

Jackson, M. (2000) Problem Frames: Analysing & Structuring Software Development Problems. ACM Press / Addison
Wesley Professional, ISBN 978-0201596274.

Lawson, B. (1997) How Designers Think: The Design Process Demystified, Third Edition. Architectural Press

Petre, M., and Damian, D. (2014) Methodology and culture: drivers of mediocrity in software engineering? FSE 2014
(Visions and challenges track).

Petre, M., and Green, T.R.G. (1990) Where to draw the line with text: some claims by logic designers about graphics in
notation. In: (D. Diaper et al., Eds.), Human-Computer Interaction—Interact 90 . 1IFIP, Elsevier Science

Publishers (North-Holland), 463-468.

van der Hoek, A., and Petre, M. (2016) Software Design Decoded. MIT Press.

29

PPIG 2019 ppig.org

Undergraduate students’ learning approaches
and learning to program.

Melanie Coles Keith Phalp
Bournemouth University Bournemouth University
mcoles@bournemouth.ac.uk kphalp@bournemouth.ac.uk

Abstract
This study uses the Revised Two Factor Study Process Questionnaire (R-SPQ-2F) to explore

undergraduate students’ approaches learning to program. The expectation being that students using
deep learning approaches will gain higher programming grades than students who use surface
approaches. There is strong evidence to support the hypothesis that deep approaches are related to
higher grade outcomes, and surface approaches to lower. There is also strong evidence to support the
hypothesis that students who ‘hate’ programming do less well than those that do not. There is
however, no evidence that previous programming experience has an impact upon the student
programming grade.

1. Introduction
Discussions about the difficulties involved in learning to program and the best way to teach

programming have been part of the research field for decades, with educators reporting difficulties
and failure, and dropout rates being high for programming courses (Bennedsen & Caspersen, 2007;
Dijkstra, 1982; Hare, 2013; Jenkins, 2002; Mavaddat, 1976; Robins, Rountree, & Rountree, 2003;
Simon et al., 2009; Watson & Li, 2014). Recognition that computer programming appears difficult
for a high percentage of students, that many students settle for a pass grade, that students grasp
programming principles (if ever) at widely varying times and that a very small percentage of students
perform extremely well and demonstrate a keen interest in computing, have been reported since
programming teaching began in the 60s (Mavaddat, 1976).

If programming is difficult to learn then a corollary of this is a higher failure rate for programming
than for other undergraduate subjects. It is an often cited outcome that learning to program is
notoriously difficult (Bornat, Dehnadi et al. 2008; Jenkins 2002, Robins et al 2003) however only a
few papers fully explore the suggested higher failure rate and attempt to develop evidence to support
this supposition (Bennedsen & Caspersen, 2007; Watson & Li, 2014). The findings of both papers
suggest the majority of pass rates are in the range 50-80%, with an average of 67.7%.

Learning to programming involves a range of related, but also contentious elements, all of which need
to align should a student hope to do well. Jenkins identified a number of factors that relate
specifically to the domain of programming and what makes it difficult to learn rather than to the more
commonly explored student aptitude for learning to program. Such factors involve the multiple skills
and processes required, the language used to teach the students, the educational novelty of students
learning to program, the student interest, the image and the pace of teaching (Jenkins, 2002). Many
factors intertwine and have an impact upon the student individually: motivation, previous experience,
time spent programming, aptitude for programming and student attendance. Environmental factors
such as the teaching style, the programming language used, the assessment mechanism and a range of
pedagogical interventions can also influence student performance. This paper focuses on and explores
students’ motivation and learning approaches when studying programming, and also includes
students’ emotional response to programming and their previous background.

30

PPIG 2019 ppig.org

2. Background
Understanding students’ approaches to learning and exploring how such approaches relate to the

module outcomes for students is clearly valuable information. If we can understand and impact upon
students’ motivation, can we influence students’ success rates? Many interventions used in the
teaching of programming may work because they alter the students’ motivation and even that an
intervention itself is taking place, may alter the students’ motivation.

2.1 Motivation and Learning Approaches

Students’ motivation towards their studies seems an obvious factor that could impact upon their
outcomes on any module regardless of subject. If a student is motivated to succeed there is more
likelihood of them achieving that success. However could motivation play a greater role in students
learning to program than it does in other courses? Programming needs persistence and practice,
students must be motivated to spend time practicing, even if there is no explicit assignment (Jenkins,
2001). The combination of students’ motives to learn and the strategy they use determines their
learning approach (Everaert, Opdecam, & Maussen, 2017).

Motivation is an abstract concept that is difficult to measure in any meaningful way (Jenkins, 2001),
behaviour can be observed or questions can be asked but the true motivation behind behaviour is
never certain. Jenkins results showed that the main motivators for students were firstly aspiration, but
closely followed by the desire to learn, both classed as extrinsically motivated, rather than the intrinsic
motivation of interest in the subject itself. There was little evidence from any of Jenkins’ questions
that students were interested in programming, with almost 50% of students only doing programming
because it was compulsory — something that he cites (and is probably backed up by most
programming instructors) as a depressing observation (Jenkins 2001).

Students who are more intrinsically motivated are found to perform better, with higher levels of
intrinsic motivation leading to higher programming results (Bergin and Reilly 2005). Students with
intrinsic motivation usually undertook to learn programming in their own time, had prior
programming experience and displayed higher capabilities. Such students engaged in programming
meaningfully, showed persistence in playing with code and would apply what they had learnt to real
world problems, compared to others who approached their work in a more trial-and-error or impulsive
fashion (Carbone, Hurst, Mitchell, & Gunstone, 2009). Bergin and Reilly suggest that extrinsic
motivation does not appear to impact upon results, so suggesting that the use of grades, rewards or
student comparisons are not useful for motivating students and that educator efforts should focus on
improving students intrinsic motivation (Bergin and Reilly 2005).

Carbone et al found that students could experience a change in motivation, they could start off
intrinsically motivated but then experience a change so becoming extrinsically motivated and vice-
versa. This change in motivation could be triggered by a range of factors including: no reward for
extra effort, encountering difficulties they could not resolve, perceived waste of time on tasks, and
lack of technical skills. The technical skills were further catalogued into: an inability to identify
problems, ineffective tinkering, inability to break programming problem down, lack of problem
solving skills, and limited debugging skills. Carbone et al also identified some personal skills that
impacted upon students’ motivation: poor time management, independence (over reliance on others)
and attitude toward programming errors (Carbone et al., 2009). It is interesting how changeable and
sensitive motivation appears to be to external factors, such that reward (in the form of a grade) could
alter a student’s motivation (in both directions), how undertaking additional effort and perceiving no
reward (again from the marker) could impact negatively on a student’s motivation.

31

PPIG 2019 ppig.org

2.2 Emotion

The student’s emotional response to learning to program has not received much research attention
(Chetty & Van der Westhuizen, 2013) possibly due to the scientific, engineering domain and the
stereotypical lack of emotion in these subject area. The stereotype associated with the logical
approach, for example Mr Spock from Star Trek, seems to exist in isolation from emotion, yet it is
evident from interacting with students learning to program that they experience a range of strong
emotions. They ‘“hate programming”, they “love programming”, they find it “frustrating”,
“challenging”, “rewarding” all of which indicate a strong emotional response. It would seem an
obvious corollary that such emotion would have an impact upon the student’s motivation and so their
programming performance. More successful students appear to have a more positive view of
programming (Simon et al., 2009), and whilst this does seem evident the further question maybe - is it
the higher grades that promote the liking or the liking that promotes the higher grades?

Simon et al in a survey of 697 students enrolled in seven courses at five institutions found that nearly
half (48%) of the 2553 comments received where classified as positive. The two most positive
categories listed by students were using the words fun/cool or interesting/rewarding. Nearly a third of
the comments made were negative (32%), with the most often response being hard/difficult and
Sfrustrating/stressful (Simon et al., 2009). Does this third that make negative comments go in some
way to explain the high failure rate of programming undergraduates; is there a link between this
negative emotional response and a lower grade?

Many of my students say things like programming is “tough but rewarding”, “very difficult’, “too
complicated” and the one I have heard the most often “I hate programming”. Emotions can
profoundly affect students’ thoughts, motivation and action, positive emotions such as enjoyment of
learning may generally enhance academic motivation. Although negative emotions are not always
detrimental, for example task-related anger may trigger motivation to overcome obstacles (Pekrun,
Goetz, & Titz, 2002).

2.3 Previous background
One of the most important variables affecting general university performance is past academic results

(Alam, Billah, & Alam, 2014). Byrne and Lyons found some significance both in student’s
mathematics and science results from their Irish Leaving Certificate and their programming
examination score, although no such significance was found with English or Foreign Language results
(Byrne & Lyons, 2001). The higher grades in both maths and science correlated with students
programming scores. Other studies have also found that a maths background correlates with students
programming performance (Cantwell-Wilson & Shrock, 2001). So is it that students who have an
aptitude for science and maths also have an aptitude for programming or is it that the students who
undertook the maths and science (an option) were better prepared to succeed at programming?

What about students’ previous exposure to programming, a logical conclusion is that students who
could already program would do better than those who had not studied it before. Research does seem
to support his suggestion, that experience with programming does benefit students (Hagan &
Markham, 2000), but the specific language experienced may be the important factor (de Raadt,
Hamilton, Lister, & Tutty, 2005).

32

PPIG 2019 ppig.org

3. Hypotheses
Following on from the initial literature review four main hypotheses were developed:

H1: Students with a deep approach to learning will gain higher grades in programming than
students with a surface approach

H2: Students with a surface approach to learning will gain lower grades than students with a
deep approach

H3: Students who can already program or who have studied a programming before starting
university will gain higher grades than students who have not.

H4: Students who have negative emotions towards programming will gain lower grades than
students who do not.

4. Methodology

4.1 Instrument Used
The Revised Two Factor Study Process Questionnaire (R-SPQ-2F) was used, this questionnaire is

suitable for use to evaluate how students learn or how they approach learning. The revised version of
the questionnaire has two main scales Deep Approach (DA) and Surface Approach (SA) with four
sub-scales: Deep Motive (DM), Deep Strategy (DS), Surface Motive (SM) and Surface Strategy (SS),
shown in the Table 1 (Biggs, Kember, & Leung, 2001; de Raadt et al., 2005). Students adopting a
surface approach build their view from facts and details of activities with the aim of reproducing
material rather than making theoretical connections, while those adopting a deep learning approach
seek to understand the material they are studying.

Surface Deep

fear of failure, emphasis is | intrinsic interest,
Motive external, from demands of | emphasis is internal
the assessment

narrow target, rote learn maximise meaning

Strategy memorises information relates knowledge

Table 1: From Biggs (2001) and de Raadt (2005)

R-SPQ-2F was used, but rather than the generic form it was modified to apply specifically to learning
to programming, thus

1. 1 find that at times studying gives me a feeling of deep personal satisfaction
becomes

1. 1 find that at times studying programming gives me a feeling of deep personal satisfaction.
and

7. 1 do not find my course very interesting so I keep my work to the minimum.
becomes

7. I do not find my programming unit very interesting so I keep my work to the minimum.

This was to focus the questionnaire specifically on programming rather than on general strategies. As
the strategies used would be expected to differ for different disciplines studied. Additional questions
were also added to the questionnaire to explore students’ previous experience with programming

1 can already program

1 have completed a programming course (at school or college)

33

PPIG 2019 ppig.org

A further question was added to explore students’ general emotional response to programming;:
1 hate programming.

This question was used as it is the most used by the students themselves.

All questions had a five point Likert Scale response, using alpha characters:

A — this item is never or only rarely true of me

B — this item is sometimes true of me

C — this item is true of me about half the time

D — this item is frequently true of me

E — this item is always or almost always true of me

4.2 Process
The questionnaires were issued to all students present in lectures and seminars on third week of term,

so students had only had three weeks of teaching. There were 293 students on the course, of these

- 36 students did not complete both the coursework and the exam, for a variety of reasons and
these were removed from the study

- 121 students completed the questionnaire and both the coursework and the exam

- 136 did not complete the questionnaire, or did not complete it fully (no signature or not all
questions answered). Some students were present but elected not to complete it, others were
not present.

The students all undertook the same module (unit in our terminology); Principles of Programming
(PoP), which is an introductory programming unit, taught in the first semester of the students’ first
year, no previous programming knowledge was assumed. The students had a two hour lecture and a
two hour lab session each week, for 12 weeks. These lectures covered a foundational programming
topic, starting with variables and data manipulation, then selection, loops, file reading and writing and
finishing with sorting and searching. For the coursework students had to upload multiple tasks every
other week (four different sets of tasks), and the end of the 12 week block there was an exam. The
four pieces of coursework together give 50%, with the earlier ones being weighted less (5%, 5%, 20%
and 20%) of the overall unit total and the exam gives the other 50%.

All questionnaires were then put away until after the module had finished.

4.3 Threats to validity
Some students either elected to not complete the questionnaires or were not present when the

questionnaires were issued and such self-selection may have an impact upon findings. Was there a
difference in achievement between the students who completed the questionnaire and those that did
not? The analysis can be seen in table 2 below.

Coursework Exam Unit Total
Completed 71.0 71.9 71.4
Did not complete | 60.6 61.6 61.1

Table 2: Unit Averages

There was a difference for both coursework and exam scores individually and also obviously for the
unit total. This may indicate the difference in attendance vs non-attendance in the unit outcomes for
the students, those not attending are already engaging in behaviour that may impact negatively on
their grades. Students who were present and elected to not complete the questionnaire may be those
less interested in the academic discipline and helping with research, or possibly more concerned about
the relationship of completing the questionnaire to their programming marks.

34

PPIG 2019 ppig.org

As students are self-reporting what they say their approach to learning is and what it really is may
differ. Also the fact that they were completing the research study for one of their unit tutors may
impact upon their responses to questions, they may have responded as they thought was ‘best’, even
though students were assured the questionnaires would not be looked at until after they had finished
the unit.

5. Results
The first exploration of the results was to correlate the response to the overall unit average as can be
seen in Table 3 below.

Approach Correlation | Significance
deep approach 0.3374 | .000154
surface approach -0.3584 | .000055
I could already program before starting university 0.1432 | .11713
I had completed a programming course before starting university 0.1077 | .239664
I hate programming -0.3269 | .000263

Table 3: Correlation of questionnaire answers to unit total

So the deep approach is positively and significantly correlated with the student’s unit total and surface
approach is negatively correlated, both of which support the H1 and H2 hypotheses. However what is
interesting is that neither the students’ (reported) ability to be able to program or their having
previously studied programming had a significant correlation with the unit total. So not supporting
the H3 hypothesis. Students’ emotional response, the “I hate programming” question, is also
negatively correlated with the unit total, so supporting hypothesis H4.

5.1 Further Analysis
A more detailed analysis of the data was explored, examining the relationship between each of the

sub-scales and the unit assessment element, i.e. either coursework or exam; this can be seen in Table 4
below.

Approach Against Correlation | Significance

Difference between deep - surface unit total 0.3968 | .00001

deep motive coursework 0.3592 | .000052
deep motive exam 0.3139 | .000455
deep motive unit total 0.3760 | .000021
deep strategy coursework 0.1569 | .085679
deep strategy exam 0.2245 | .013303
deep strategy unit total 0.2165 | .017073
surface motive coursework -0.2636 | .003563
surface motive exam -0.3307 | .000219
surface motive unit total -0.3359 | .000173
surface strategy coursework -0.2142 | .018426
surface strategy exam -0.2886 | .001359
surface strategy unit total -0.2849 | .001595

Table 4 : Correlation of sub-elements to unit assessment

As the questions for both the deep and the surfaces approaches could all be scored at either A or E, the
difference between the scores was calculated (DA minus SA) to see if the difference would also

35

PPIG 2019 ppig.org

correlate to student outcomes. As can be seen in Table 4 above this proved significant, so whilst
some students may just have been entering As and Bs almost at random there was evidence that
students with a high deep approach score and low surface approach score would have improved
outcomes in programme.

Looking at the different groups of questions that make up the deep or surface approaches there are
more nuanced results. It is interesting to note that there is strong evidence for a relationship between
deep motive and coursework, exam and unit total outcomes, which are all significant. However the
correlation between deep strategy and coursework is not statistically significant, and there is weaker
significance for deep strategy and both exam and unit total. Also of note is that there is only weak
evidence for surface strategy to coursework.

6. Discussion

6.1 Deep Approaches
So clearly having an intrinsic interest in programming improves outcomes for students on an

undergraduate programming course. Although it could be that those attending and so filling in the
questionnaire were more likely to be those interested in programming. However the deep strategies
employed appear to have less of an impact upon the outcomes for students. Deep strategy: the five
questions that make up this group are:

- Ifind that | have to do enough work on a programming topic so that | can form my own
conclusions before | am satisfied.

- | find most new programming topics interesting and often spend extra time trying to obtain
more information about them.

- | test myself on important programming topics until | understand them completely.

- Ispend a lot of my free time finding out more about interesting programming topics which
have been discussed in different classes.

- I make a point of looking at most of the suggested readings that go with the programming
lectures.

Is it just that such strategies do not apply entirely to programming as a subject? Whilst the last
question, following up on reading, is possibly not high on a programmers list of strategies as the staff,
the internet and other students are possibly more likely to be used as a source of support. The other
four questions are all stereotypical behaviours associated with the archetypal programmer: writing
extra code and playing with code until you understand it, writing code for fun in spare time. It is
interesting that these results suggest that such behaviour is not important to university outcomes for
coursework and exams in programming.

6.2 Surface Strategy
Surface strategy when applied to coursework does not appear to be negatively correlated. The five
questions that make up this group are:

- lonly study seriously what’s given out in class or in the course outlines.

- Ilearn some things by rote, going over and over them until | know them by heart even if | do
not understand them.

- Il generally restrict my programming study to what is specifically set as | think it is
unnecessary to do anything extra.

- | believe that lecturers shouldn’t expect students to spend significant amounts of time
studying programming material everyone knows won’t be examined.

- I find the best way to pass examinations is to try to remember answers to likely questions.

36

PPIG 2019 ppig.org

Such approaches clearly do not have an impact on the quality of the coursework. The coursework
submitted by students does focus on a particular topic being covered that week — so for example of
writing loops, potentially the assessment used does not suffer when surface approaches are used?
Strategy as applied to such coursework would not particularly suffer from a surface approach as once
done the student moves onto the next task, that is they become task focused.

6.3 Previous Experience
Previous experience does not impact on unit outcomes, this suggests that approach to study is more

important than previous experiences. Previous experience may also have an impact upon both
learning approaches and upon emotion before starting their undergraduate course. Many students
have anecdotally reported poor experiences of programming at school or college, therefore previous
experience could also negatively impact upon results.

6.4 | hate programming

Possibly it is of no surprise that emotional response is negatively correlated with performance. The
questionnaire was distributed early in the unit, therefore the response cannot be related to students’
coursework grades as they had not yet been returned or potentially to the perceived difficulty of the
unit as students do tend to be comfortable with the concept for the first few weeks of programming.
However students who had met programming at school previously and who had struggled with it may
already have a negative emotional response to programming that does impact upon their unit grades.

6.5 Relationship to Other Subjects
Whilst the questionnaire was focused on student approaches to programming, and there is evidence

that the approaches adopted by students do impact upon their programming grades, the obvious
further question is ... do these approaches apply to all subjects?

Approach Against Correlation | Significance
deep approach Application of Programming 0.3182 0.00045
surface approach Application of Programming -0.3230 0.00034
deep approach Networks and Cyber Security 0.1611 0.08157
surface approach Networks and Cyber Security -0.3481 0.00011
deep approach Systems Analysis and Design 0.1107 0.23315
surface approach Systems Analysis and Design -0.3053 0.00078
deep approach Computer Fundamentals 0.1826 0.04781
surface approach Computer Fundamentals -0.2875 0.00163
deep approach Data and Databases 0.1830 0.04734
surface approach Data and Databases -0.2392 0.00915

Table 5: Correlation of questionnaire answers to other unit totals

There is still strong evidence for deep approaches correlating positively to the second semester
programming unit, there is only weak or no evidence for deep approaches correlating to other
subjects. Not necessarily to be unexpected as the questionnaire was specifically focused on
programming. However what is interesting is the strong evidence that surface approaches negatively
relate to all unit outcomes. This suggests that students who use surface approaches for programming
use such strategies for all units, and that this has an impact upon their success at university.

37

PPIG 2019 ppig.org

7. Conclusion
So whilst there is strong evidence for H1, H2 and H4 from the analysis of the questionnaires, there is
no evidence to support H3. This does lead to further questions:

- Is there a relationship between previous experiences of programming and emotional
response?

- How can students’ approaches to learning be impacted by the tutors?

- Can different assessment strategies impact upon students’ approaches?

- Could explicit discussion of students’ approaches help them adopt more useful strategies?

Motivation and the learning approaches used by students do appear to impact upon their success rates
on an introductory programming module. Deep approaches have a positive impact specifically on
programming grades, there is less evidence for other subjects. Surface approaches have a negative
impact upon grades for programming and also extend across other subjects, evidencing that such
strategies are to the detriment of student performance.

8. References

Alam, M. M., Billah, M. A., & Alam, M. S. (2014). Factors Affecting Academic Performance of
Undergraduate Students at International Islamic University Chittagong (IIUC), Bangladesh.
Journal of Education and Practice, Vol.5(No.39).

Bennedsen, J., & Caspersen, M. E. (2007). Failure Rates in Introductory Programming. The SIGCSE
Bulletin, Volume 39(Number 2).

Bergin, S. and R. Reilly (2005). The influence of motivation and comfort-level on learning to
program. Psychology of Programming Interest Group (PPIG 17). Sussex University.

Biggs, J.,, Kember, D., & Leung, D.Y.P. (2001). The Revised Two Factor Study Process
Questionnaire: R-SPQ-2F. British Journal of Educational Psychology, 71, 133-149.

Byme, P., & Lyons, G. (2001). The Effect of Student Attributes on Success in Programming. Paper
presented at the ITiCSE, Canterbury, UK.

Cantwell-Wilson , B., & Shrock, S. (2001). Contributing to Success in an Introductory Computer
Science Course: A Study of Twelve Factors Paper presented at the ACM SIGCSE 2001,
Charlotte, NC, USA.

Carbone, A., Hurst, J., Mitchell, 1., & Gunstone, D. (2009). An Exploration of Internal Factors
Influencing Student Learning of Programming. Paper presented at the Australasian
Computing Education Conference (ACE 2009), Wellington, New Zealand.

Chetty, J., & Van der Westhuizen, D. (2013). " I hate programming " and Other Oscillating Emotions
Experienced by Novice Students Learning Computer Programming. Paper presented at the
EdMedia: World Conference on Educational Media and Technology, Victoria, Canada.

de Raadt, M., Hamilton, M., Lister, R., & Tutty, J. (2005). Approaches to learning in computer
programming students and their effect on success. Paper presented at the Higher education in
a changing world Research and development in higher education, Sydney, Australia.

Dijkstra, E. W. (1982). How do we tell truths that might hurt? ACM SIGPLAN Notices, 17(5), 13-15.
doi:10.1145/947923.947924

Everaert, P., Opdecam, E., & Maussen, S. (2017). The relationship between motivation, learning
approaches, academic performance and time spent. Accounting Education.
doi:10.1080/09639284.2016.1274911

38

PPIG 2019 ppig.org

Hagan, D., & Markham, S. (2000). Does It Help to Have Some Programming Experience Before
Beginning a Computing Degree Program? Paper presented at the ITiCSE 2000, Helsinki,
Finland

Hare, B. K. (2013). Classroom Interventions To Reduce Failure & Withdrawal In Csl — A Field
Report Journal of Computing Sciences in Colleges Volume 28(Issue 5).

Hawi, N. (2010). Causal attributions of success and failure made by undergraduate students in an
introductory-level computer programming course. Computers & Education, Volume 54.

Jenkins, T. (2001). The Motivation of Students Programming. Paper presented at the ITICSE,
Canterbury, UK.

Jenkins, T. (2002). On the Difficulty of Learning to Program. Paper presented at the LTSN-ICS
Conference, Loughborough University.

Mavaddat, F. (1976). An experiment in teaching programming languages. ACM SIGCSE Bulletin,
8(2), 45-59. doi:10.1145/382220.382470

Pekrun, R., Goetz, T., & Titz, W. (2002). Academic Emotions in Students’ Self-Regulated Learning
and Achievement: A Program of Qualitative and Quantitative Research. Educational
Psychologist.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and Teaching Programming: A Review and
Discussion. Computer Science Education, Vol 13(No 2.), p 137-172.

Simon, B., Hanks, B., McCauley, R., Morrison, B., Murphy, L., & Zander, C. (2009). For me,
programming is ... Paper presented at the ICER '09, Berkeley, California.

Watson, C., & Li, F.W.B. (2014, 06/21/2014). Failure rates in introductory programming revisited.
Paper presented at the Proceedings of the 2014 conference on Innovation & technology in
computer science education.

39

PPIG 2019 ppig.org

Parlez-vous Java? Bonjour La Monde != Hello World: Barriers to Programming
Language Acquisition for Non-Native English Speakers

Brett A. Becker
School of Computer Science
University College Dublin
brett.becker@ucd.ie

Abstract

Learning computer programming could and should be made easier. It is widely accepted that learning
to program is fraught with challenges and the literature is not short of work that supports this view.
There are many studies related to programming difficulties, barriers, and misconceptions as well as
topics such as what language is best for learning and what techniques for teaching programming are
most effective. It is often overlooked that globally, the majority of programming students are non-native
English speakers. In addition to the barriers faced by all programming students, these non-native English
speakers face a substantial class of additional barriers. This is because English is often the language upon
which programming languages and their documentation are based, as well as the language of instruction
and other environmental conditions.

There have been relatively few studies on the impact of human language on learning programming and
the potential barriers this may cause. These barriers also span a wider range than may be obvious
upon initial inspection. To complicate matters, natural language issues can add an additional layer of
complexity to more universal barriers to learning. For instance it is well known that programming error
messages present most novice programmers with difficulty. When these messages are in English as they
most often are, any difficulties interpreting them and using them to produce error-free code are most
likely compounded for non-native English speakers.

Particularly in a time when broadening participation in computing is a primary objective, the community
can no longer afford to overlook the unique barriers faced by non-native English speakers who want to
learn to program. This paper discusses these barriers, presents some questions to guide future research,
and outlines the author’s work-in-progress in the area.

1. Introduction

There have been few studies on the impact of human language on learning programming (Guo, 2018)
and the challenges faced by non-native English speakers when learning how to program are poorly
represented in the literature (Becker, 2015). This does not mean that it is not a very important area
for research. It is likely that there are far fewer programmers whose native language is English than
those who are non-native English speakers based on the fact that 95% of the world’s population does
not have English as their first language (Guo, 2018). However almost all programming languages are
designed using English (Veerasamy & Shillabeer, 2014) and most likely the majority of resources and
documentation are as well (Guo, 2018; Li & Prasad, 2005). These points alone provide significant
justification to studying the differences between how native and non-native English speakers program,
and learn to program.

It is also important to note that the treatment of programming languages as similar to natural languages is
being discussed and acted upon by many, possibly more outside academic and educational communities
than within. It seems that many believe that learning programming is more important than learning
foreign natural languages and importantly there is also a reported difference in the degree to which
people of different genders believe this.! There are also several political movements underway in the

Mttps://www.teachingpersonnel.com/news/people-would-rather-learn-coding-than-a
—foreign-language—-62462135356

40

PPIG 2019 ppig.org

United States where programming languages may be categorised as a foreign language in curricula® and
counted as foreign languages for college entrance requirements®. Less than two years ago Tim Cook
remarked “If I were a French student and I were 10 years old, I think it would be more important to
learn coding than English. I'm not telling people not to learn English — but this is a language that you
can [use to] express yourself to 7 billion people in the world.”* When global technology leaders talk
people listen, and there is a serious issue with this message — it implies that English language ability
and learning programming are not intricately related. This view neglects to address the fact that there is
substantial evidence — some of it bordering on common sense — that those who don’t speak English can
be at a real disadvantage when it comes to learning programming compared to native English speakers.

It is not a goal of this paper to provide a comprehensive view of the work on how non-native English
speakers learn to program. It is a goal of this paper to set out a discussion on some of the barriers that
these students face to inform future work on overcoming these barriers. We also pose some questions
that may guide future research on the relationship between programming and natural languages and on
the barriers that non-native English speakers may face when learning to program. Finally we present
some early work-in-progress in the area.

2. Natural Languages and Programming Languages

Larry Wall, the developer of Perl, whose has a background in linguistics stated that “there is a scale
of how much a computer language resembles human language primarily based on how much context
is involved”.> Programming languages are not natural languages, however they are languages (albeit
artificial, and most commonly written only) that are designed to convey instructions to a computer and
therefore have a restricted vocabulary and tightly-defined specifications (Eastman, 1982). However
a computer program can (and arguably should) also convey meaning to other humans (Tenenberg &
Kolikant, 2014). Further, it would be surprising if programming languages designed by humans did not
share characteristics of the natural languages used by the language designers (Naur, 1975).

The relationship between programming and natural languages is complex. It is accepted that parsing
natural language by computational means is more difficult than parsing programming languages by the
same means. This may indicate that the human parsing mechanism works by other means making
it less suitable for parsing programming languages. This would not be surprising, as programming
languages were designed to be easily parsed by computational means and natural language evolved along
with human brains for millennia. Nonetheless the relationship between natural and artificial languages
(and specifically programming languages) is not frequently studied but some work has been done. For
instance, Tenenberg and Kolikant (2014) presented several views that relied on multiple established
theoretical perspectives on social cognition and human communication, speculating that these may be
crucial to understanding how people learn to program computers. Specifically, by casting computer
programs as speech acts, they considered that novices learning to program might, can, and sometimes do
rely upon their prior and often extensive experience as skilled natural language users. Along similar lines
Eastman (1982) demonstrated that programming keywords can be formed using mechanisms analogous
to those observed in English such as neologism formation. Miller and Settle (2019) also presented
a relationship between natural language and programming in metonymy. We discuss these findings
further in Section 4.1.

It is beyond doubt that programming languages and natural languages are related. The extent to which
this is true is beyond the scope of this paper. However, even if weak, if this relationship exists to any
extent, it is likely that one’s native language affects how a programming language is learned. Regardless

Zhttps://www.usnews.com/news/stem-solutions/articles/2016-10-13/spanish-french
—-python-some-say-computer—-coding-is—-a-foreign-language
3https://www.fastcompany.com/3O42122/washington—bill—would—count—programming—as—a
—-foreign-language-on-college—-apps
‘https://qz.com/1099791/apples—tim-cook-says-coding-is-better—-than-learning
—-english-as—-a-second-language/
Shttps://bigthink.com/videos/why-perl-is-1like-a-human-language

41

PPIG 2019 ppig.org

of the parallels one draws between programming and natural languages, it is accepted that programmers
have to speak ‘computerish’ — we are able to ‘speak’ C, Pascal, SQL or even machine code — and it
has been stated that humans learn a computer language using the same faculties as learning natural
languages, in an intuitive manner, yet without a profound understanding of what is going on in our
brains during this process.® There is also some fresh empirical evidence in this department when it
comes to programming languages that supports this hypothesis using human brain studies. In Section
3 we discuss an fMRI study that has provided evidence that code comprehension stimulates the same
areas of the brain that natural languages do.

Unlike natural languages which can be quite forgiving due to their ambiguity (and the human ability to
interpret that), modern high-level programming languages have a well-defined structure and syntax. De-
viating from these specifications renders a program of little use. Therefore it is reasonable to hypothesise
that non-native English speakers may be at more of a disadvantage compared to those fluent in English
when it comes to code construction, code reading, and debugging. It is also possible that some of these
means of interacting with programs may be more severely hampered than others, which requires that
these factor be studied on a case-by-case basis. What is clear is that we are operating with high-level
languages that are (hopefully) natural-language-like enough for people to use them freely without the
need to spend large amounts of time just to figure out what the code should look like and at the same
time exact enough for computers to parse it unambiguously.®

Another debate that we will not explore here but should be pointed out is ‘teaching’ or ‘pedagogical’
languages (Crestani & Sperber, 2010) vs. ‘real’ languages, which normally refers to languages that are
used in industry. Interestingly, teaching languages may have parallels in natural languages when one
considers Esperanto. Esperanto is an artificial natural language which has some features of a natural
language — just as pedagogical programming languages have some features of industrial programming
languages. Interestingly Esperanto even has some native (or first) speakers (Lindstedt, 2006). It should
also be noted that there is at least one programming language that is a subset of a natural language.
That language is — quite unsurprisingly — English. Inform 7 is a (highly domain-specific) programming
language for creating interactive fiction using a natural language syntax. Inform 7 draws on ideas from
linguistics and literate programming and is used in literary writing, games development and education.”

It is fairly well-known that fluent speakers of multiple natural languages can ‘pick up’ or acquire ad-
ditional languages with an ease that seems much greater than that of learning one’s first non-native
language. Many programmers would say the same for programming languages. Portnoff (2018) makes
a case that acquiring a second or subsequent programming language is even easier than it is for natural
languages as “they all implement the same set of control and data mechanisms in very similar ways, the
task of learning a second programming language for those with in-depth knowledge of a first program-
ming language is more like learning a dialect than an entirely new language” (2018, p. 39). Arguably
this makes learning one’s first programming language as easily as possible extremely important as it can
be seen as the main key to acquiring other languages, a trait common amongst, and very advantageous
for, professional software developers.

2.1. English and Programming Languages

In general non-native English speakers program and learn in English (in as much as one can pro-
gram in English), as almost all programming languages are designed using the English language as
a base (Veerasamy & Shillabeer, 2014). Additionally, most sources of documentation are in English (Li
& Prasad, 2005) as are most secondary sources of information such as Stack Overflow. Attempts to de-
velop programming languages using natural languages other than English have been few, and have not
gained popularity or use at university level teaching (Veerasamy & Shillabeer, 2014). However, many
non-native English speakers, despite using languages that have English keywords choose to use their

6http: //www.pplig.org/news/2006-06-01/linguistics—and-programming-languages
"http://inform7.com/about/

42

PPIG 2019 ppig.org

native language for comments, variable, method and function names.?

It is (probably) unlikely that a programming language will ever be created that is equivalent to a nat-
ural human language such as English, but being able to construct a computer program with a natural
language would be obviously advantageous. Natural language programming, where a high-level pro-
gramming language is either bypassed or constructed automatically from the input of natural language
expressions has been researched for many years but is not currently near a state of useful widespread
reality. For a review of such systems, see (Pulido-Prieto & Judrez-Martinez, 2017). However, imagine
if perfect natural (English) language programming was achievable today. We can take this to be an
extreme case along a continuum where at the opposite end programming languages have a syntax that
is completely random. It is quite possible that the programmer’s knowledge of English, or any other
natural languages for that matter, would be of little use and therefore it is possible that non-native and
native English speakers would be on an equal footing. Going back to a perfect (again English) natural
language programming reality, it is not hard to imagine that if one can’t speak English they have no
chance whatsoever in constructing a program. The current situation of high-level languages designed
in large part by English language speakers, with English keywords, and English resources, would put
non-native English speakers at a disadvantage, but one between these two extremes. Figure 1 depicts
this continuum and the hypothetical but plausible difficulty gap between native and non-native learners.

) High-level language
Language with -English keywords Perfect Natural

Randomly generated -English documentation (English) Lanugage

keywords and identifiers ~English resources Compiler

Native English speakers .7 easier

... Ve j

difficulty gap

l

harder

t

Non-native English speakers

Figure 1 — A hypothetical difficulty gap between native and non-native English speakers grows as
one progresses from a language with randomly generated keywords and identifiers through a typical
(English) high-level language, through to a perfect (English) natural language compiler

How large this difficulty gap is, and what factors affect it is not well studied. Some influencing factors
such as the computer language being used would obviously play a role but we do not currently have
definitive answers for seemingly simple questions like: What is more difficult for non-native English
speakers to learn, Java or C? It is worth noting that such questions are reasonable because the differences
between computer languages, and therefore their differing relationships with natural languages can be
substantive; for instance one of the biggest differences between object-oriented and non-object-oriented
programming is the possibility to identify the actor of an action using purely syntactic means®. There is
some recent work that sheds some light on this that we discuss in Section 4.1.

Our lack of knowledge in this area is at least in part because educators are far from agreement on
what programming language is best for learning (and for whom), although this debate seems to have
gained less attention in recent decades (Becker & Quille, 2019). It is possible that the debate of what
language(s) are best for teaching will continue, perhaps indefinitely. However it is worth noting that
there is an obvious reason that introductory programming courses rarely use low-level languages like
assembly — it is accepted that it is too difficult and perhaps not that useful. Instead we use high-level
languages that are by definition more like natural language. This observation alone provides sufficient

8https://softwareengineering.stackexchange.com/questions/1483/do-people—in-non
—english-speaking-countries—code—-in—-english

43

PPIG 2019 ppig.org

poibli aicme DiaDuitDomhan{
poibli statach folus priomh(Sreang[] args) {
// Priontédil "Dia duit, Domhan" go dti an fuinneog teirminéal
Céras.amach.priontdilln("Dia duit, Domhan");

Listing 1 — How HelloWorld.java might look with Irish keywords and identifiers

motivation to explore the relationship between programming and natural languages and specifically, how
this impacts the way that programming languages are learned.

2.2. An Example

Although to a native English speaker it may seem a somewhat trivial matter to have to deal with non-
English keywords and identifiers, consider the fact that in Java the “Hello World” program — traditionally
the first program a novice programmer writes — is almost entirely made up of keywords and identifiers.
Listing 1 shows what a HelloWorld.java program might look like with Irish language keywords and
identifiers, and a comment which is also in Irish.

Unless one reads Irish, it is probably not apparent at all what this program is, or what it would do. It
is not unreasonable to assume that to someone who doesn’t know English, or who has a limited grasp
of English, would have similar difficulties with the traditional ‘English’ version of the Hello World
program.

Anecdotally, the author has had conversations with a Greek colleague who has pointed that ironically, to
use I4TEX, native Greek speakers have to learn the English names of Greek symbols such as delta (A) in
order to typeset documents requiring these symbols. Although this may seem trivial, it is a real example
of an often overlooked barrier that non-native English speakers can face. It is likely that there are many
more examples such as this.

3. Programming Languages: Theories and the Human Brain

It might seem counter-intuitive that the small syntactic footprints of programming languages, with their
relatively simple and compact grammars, would translate into a lengthy and involved learning pro-
cess (Portnoff, 2018). Yet, citing (McCracken et al., 2001; Soloway, Bonar, & Ehrlich, 1983; Tew &
Guzdial, 2011) amongst others, Scott and Ghinea (2013, p. 1) concluded that “despite considerable re-
search into programming instruction since the inception of Computer Science as an academic discipline,
many learners have not acquired the desired level of competency”.

Evidence on the lack of theoretical approaches to teaching computer programming can be found in a
recent review of 5,056 introductory programming papers from the period 2003-2017 — which eventually
cited 735 papers — stating: “there are relatively few papers on theories of learning, with no obvious trends
across the period of our review” (Luxton-Reilly et al., 2018, p. 66). This paper also provided supporting
evidence that many papers on teaching programming don’t have a theoretical foundation. Only 19 of
the papers examined were coded as theory-related and the majority of these dealt with “learning styles”
which have been largely discredited as “pseudoscience, myths, and outright lies” (Kirschner, 2017,
p. 171).

Portnoff (2018, p. 38) also supported this view, stating:

CS educators, however, currently operate with no evidence-based cognitive model for how
students learn to program. When partial models have been invoked, they have generally pre-
supposed the involvement of psychological constructs — such as that “cognitive loads” are
lowered with drag-and-drop programming interfaces like Scratch or Alice — without having
done research (i.e., taking experimental measurements) to corroborate such assumptions.

44

PPIG 2019 ppig.org

These are profound observations and insights when one considers the fact that learning programming
necessarily involves learning a new (written, artificial) language, and the process of teaching and learn-
ing new natural languages has been well studied. Even ‘language-agnostic’ introductory programming
courses that use pseudocode in essence require the learner to acquire a new language, and pseudocode
has been argued as an unsuitable choice for assessment (Cutts, Connor, Michaelson, & Donaldson,
2014).

Bypassing any intermediate theory, a team consisting of a psychologist, a neurobiologist, a linguist, as
well as computer scientists and software engineers, went straight to the source of programming learning
— the human brain — conducting a controlled study on brain function of 17 participants using functional
magnetic resonance imaging (fMRI)® while they were comprehending short source-code snippets which
they contrasted with locating syntax errors (Siegmund et al., 2014). They found a clear, distinct ac-
tivation pattern of five brain regions, which are related to working memory, attention, and language
processing. The authors justly note that “Understanding program comprehension is not limited to the-
ory building, but can have real downstream effects in improving education, training, and the design and
evaluation of tools and languages for programmers” (2014, p. 378).

Writing about this study, Portnoff (2018, p. 36) reported: “The programmers in the study recruited parts
of the brain typically associated with language processing and verbal oriented processing (ventral lateral
prefrontal cortex). At least for the simple code snippets presented, programmers could use existing
language regions of the brain to understand code without requiring more complex mental models to be
constructed and manipulated.”

What this means for how novices learn to program remains to be seen. It should be noted that fMRI
studies such as this do have some threats to their validity — see (Siegmund et al., 2014, p. 385). If
such anatomical studies prove to be robust it is likely that new theory will need to be developed, and
new experiments carried out to test them, in order to inform the practice of teaching programming most
effectively for both native and non-native English speakers.

These results do support the work of Portnoff (2018) who as part of a MSc thesis (Portnoff, 2016), as
well as in his practice, argues that implicit (natural) language learning strategies are effective for teaching
programming languages to novices. Portnoff found that applying foreign (natural) language pedagogies
in programming instruction lead to a dramatic reduction in syntax issues with his students (Portnoff,
2018). He argues that the current prescriptive model of programming language instruction is at odds
with the implicit way that native, and second (natural) languages are acquired.

4. Barriers to Programming faced by Non-native English Speakers

Guo (2018) pointed out that non-native English speakers face a range of well-known challenges in
English-language classrooms in a wide range of disciplines including math, science, engineering,
medicine, and the humanities. These ranged from cognitive to affective to social. Guo also pointed
out that often these challenges, such as needing to mentally translate concepts into one’s native language
— especially in real time while listening to a lecture — increases extraneous cognitive load and decreases
comprehension. Even difficulties with formulating verbal questions, and anxiety about a lack of English
fluency makes these students less likely to ask clarifying questions. Bouvier et al. (2016) noted that the
contextual background of a problem can also impact cognitive load (regardless of the native language
of the student) and that computer science has unique characteristics compared to other disciplines, with
the consequence that results from other disciplines may not apply to computer science, thus requiring
investigation specifically within computer science. It should also be noted that different languages of in-
struction can hinder conducting and replicating research into these questions, further hampering progress
in the area (Zingaro et al., 2018).

9fMRI (Functional Magnetic Resonance Imaging) measures brain activity by detecting changes associated with blood flow.
This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area of the brain is in
use, blood flow to that region also increases.

45

PPIG 2019 ppig.org

Given these well-accepted issues faced by non-native English speakers across many disciplines, and
within computer science, it is not unrealistic to hypothesise that these learners may face barriers spe-
cific to learning to program. To investigate this, Guo (2018) conducted a survey of 840 responses from
programmers spanning 86 countries and 74 native languages, identifying several barriers faced by non-
native English speakers. Guo found that these programmers faced barriers with: reading instructional
materials; technical communication (listening and speaking); reading and writing code; and simultane-
ously learning English and programming.

These respondents also expressed a desire for instructional materials to use simplified English without
culturally-specific slang, more use of visuals and multimedia, more use of code examples that are cul-
turally agnostic, and the incorporation of inline dictionaries. Additionally, some respondents reported
that programming actually served as a motivating context for them to learn English better and helped
clarify their logical thinking about natural languages, which provides further support for researching
these barriers and how to help students overcome them.

Similarly, but perhaps counterintuitively, Li and Prasad (2005) found that native English speakers pre-
ferred examples and practice much more than non-native English speakers, and that non-native English
speakers preferred lectures more than native English speakers. They found this to be consistent with
their observations, but felt that this was possibly more of a cultural issue than a language issue. Further
research needs to be carried out to explore these issues.

Supporting the theory that non-native English speakers face more severe barriers than native English
speakers when programming, Dasgupta and Hill (2017) found that novice users who code with their
programming language keywords and environment localised into their home countries’ primary lan-
guage (German, Italian, Norwegian Bokmal, Portuguese, and Brazilian Portuguese) demonstrated new
programming concepts at a faster rate than users from the same countries whose interface was in the
default of English. In developing Spoken Java, a semantically identical variant of Java that is easier to
say out loud, Begel and Graham (2005) found several differences between how native and non-native
English speakers vocally express in code. An example is the use of Prosody (volume, timbre, pitch, and
pauses). They found that the semantic use of prosody was limited mostly to native English speakers
— many non-native English speakers who speak English typically use the prosody of their native lan-
guage, in which pauses, in particular, do not hold the same meaning. This affected how spoken Java was
interpreted for instance when dealing with brackets and punctuation.

In the following subsections we explore two very different classes of barriers faced by non-native English
speakers when learning to program. It should be stressed that these barriers are present for both native
and non-native English speakers, but they might affect these groups differently. These two classes are
only two of potentially many more. First we look into a core aspect of programming — dealing with
keywords and syntax. We then look into other aspects of the code base — error messages and code
comments.

4.1. Syntax, Keywords and Reference Errors

Miller and Settle (2019) explained how novice programmer reference errors are consistent with the
use of metonymy, a form of figurative expression in human communication where the name of an at-
tribute is substituted for the name of something closely associated with that attribute; for example ‘suit’
being used as a substitute for ‘business executive’. Miller (2016) provided three possible knowledge
sources for why novice programmers produce reference-point errors that are consistent with the use of
metonymy. Some of these knowledge sources may differ between native and non-native English speak-
ers, implying that these groups of students may experience the complex relationship between natural
and programming languages differently. One of these sources involves misconceptions about notional
machines which brings up a question on if native and non-native English speakers may form differ-
ent models of notional machines. Miller and Settle (2019, p. 2) note that “In contrast to the relative
ease with which humans comprehend figurative language such as metonymy, it presents difficulties with
human-to-machine communication, particularly in the domain of programming”. They also showed that

46

PPIG 2019 ppig.org

the presentation of examples can affect the construction of references in student solutions. They suggest
that reference-point errors may be the result of well-practiced habits of communication rather than mis-
conceptions of the task or what the computer can do. As the habits of communication between native
and non-native English speakers differ to varying extents, it is most likely that these two groups of stu-
dents will face different difficulties, or difficulties of varying severity, when it comes to constructing and
interpreting programs that contain references influenced by this mechanism.

An examination of keywords in high-level programming languages showed that they are also formed
using mechanisms analogous to those observed in the English — for instance, the choice of keywords by
language designers is similar to neologism formation in English (Eastman, 1982). A neologism is a new
word; it may be either a newly created word or an existing word whose meaning has changed (1982).
This process is also related to the choice of identifier names by the programmer. Eastman also noted a
conspicuous exception; the use of mirror words such as £i to close an if statement. This might not
be as trivial as it sounds. Mirror keywords can evoke strong reactions. Writing about £i, Don Knuth
stated: “I don’t really like the looks of fi at the moment; but it is short, performs a useful function,
and connotes finality, so I'm confidently hoping that I’ll get used to it” (1974, p. 266). In the same
paper he stated that Alan Perlis “has remarked that £1 is a perfect example of a cryptic notation that
can make programming unnecessarily complicated for beginners” (1974, p. 266). These reactions are
based on the fact that those doing the reacting correctly recognised that they are in fact mirror words. A
non-native English speaker might miss this. Therefore it is possible that in some cases, native and non-
native English speakers may react differently (and possibly strongly) to keywords. If these groups react
differently, it would not be surprising if they find learning and using them to be different experiences. If
how these groups use a language differ, it is likely that how they would best learn that language would
differ also.

Eastman (1982) put forward a good reason why mirror words could seen as nonsense — one could al-
most take them as being random. Interestingly, Stefik and Siebert (2013) carried out four experiments on
(largely native English speaking) novice programmer accuracy rates using six programming languages:
Ruby, Java, Perl, Python, Randomo, and Quorum. Randomo was designed by randomly choosing key-
words from the ASCII table. They found that that Perl and Java — languages using a more traditional
C-style syntax — did not afford accuracy rates significantly higher than Randomo, a language with ran-
domly generated ‘gibberish’ keywords. However they found that Quorum, Python and Ruby — languages
which do deviate from a traditional C-style syntax — did. One of the main conclusions drawn by Stefik
and Siebert (2013) was: syntax does matter to novices and accuracy rates vary by language. Given
this it is quite probable that the experience of non-native English speakers would also vary according to
language. The question is, how would their experience differ? It is interesting that the results for Ran-
domo were not worse than some well-established languages. This could lead to a hypothesis that at least
for these languages, the experience of non-native English speakers may be similar to native speakers.
Clearly more work needs to be carried out in this area.

Keyword and identifier names also share similarity to natural language words in that they are often
compound. Additionally, abbreviations (and acronyms) are not uncommon in both natural language and
programming keywords and identifiers. Keywords made up of parts of existing words can be regarded as
blends — something between compounds and acronyms. Suffixes and prefixes are also occasionally used.
Guo (2018) provided references that Non-native speakers report struggling to decipher the meanings of
code identifiers, especially when they are abbreviated; for instance the C function getch () stands for
“get character”. Liblit, Begel, and Sweetser (2006) found that programmers choose and use names (for
programming constructs) in regular, systematic ways that reflect deep cognitive and linguistic influences.
Blackwell (2006) found several categories of vocabulary used in Java documentation revealing extremely
complex terminology with similarly complex underlying concepts. These findings also indicate that non-
native English speakers may face substantial difficulty in navigating code and documentation.

47

PPIG 2019 ppig.org

4.2. Programming Messages and Code Comments

A specific facet of the programming experience that can be affected by natural language ability is deal-
ing with programming messages — error, warning, or other messages resulting from errors with code that
result in what are commonly called ‘compiler error messages’. These messages have been shown to be
a barrier to learning for students, including both native and non-native English speakers (Becker et al.,
2018; Ko, Myers, & Aung, 2004). Arguably these messages, in an ‘English’ programming language,
should be comprised of English text that is comprehensible to English speakers, and for native English
learners should be easy to interpret, allowing for effective error resolution. An effective message there-
fore, by definition, should be presented in plain English as much as possible. It is simple to conclude that
if native English speakers have trouble with these messages, non-native speakers would have at least as
much trouble as native speakers, and in most cases, more. Ko et al. (2004) noted that attempts to trans-
late APIs and error messages have faced a lack of adoption since programmers cannot as easily search
for online help using the localised terms. It should also be noted that some of the difficulties with error
messages such as ‘cascading’ error messages (Becker et al., 2018) likely affect native and non-native
English speakers similarly. However, other difficulties likely affect these groups differently.

Programming messages are a part of the programmer-facing code base on the output side. They are
intended to be read and interpreted by humans. Similarly, another aspect of programming, but on the
input side, are code comments. Like error messages, code comments are an essential part of program-
ming, and somewhat differently to writing code itself, are primarily intended to be read and interpreted
by other humans. Comments are written largely in natural language, and therefore require a high de-
gree of fluency in the language being used. The author is unaware of any studies that investigate how
non-native English speakers programming in ‘English’ programming languages write comments. The
most related work found was Stefik and Siebert (2013) who reported that when creating single-line
comments, non-programmers rated the English words note and comment highly. Interestingly, non-
programmers rated the traditional C-style single line comment denotation \ \ approximately the same as
note and comment. Similar to the discussion in Section 4.1, one could hypothesise that using note
and comment would be more disadvantageous for non-native English speakers. Interestingly though,
the results for \\ could lead to a hypothesis that there are ways of denoting comments that may be sim-
ilar in usefulness to native and non-native English speakers. Again, it is clear that more work is needed
on this front.

5. Questions
In this section we enumerate some of the questions that arise from the topics discussed in this paper and
can be used for the basis of future work in the area.

1. How similar are the processes of learning programming languages and natural languages?

(a) How is learning a programming language different for native and non-native English speak-
ers?

(b) Itis obvious that natural languages are much more difficult to parse by computational means
than programming languages. This implies that the human parsing mechanism works quite
differently to computational parsing. Does that mean that humans (regardless of natural
language) experience a ’natural’ difficulty in parsing programming languages because of
biology?

2. Do non-native English speakers have more difficulty programming specific languages compared
to native English speakers?

(a) If so, for what languages is the experience for non-native English speakers more similar to
that of native English speakers?

3. What techniques can be borrowed from natural language acquisition that would improve program-
ming language acquisition?

48

PPIG 2019 ppig.org

(a) Would non-native English speakers benefit from these techniques in the same way as native
English speakers?

4. Apart from the programming language itself, how do different mediums of instruction, and differ-
ent tools such as IDEs impact how non-native English speakers learn to program?

5. How do specific facets of the programming experience such as keywords, syntax, comments and
error messages affect non-native English speakers?

6. Future Work

There have been attempts to create programming languages with non-English keywords, but none have
been widely adopted, and attempts to translate APIs and error messages have faced a similar lack of
adoption (Guo, 2018). There are also non-English programming environments for languages such as
Arabic (Al-Salman, 1996), but these have not been adopted widely (Veerasamy & Shillabeer, 2014).

Inspired by Dasgupta and Hill (2017), the author has piloted a study with approximately 120 non-
native English speakers using an online IDE. These students are all native Chinese (Mandarin) speakers
enrolled in an introductory programming course as part of Computing/Engineering degrees. The next
phase involves a study where similar students will be provided the same IDE with both English and
Chinese (Mandarin) interfaces. The IDE currently allows programs to be written in C, Java, and Prolog.
The planned research questions are:

1. Do non-native English speakers receiving programming instruction in English prefer to use an
IDE in their native language when given the choice?

2. What barriers does the IDE present to non-native English speakers who are learning to program?

3. Is there a correlation between performance and IDE language for non-native English speakers?

7. Conclusion

Learning to program is fraught with challenges and there have been numerous studies over several
decades exploring the barriers that novices face when learning to program. However, how non-native
English speakers learn to program, and how this differs from native English speakers, is an understudied
area.

This paper set out several of the high level issues that non-native English speakers may face when
learning to program. There is mounting evidence that there are commonalities between how natural
and programming languages are learned, but very little has been carried out on how this would affect
non-native English speakers.

It is probable that the barriers that non-native English speakers experience when learning to program
are different to those that native English speakers face. Many of these barriers may affect both native
and non-native English speakers, but could affect non-native English speakers to a greater extent. Most
likely, there are barriers to learning programming that are faced by non-native English speakers that
native English speakers do not face.

This paper presented an overview of some of the challenges that non-native English speakers face when
learning to program. It also presented several unanswered questions that may lead to future research
that may help these students overcome such challenges. It also presented the author’s planned work in
the area of how the language of the programming environment affects non-native English speakers. It
should be noted that this is not a comprehensive literature review, but the author has been collecting
papers on the relationship between natural and programming languages and on how non-native English
speakers learn to program for years and this paper cites about half of that collection. The interested
reader is guided to the following as entry points for further reading Guo (2018); Pal (2016); Portnoff
(2018, 2016).

49

PPIG 2019 ppig.org

Particularly in a time when broadening participation in computing is seen as a primary objective, the
community can no longer afford to overlook the unique barriers faced by non-native English speakers
who want to learn to program.

8. Acknowledgements
The author would like to thank Dénal and Mairéad Holohan for their help with the ‘Irish Java’ transla-
tion.

9. References

Al-Salman, A. S. (1996). An arabic programming environment (Unpublished doctoral dissertation).

Becker, B. A. (2015). An exploration of the effects of enhanced compiler error messages for com-
puter programming novices. Thesis (November). Retrieved from https://arrow.dit.ie/
ltcdis/35/ (https://www.brettbecker.com/publications)

Becker, B. A., Murray, C., Tao, T., Song, C., McCartney, R., & Sanders, K. (2018). Fix the first,
ignore the rest: Dealing with multiple compiler error messages. In Proceedings of the 49th
ACM Technical Symposium on Computer Science Education - SIGCSE ’18 (pp. 634-639). Bal-
timore, MD, USA: ACM. Retrieved from http://dl.acm.org/citation.cfm?doid=
3159450.3159453 doi: 10.1145/3159450.3159453

Becker, B. A., & Quille, K. (2019). 50 Years of CS1 at SIGCSE: A review of the evolution of in-
troductory programming education research. In Proceedings of the 50th ACM Technical Sym-
posium on Computer Science Education - SIGCSE ’19 (pp. 338-344). Minneapolis, MN: ACM.
Retrieved from http://dl.acm.org/citation.cfm?doid=3287324.3287432 doi:
10.1145/3287324.3287432

Begel, A., & Graham, S. (2005). Spoken programs. In 2005 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC’05) (pp. 99-106). IEEE. Retrieved from http://
ieeexplore.ieee.org/document/1509493/ doi: 10.1109/VLHCC.2005.58

Blackwell, A. F (2006). Metaphors we program by: Space, action and society in
Java. In I8th Workshop of the Psychology of Programming Interest Group - PPIG ’06.
Retrieved from http://www.ppig.org/library/paper/metaphors—-we—program
—-space—-action-and-society-java

Bouvier, D., Lovellette, E., Matta, J., Alshaigy, B., Becker, B. A., Craig, M., ... Zarb, M. (2016).
Novice programmers and the problem description effect. In Proceedings of the 2016 ITiCSE
Working Group Reports (pp. 103—118). New York, NY, USA: ACM. Retrieved from http://
doi.acm.org/10.1145/3024906.3024912 doi: 10.1145/3024906.3024912

Crestani, M., & Sperber, M. (2010). Experience report: growing programming languages for begin-
ning students. ACM Sigplan Notices, 45, 229-234. Retrieved from http://dl.acm.org/
citation.cfm?id=1863576

Cutts, Q., Connor, R., Michaelson, G., & Donaldson, P. (2014). Code or (not code) — Separat-
ing formal and natural language in CS education. In Proceedings of the 9th Workshop in
Primary and Secondary Computing Education - WiPSCE 14 (pp. 20-28). New York, New
York, USA: ACM Press. Retrieved from http://dl.acm.org/citation.cfm?doid=
2670757.2670780 doi: 10.1145/2670757.2670780

Dasgupta, S., & Hill, B. M. (2017). Learning to code in localized programming languages. In Pro-
ceedings of the Fourth (2017) ACM Conference on Learning @ Scale - L@S ’17 (pp. 33-39).
Cambridge, MA, USA: ACM Press. Retrieved from http://dl.acm.org/citation.cfm
?doid=3051457.3051464 doi: 10.1145/3051457.3051464

Eastman, C. M. (1982). A comment on English neologisms and programming language keywords.
Communications of the ACM, 25(12), 938-940. doi: 10.1145/358728.358756

Guo, P. J. (2018). Non-native English speakers learning computer programming. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems - CHI ’18 (pp. 1-14). New
York, New York, USA: ACM Press. Retrieved from http://dl.acm.org/citation.cfm
?doid=3173574.3173970 doi: 10.1145/3173574.3173970

50

PPIG 2019 ppig.org

Kirschner, P. A. (2017). Stop propagating the learning styles myth. Computers and Education, 106,
166-171. Retrieved from http://dx.doi.org/10.1016/7j.compedu.2016.12.006
doi: 10.1016/j.compedu.2016.12.006

Knuth, D. E. (1974, dec). Structured programming with go to statements. ACM Computing Sur-
veys, 6(4), 261-301. Retrieved from http://portal.acm.org/citation.cfm?doid=
356635.356640 doi: 10.1145/356635.356640

Ko, A. J., Myers, B. A., & Aung, H. H. (2004). Six learning barriers in end-user programming sys-
tems. Proceedings - 2004 IEEE Symposium on Visual Languages and Human Centric Com-
puting, 199-206. Retrieved from http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=1372321 doi: 10.1109/VLHCC.2004.47

Li, X., & Prasad, C. (2005). Effectively teaching coding standards in programming. In Proceedings
of the 6th Conference on Information Technology Education - SIGITE 05 (p. 239). New York,
New York, USA: ACM Press. Retrieved from http://portal.acm.org/citation.cfm
?doid=1095714.1095770 doi: 10.1145/1095714.1095770

Liblit, B., Begel, A., & Sweetser, E. (2006). Cognitive perspectives on the role of naming in computer
programs. In 18th Workshop of the Psychology of Programming Interest Group - PPIG ’06. Re-
trieved from http://www.ppig.org/library/paper/cognitive-perspectives
-role-naming—-computer—-programs

Lindstedt, J. (2006). Native Esperanto as a test case for natural language. SKY Journal of Linguis-
tics, 19(SUPPL), 47-55. Retrieved from http://www.linguistics.fi/julkaisut/
SKY2006_1/1FK60.1.5.LINDSTEDT.pdf

Luxton-Reilly, A., Sheard, J., Szabo, C., Simon, Albluwi, 1., Becker, B. A., ... Scott, M. J. (2018).
Introductory programming: a systematic literature review. In Proceedings Companion of the
23rd Annual ACM Conference on Innovation and Technology in Computer Science Education -
ITiCSE 2018 Companion (pp. 55-106). New York, New York, USA: ACM Press. Retrieved
from http://dl.acm.org/citation.cfm?doid=3293881.3295779 doi: 10.1145/
3293881.3295779

McCracken, M., Wilusz, T., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., ... Utting, . (2001).
A multi-national, multi-institutional study of assessment of programming skills of first-year CS
students. In Working Group Reports From ITiCSE on Innovation and Technology in Computer Sci-
ence Education - ITICSE-WGR 01 (Vol. 33, p. 125). New York, New York, USA: ACM Press. Re-
trieved from http://portal.acm.org/citation.cfm?doid=572133.572137 doi:
10.1145/572133.572137

Miller, C. S. (2016). Human language and its role in reference-point errors. In 27th
Workshop of the Psychology of Programming Interest Group - PPIG ’l6. Retrieved
from http://www.ppig.org/library/paper/human-language—-and-its-role
-reference-point-errors

Miller, C. S., & Settle, A. (2019). Learning to get literal: Investigating reference-point difficulties
in novice programming. ACM Transactions on Computing Education, 19(3), 1-17. Retrieved
from http://dl.acm.org/citation.cfm?doid=3308443.3313291 doi: 10.1145/
3313291

Naur, P. (1975). Programming languages, natural languages, and mathematics. Communications of the
ACM, 18(12), 676—683. doi: 10.1145/361227.361229

Pal, Y. (2016). A framework for scaffolding to teach programming to vernacular medium learners
(Unpublished doctoral dissertation).

Portnoff, S. R. (2016). The case for using foreign language pedagogies in introductory computer
programming instruction. ProQuest Dissertations and Theses. Retrieved from https://
search.proquest.com/openview/8£f4a5a498c2ba52b27787¢cc79041b955/
1?pg-origsite=gscholaré&cbl=18750&diss=y

Portnoff, S. R. (2018). The introductory computer programming course is first and foremost a language
course. ACM Inroads, 9(2), 34-52. Retrieved from http://dl.acm.org/citation.cfm

51

PPIG 2019 ppig.org

?doid=3211407.3152433 doi: 10.1145/3152433

Pulido-Prieto, O., & Juarez-Martinez, U. (2017). A survey of naturalistic programming technologies.
ACM Computing Surveys, 50(5), 1-35. doi: 10.1145/3109481

Scott, M. J., & Ghinea, G. (2013). Educating programmers: A reflection on barriers to deliberate
practice. In Proceedings of the HEA STEM Learning and Teaching Conference. Birmingham, UK:
Hihgher Education Academy. Retrieved from http://repository.falmouth.ac.uk/
1650/

Siegmund, J., Késtner, C., Apel, S., Parnin, C., Bethmann, A., Leich, T., ... Brechmann, A. (2014).
Understanding understanding source code with functional magnetic resonance imaging. In Pro-
ceedings of the 36th International Conference on Software Engineering - ICSE 2014 (pp. 378-
389). New York, New York, USA: ACM Press. Retrieved from http://dl.acm.org/
citation.cfm?doid=2568225.2568252 doi: 10.1145/2568225.2568252

Soloway, E., Bonar, J., & Ehrlich, K. (1983). Cognitive strategies and looping constructs: an empirical
study. Communications of the ACM, 26(11), 853-860. doi: 10.1145/182.358436

Stefik, A., & Siebert, S. (2013). An empirical investigation into programming language syntax. ACM
Transactions on Computing Education, 13(4), 1-40. Retrieved from http://dl.acm.org/
citation.cfm?doid=2543488.2534973 doi: 10.1145/2534973

Tenenberg, J., & Kolikant, Y. B. D. (2014). Computer programs, dialogicality, and intentionality. In
Proceedings of the 10th International Computing Education Research Conference - ICER ’14 (pp.
99-106). New York, New York, USA: ACM Press. Retrieved from http://dl.acm.org/
citation.cfm?doid=2632320.2632351 doi: 10.1145/2632320.2632351

Tew, A. E., & Guzdial, M. (2011). The FCS1: A language independent assessment of CS1 knowledge.
In Proceedings of the 42nd ACM Technical Symposium on Computer science Education - SIGCSE
11 (p. 111). New York, New York, USA: ACM Press. Retrieved from http://portal.acm
.org/citation.cfm?doid=1953163.1953200 doi: 10.1145/1953163.1953200

Veerasamy, A. K., & Shillabeer, A. (2014). Teaching English based programming courses to English
language learners/non-native speakers of English. International Proceedings of Economics De-
velopment and Research, 70(4), 17-22. Retrieved from http://www.ipedr.com/vol70/
004-ICEMI2014_HO00006.pdf

Zingaro, D., Craig, M., Porter, L., Becker, B. A., Cao, Y., Conrad, P., ... Thota, N. (2018). Achieve-
ment goals in csl: Replication and extension. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education - SIGCSE ’18 (pp. 687-692). New York, NY,
USA: ACM. Retrieved from http://doi.acm.org/10.1145/3159450.3159452 doi:
10.1145/3159450.3159452

52

PPIG 2019 ppig.org

Usability of Probabilistic Programming Languages

Alan Blackwell*, Luke Church**, Martin Erwig*** James Geddes**** Andy Gordon***** Maria
Gorinova****** = Atilim Gunes Baydin******* Bradley Gram-Hansen ******* Tobias Kohn*, Neil
Lawrence******* = Vikash Mansinghka********* Brooks Paige**** Tomas Petricel™®*****¥ ¥
Diana Robinson*, Advait Sarkar***** Oliver Strickson****

*University of Cambridge; **Africa’s Voices Foundation; ***Oregon State University; ****The Alan
Turing Institute; *****Microsoft Research; ******University of Edinburgh; *******University of
Oxford; ******** Amazon Al Research; *****#***x V[T, *****x*x**Jniversity of Kent

Abstract

This discussion paper presents a conversation between researchers having active interests in the usability
of probabilistic programming languages (PPLs), but coming from a wide range of technical and research
perspectives. Although PPL development is currently a vigorous and active research field, there has been
very little attention to date to basic questions in the psychology of programming. Relevant issues include
mental models associated with Bayesian probability, end-user applications of PPLs, the potential for
data-first interaction styles, visualisation of model structure and solver behaviour, and many others. We
look forward to further discussion with delegates at the PPIG workshop.

Introduction

This discussion has been convened to consider open research questions, priorities and potential design
guidelines relevant to the usability of probabilistic programming languages (PPLs). It provides a short
introduction, for the PPIG audience, to the conceptual and operational principles that underlie PPLs. It
then discusses two alternative perspectives: firstly an applications perspective, in which there might be
potential for broader application of PPL methods in the context of end-user programming if the languages
were usable by a wider range of people; and secondly an educational perspective, in which we consider
whether PPLs might be a valuable tool for teaching principles of probability, or even as an introduction to
programming that takes a fundamentally probabilistic rather than deterministic or imperative view of how
computation should be conceived. Finally, two sections present case studies following these perspectives -
a visualisation approach that may have educational value, and a “furthest-first” approach to applications.

Background and History

Probabilistic programming is a paradigm (generally embedded within conventional languages) in which
the program is constructed as a model defined in terms of relationships between random variables (note
this is not program synthesis, or programming by example, which are topics of interest at PPIG, but not
the subject of this paper). Typical variables might be a sample data set, observable system output, or
latent variables. A key distinction in relation to conventional programming languages is that variables do
not have a single value, but should be regarded as defining (or sampling from) a probability distribution
of likely values. Program execution consists of making inferences over the structure using a variety of
methods — for example Markov chain Monte Carlo (MCMC) (Wingate 2011) or variational inference
(Blei 2017). From a user perspective, the overall paradigm is declarative (it might be compared to logic

53

PPIG 2019 ppig.org

programming, involving far more extensive mathematical functions), although most PPLs are hosted
within a functional or imperative language that allows more conventional expression of data
transformations, I/0O and so on. Note also that expert programmers of declarative languages (notoriously
in the case of the Prolog “cut”) must read them imperatively in order to anticipate execution - a point that
has been made by several people (remembering Prolog) when they interact with the PPL community.

There exist a number of different approaches to probabilistic programming that are built around a variety
of semantics and inference engines. Broadly speaking, we can collapse these languages into two sets, one
set being the first-order probabilistic programming languages (FOPPLs) (van de Meent et al. 2018), the
other being the set of universal, or higher-order probabilistic programming languages (HOPPLs) (Staton
et al. 2016). FOPPLs such as Stan (Gelman, Lee, and Guo 2015), BUGS (Spiegelhalter et al. 1996),
Infer NET (Minka et al. 2013) and LF-PPL (Zhou et al. 2019) directly constrain the set of models that the
user can express as programs, so that the inference performed in such programs is more predictable. But,
because of this restriction our modelling capabilities are limited, hence the construction of HOPPLs,
universal languages that allow users to express any model imaginable in a Turing-complete fashion.
Universal languages such as Church (Goodman et al. 2012), Anglican (Wood, van de Meent, and
Mansinghka 2014), Pyro (Bingham et al. 2018), TensorFlow Probability (Dillon et al. 2017, Tran et al.
2017) and PyProb (Baydin et al. 2019) provide users with the ability to compose programs that generate
any arbitrary model. But, at the cost that it is impractical to guarantee correctness of the inference result.

Research in this field has primarily been driven by the desire for effective tools to enable statistical and
machine learning research, and there has been little specialist attention to studying the usability of PPLs,
or designing features that enhance usability. There has also been relatively little attention to PPLs in the
human-centric computing, software engineering, software visualisation or visual languages communities,
with the exception of a small number of experiments conducted by authors of this paper (systems built by
Gorinova and Erwig are discussed below).

The Idea of a Probabilistic Programming Language

The diversity of technical approaches just described mean that there is no single conception of what
probabilistic programming provides. There is even less consensus on where PPL approaches might take
us in future (for example, when used as an implementation platform for experiments with deep generative
models). Nevertheless, it is useful to consider why this paradigm offers a distinctive intellectual appeal, in
terms of the role of computation within a scientific enquiry. Let’s consider one of the possible styles of
probabilistic programming, in which we focus on simplicity, interpretability, and causality.

Our modern understanding of the world started with a revolutionary insight and discovery. While
analysing the data of the position of stars and planets in the night skies, astronomer Johannes Kepler
found a function that reliably describes the data, and hence models the movements of planets in the solar
system. A simple function was able to capture the big data, supported predictions, and led to new
scientific insights.

Finding a function that describes a given set of data has since appeared in different shapes and forms. Carl
Gauss had a clear model of how the function should look like, but had to deal with imprecision and
uncertainty in the data when he developed least-squares linear regression. And Joseph Fourier's
description of data through trigonometric functions builds a basis of today's signal processing. In contrast
to Kepler's great feat of finding a new model, subsequent methods have mostly focused on adapting a
known (or assumed) model to the data.

54

PPIG 2019 ppig.org

In recent years, Al research has made significant impact with neural networks - a universal set of
functions that can model a wide variety of data. With higher power computing systems, deep and complex
networks can describe many data sets with surprising precision. However, there is a catch: in their
universality, neural networks provide little insight about the actual underlying models behind the data. We
often struggle to understand exactly how a neural network describes a given set of data: the price of
universality.

Like Gauss and Fourier, however, we often do have an understanding of what the model behind the data
should look like. For linear regression, for instance, we assume a linear relationship in the data set and
could thus replace the potentially huge and complex model of a neural network with a much simpler
model featuring just a few parameters. All we need is a method to find meaningful values for the
parameters in our model, whatever model we choose. This is one of the valuable opportunities offered by
probabilistic programming methods.

Probabilistic programming in this sense combines the descriptive power of simple models with
sophisticated methods to adapt the parameters in your model to given data. At the core of probabilistic
programming you will find a set of "inference algorithms" not unlike the “learning algorithms” you
encounter when training a neural network. However, instead of training a universal neural network using
data samples, you write a specific model in a probabilistic programming language and infer its parameters
through conditioning on data. As with earlier generations of logic programming, a probabilistic program
is not run in the classical sense, but instead makes inferences. Al advocates sometimes say, of neural
network optimization, that the system is being ‘taught’, rather than programmed - but to apply this
analogy to probabilistic programming neglects the work done by the PPL programmer, and in particular
the potential in some languages to implement alternative inference models (a layer of abstraction where
the computation is expressed in more conventional imperative form, e.g. PLDI 2018).

How does statistical modelling relate to probability?

Classical linear regression is built on the principle of least squares: on the idea that there is a single pair of
parameter values for which the "error" between model and data is minimal. In reality, however, linear
regression hardly ever returns the true underlying parameters exactly, although we expect the result to be
close to the true values, at least if the linear model is a good fit for the data. Our confidence in the
proposed parameter values will then also increase when more data points are captured by the function. On
the flipside, if the linear model is a bad fit for the data in the first place, the algorithm will never produce
truly meaningful and accurate values.

In the context of probabilistic programming, we do not seek a single value for each parameter, then hope
that these values together make our model a good fit to the data. It is much more natural to think in terms
of probability distributions. Instead of proposing the single best value for each parameter, the inference
engine will much rather tell you how probable a certain value is.

Think of it this way: if your model really fits your data, the inference engine will single out a range of
values for your parameters that makes the entire model a very probable candidate for describing the data.
If the model does not fit your data, the inference engine will find that no specific set of parameter values
really stands out, and that nothing will make your model a particularly probable candidate for the data.

55

PPIG 2019 ppig.org

Figure 1: If the linear model is not a good fit for the data (on the left), no line really stands out, and all possible parameters have
more or less the same probability. Even though we might find a “best” fit, it does not really distinguish itself from the rest.
However, if the linear model is a good fit for the data (on the right), then some choices for parameter values are clearly better
than others and stand out as highly probable values.

As noted in the introduction to this section, we have presented a relatively straightforward interpretation
of probabilistic programming, to illustrate the potential appeal of the paradigm as a scientific tool and
educational approach. Current and future developments in PPLs include far more complex approaches to
modelling and generation, that might not necessarily retain this intuitive appeal. Nevertheless, this
straightforward style of application offers a starting point for broadening access to PPL methods, as
discussed in the following sections.

The end-user development perspective on PPLs

It is often observed that more people create programs in spreadsheets such as Excel than in all other
programming languages combined (Scaffidi et al 2005). Many business data processing applications that
would have required professional programmers to implement them in the 1960s or 70s are now routinely
created by people who have never received any formal training in programming, but are able to use
spreadsheets to implement a wide variety of straightforward accountancy and data processing
applications. The spreadsheet paradigm is approachable in part because of the way that it offers a concrete
perspective on the object of interest (the user’s data) rather than on the abstractions of programming.
Nevertheless, it is possible to extend the spreadsheet paradigm with sophisticated abstract capabilities
such as those of functional programming languages (Peyton Jones et al 2003).

Commercial extensions to the spreadsheet paradigm are generally driven by the business needs of
spreadsheet users, who have practical problems to solve rather than being driven by technical curiosity or
research agendas. These are defined as end-user programmers (Blackwell 2006, 2017), end-user
developers or even end-user software engineers (Ko et al 2011). Increased business interest in the
methods of statistical data science suggests that these end-users are likely to find value in PPL
capabilities, especially if presented in an interaction context such as a spreadsheet, where users would be
able to construct and interpret the behaviour of their program in the context of the data that it relates to.
The usability advantages of data-centric presentation have already been observed in previous evolution of
statistical applications, such as the adoption of a spreadsheet-style data view in the popular SPSS, when
the SPSS-X release under Windows 2.0 included a tabular data editor that became established as the
primary user interface for the GUI versions of the product.

Considering PPLs from this data-centric perspective, in terms of the tasks of end-users, raises interesting
questions about the boundaries of the programming task. End-users who are creating simple scripts or
macros to automate repetitive actions often deal implicitly with the attention investment tradeof,
calculating whether the programming effort will pay off in saved time. Because spreadsheets allow
exceptional conditions to be handled by direct manipulation (just changing the cells concerned),
spreadsheet programmers are far less likely to devote a lot of effort to anticipating infrequent situations in
their code. This is a very familiar situation to data scientists responsible for “data wrangling” - formatting,
organising and cleaning data sets for statistical analysis. Although standard research and teaching data

56

PPIG 2019 ppig.org

sets have been cleaned in advance, making wrangling distinct from modelling, real-world data science
involves a far more ambiguous relationship between the two. It is often difficult to judge whether
unexpected data values are errors, outliers, or important clues to an inappropriate model. If probabilistic
programming involved closer interaction with original data, this would provide the opportunity for
“wrangling” operations to inform the programmed model. It would also provide the opportunity for the
mundane tasks of wrangling to be automated through inference, as in the Data Noodles prototype by
Gorinova et al. (2016) that allows users to demonstrate how they would like their data to be arranged in a
table, then searches for a set of structural transformations that will generate that table.

The same redefinition of boundaries, in a data-centric approach to end-user probabilistic programming,
might allow us to revisit the definition of labelling, in the machine learning lifecycle. At present, most
supervised learning systems rely on data that has been labelled with a “ground truth” of human
interpretation, often obtained via Mechanical Turk, or forced tasks such as ReCAPTCHA. The people
who carry out these labelling tasks may have some insight into the modelling assumptions (for example in
relation to implicit bias in the judgments they have been asked to make, or explanations of why they made
a particular judgment). However, those insights are currently not captured, or even discarded, in
conventional machine learning paradigms. There have been some experiments in semi-supervised or
mixed-initiative approaches to labelling, for example supporting more dynamic structuring of label
categories. However, more sophisticated approaches could be enabled if the data views presented to the
labeller offered more direct insight into the structure and behaviour of the model, perhaps even allowing
trusted labellers to make incremental adjustments or modifications to the structure. A complementary
benefit would be realised by data scientists themselves, who are often advised to spend more time looking
at the data, before making assumptions about the structure of the model. Allowing the end-user
programmer to contribute to labelling in a way that was continuous with the modelling task allows more
sophisticated reasoning across multiple levels of abstraction, in a manner that is analogous to the constant
shifts in level of abstraction that are observed in studies of expert programmers (Pennington 1987, 1995)

End-user paradigms such as spreadsheet programming also demonstrate the advantages for learning that
result from bridging across levels of abstraction. Modern user interfaces appear more intuitive because a
handful of basic principles can be applied in a concrete manner, together with discoverability of more
abstract functions and relations. All of these design principles could be applied to implement tools
supporting methodologies such as the Bayesian workflow of explore, model, infer, check, repeat (Gabry
et al 2019).

We can also consider the potential to generate spreadsheets from PPL specifications. Two of the authors
of this report (Geddes and Strickson) are working on a probabilistic programming language -- nocell --
where the result of running a program written in this language is a spreadsheet model applied to the input
data. This allows the advantages of spreadsheet models, of understandability and immediacy, to be
combined with sophisticated modelling techniques, as well as good software development practices (such
as version control and modularity). A further aim is to connect the communities of software-developer
data analysts with the wider community of spreadsheet users.

Values in nocell are probability distributions, supporting arithmetic operations and conditioning on
observed data. This is motivated in part by the observation that many spreadsheet models are used in
situations where capturing uncertainty in the model is beneficial, and that recent advances in PPL and
machine language ideas could provide significant value to users of these models, who would otherwise
have limited access to tools built on these ideas. This probabilistic approach contrasts with, for example,
the type of scenario analysis that is commonly performed, where "typical", "typical-low", "typical-high"
and perhaps more extreme values of model inputs are considered, to obtain an idea of the range of values

that can be produced by a model (this could still be useful as a /presentational/ tool).

57

PPIG 2019 ppig.org

In the nocell approach, the programmer constructs a model as a nocell program, which includes setting
appropriate program inputs to probability distributions and perhaps describe observations of their values.
When run, this program produces a spreadsheet where the program outputs are evaluated from particular
choices of input value, but in addition are annotated with their mean and standard deviation.

An important consideration, driving some of the current work, is how the probability distribution of a
value of interest should be represented within the spreadsheet. This should be done in a way that conveys
useful information at a level of detail appropriate for a wide audience.

The educational perspective on PPLs

Languages such as Scratch (Resnick et al 2009) include both an application domain (in the case of
Scratch, an architecture for agent-based graphical canvas operations) and an educationally-oriented IDE
(in the case of Scratch, a block-syntax editor and a library browser). In case of Scratch, one of its major
assets is the graphics application domain, echoing the emphasis on graphics in many earlier educational
languages from Logo to AgentSheets and Alice. Such languages bring a Piagetian perspective to
computation, for example the Scratch sprite or Logo turtle help the learner to think syntonically about
program execution, by allowing the learner to reason about a computational agent’s behaviour (Watt
1998, Pane 2002). Furthermore, as often advocated by Kay, tangible representations can help provide a
concrete manipulable representation that helps learners to reason about abstract relations (Repenning
1996, Edge 2006, Kohn 2019).

Beyond the cognitive and notational advantages of a graphical application domain, a core motivation has
been that graphics are fun. Children enjoy drawing, and freedom of graphical expression can help bring a
creative and exploratory attitude to the introduction of novel notation systems (Stead 2014). How do we
make teaching about (Bayesian) probability fun, through use of an application domain that motivates
learners? Much traditional teaching of probability follows the traditions of Bayes himself, and other early
theorists, in exploring the mathematical implications of gambling (coin tosses, dice throws etc). Teaching
of frequentist statistics is largely grounded in the logic of hypothesis testing, and taught in the service of
biology or psychology. Might contemporary problems of data science be more motivational as an
application domain for education? For example, local children are affected by traffic speed on a road
outside their school. The council reports an average speed slightly under the speed limit as evidence that
there is no danger. Would children be motivated by gaining access to the council’s raw data, and
exploring the implications of those distributions for themselves?

A probabilistic programming IDE might potentially include live visualisations of the model; direct
dependencies and probability distributions, highlight conditional independencies, as well as provide tools
for visual or numerical diagnostics. Some of these ideas have been explored by previous work. For
example, Gorinova et al (2016) present a live, multiple-representation environment (MRE) for the
probabilistic programming language Infer.NET. Alongside the Infer.NET code, the environment
maintains a visualisation of the program as a Bayesian network (a directed acyclic graph, encoding the
conditional dependencies between variables). The marginal distribution of each variable is also visualised.
Gorinova et al (2016) show that, when presented with debugging and program description tasks, users
inexperienced in probabilistic modelling are faster and more confident when using the MRE compared to
when using a conventional programming environment. Participants were also more likely to give a
higher-level description of the dependencies in the model when using the MRE, as opposed to a
lower-level code description. This suggests that live visualisations can be a useful way of teaching core
concepts in Bayesian reasoning, and of drawing a clear distinction between conventional and probabilistic
programming.

58

PPIG 2019 ppig.org

At PPIG 2018, Andrea diSessa made the provocative suggestion that school science lessons such as
physics should in future be taught by students constructing their own computational simulations of the
phenomenon, rather than through algebraic analysis and fitting of experimental observations. Scientific
simulation has been a common application domain for educational programming languages in the past, for
example in Repenning’s AgentSheets, and Cypher’s KidSim. We might imagine the possibility that
teaching of probability in schools could be better achieved through modelling in a PPL. Indeed, Goodman
and Tenenbaum’s Probabilistic Models of Cognition includes interactive code examples implemented in
WebPPL, Lee and Wagenmakers text on Bayesian Cognitive Modelling uses BUGS, and Andrew
Gelman’s courses at Columbia such as Statistics GR6103 use modelling in Stan.

Many research users of PPLs have been mathematicians, meaning that the “natural” conceptualisations
they are working with may be relatively sophisticated in mathematical terms. In the end-user application
field, how far do our priorities shift from support for people who are familiar with the abstract operations,
to those who have to treat the models and inferences as black box behaviour? What is the minimum
conceptual framework for thinking about the behaviour of Bayesian models?

We can contrast this educational perspective with the suggestion that students should be given a “black
box” understanding of how supervised machine learning systems work, as in research by Hitron et al
(2019). This project provided students with an experimental environment in which they were able to
collect and label (gesture) data, train a classifier, and evaluate the resulting system behaviour. Through
experimentation with the system, students did gain improved understanding of supervised learning. We
should consider such results in relation to the ICT/computer science debate in school curriculum. The
“ICT” perspective was that it was sufficient for students to know how to use applications like Powerpoint
or Word, and not necessary to understand how these work internally (i.e. to learn programming). This
policy has now been overturned, in favour of teaching at a more fundamental level. On which side of this
dichotomy might machine learning fall in future? Will training and using an ML system (for example,
predictive text, or spam filtering) be a routine everyday task analogous to the use of Word or Powerpoint,
or will it be a sophisticated intellectual task, providing a conceptual foundation for science and
engineering? Will students benefit from being able to build new classifiers (using a PPL), or should a
standard model be used to describe behaviour, for example in terms of feature selection, convergence,
stability and generalisation?

Case study of human-centric design on PPL principles

Here we briefly present an approach to visualize basic computations with probabilistic values, intended to
make probabilistic programming accessible to a non-specialist audience, based on a notation introduced in
(Erwig and Walkingshaw 2013). The notation is not a comprehensive visualization for PPLs yet; in
particular, the visualization of inference requires extensions that we plan to work on in the future. It will
also be interesting to compare this approach to probability visualisations such as (Cheng 2011). However,
we believe the notation provides a simple metaphor for understanding probabilistic computations and can
therefore be the basis for a discussion of a more comprehensive approach to visualizing the execution of
PPL programs.

Understanding why and how programs produce their results is important for programmers to be confident
in their work and for users to be sure that decisions they make based on a program’s results are valid.
Explaining the computation that results from executing a (non-probabilistic) program is a challenging task
already, and this task becomes only more difficult for probabilistic programs, since probabilistic values
have a more complicated nature and behave differently from deterministic values under transformations.

59

PPIG 2019 ppig.org

(The term probabilistic value in this context is synonymous with probability distribution; it is used to
emphasize its role as an object of computational manipulation.)

A general approach to explaining program behavior is based on tracing values or states as they undergo
changes when manipulated by a specific program. To apply this approach to the explanation of
probabilistic programs we first need a representation of probabilistic values that can be the basis traces. A
probabilistic value is a mapping from a set of values to numbers in the range [0, 1]. For example, the
result of a fair coin flip can be represented by the mapping {Heads » 0.5, Tails » 0.5}.

Spatial partitions can serve as a simple visual metaphor for illustrating discrete probabilistic values (that
is, a mapping from a finite set of discrete values to numbers in [0,1]). In this representation, we divide a
region into blocks, one for each value of the probabilistic value, so that the area occupied by each value
corresponds to its probability (Erwig and Walkingshaw 2013). The shape of the area does not matter in
principle, but horizontally extended rectangles support the drawing of traces rather well. Here is how the
probabilistic coin flip value looks like in this notation.

Coin

Heads Tails
50% 50%

We call such a drawing a probabilistic partition, or prop for short. This notation captures three important
features of a probabilistic value, namely (A) the fact that it may consist of multiple values, (B) that each
value has a distinctive probability associated with it, and (C) that the probabilities of all values sum up to
1. (The exact position of each value as well as the order among values does not matter.) Note that
showing the value probabilities, while helpful to users, is redundant as far as the spatial representation
goes, since they are derived from the relative sizes of the partition blocks. Here is another example that
represents the result of drawing a ball from an urn that contains the same number of red, green, and blue
balls. Of course, the shown percentages are only approximations; depending on user preferences, using a
higher precision or showing fractions may be preferable.

Urn
R G B
33% 33% 33%

The most basic operation on a probabilistic value is to inquire about the probability of an event, which
means to look up the probability in the mapping. In the prop representation this amounts to measuring the
size of the occupied area. In general, an event is given by a predicate that selects a subset of values, and
the probability for the event is given by the total relative size of the blocks corresponding to the subset of
values. For example, the probability of picking either a green or blue ball is represented by % of the Urn
rectangle.

The programming with probabilistic values involves the transformation of probabilistic values, which
raises the question of how to represent (the effect of) operations on probabilistic values. The first basic
operation is N to compute the joint probability of two events, which amounts to a combination of two
probabilistic values such as Coin and Urn into one value Coin N Urn. In terms of the employed spatial
metaphor, the two props have to be superimposed to create a new prop in which the value combinations
have to “share” the common space. For example, if we consider the joint probability of throwing a coin

60

https://www.draw.io/?page-id=EUWO6x5LKs6zwy--jKeD&scale=auto#G1YPM2CO22HMRosQI1TCZ4qCp0_vfMXw1W
https://www.draw.io/?page-id=EUWO6x5LKs6zwy--jKeD&scale=auto#G1MxwFmlkA8e39MGimi0luVYFU-Bi8oLk_

PPIG 2019 ppig.org

and drawing a ball from an urn that contains the same number of red, green, and blue balls, we obtain the
following prop (abbreviating Heads and Tails).

Coin N Urn
(HR) | HG) [(HB) | (TR) [(TG) | (T.B)
1/6 1/6 1/6 1/6 1/6 1/6

The values of the input props are represented as pairs, which reflects the ordering of the arguments of the
N operation. The generation of the joint probabilities can be illustrated using a flow diagram in which
multihead arrows that indicate the flow of values from the first input prop via all the values of the second
prop to the resulting prop.

H T
1/2 1/2
R G B R G B
1/3 1/3 1/3 1/3 1/3 1/3
(HR) | (HG) | (HB) | (TTR) | (T.G) [(T,B)
1/6 1/6 1/6 1/6 1/6 1/6

The creation of the result prop can be broken down into a sequence of three basic spatial operations. First,
a copy of the second argument prop is created for each value in the first argument prop. Second, each
copy is horizontally shrunk to the width of the block of its corresponding value from the first argument
prop. Finally, the two partitions are intersected, and the combination of the values and the product of their
probabilities annotate the blocks of the resulting partition.

The computation of marginal probability distributions can be also illustrated by a flow diagram. In this
case, however, the arrows indicate a spatial union operation of all blocks that have the same value once a
value has been marginalized out. For example, we can illustrate the computation of the marginal
distribution for Urn as follows.

61

https://www.draw.io/?page-id=EUWO6x5LKs6zwy--jKeD&scale=auto#G116ree3c44rPuqdqtpWcylL4xGbKNsvZe
https://www.draw.io/?page-id=EUWO6x5LKs6zwy--jKeD&scale=auto#G1uVHtYmiyqxofBKf9VVBKPo1_fFXLl8qk

PPIG 2019 ppig.org

1/6 1/6 1/6 1/6 1/6 1/6

R G B
1/3 1/3 1/3

For each value of Urn we obtain two blocks (one for each value of Coin), and those two blocks are
merged into one with a common label. The addition of the probabilities is naturally supported by the
spatial metaphor, since the probabilities are homomorphic to the areas.

The computation of conditional probability distributions, which is probably (no pun intended) the most
difficult to understand, can be broken down into three steps in the prop representation. We believe that it
is this decomposition into simpler operations that provides the explanatory value of the prop
representation. As an example, consider the following scenario: While throwing two coins, one comes up
Tails. What is the probability that the other one is Heads? Many people believe that the probability is
50%, whereas it is actually 67%. We can illustrate this computation by starting with a joint probability for
two coins. The first step is to select the blocks that correspond to the event “one comes up Tails,” which
are three blocks except the one containing two Heads. The three blocks define the probability space
against which the query “What is the probability that the other one is Heads?” is posed. In the second
step, the exclusion of the (H,H) block requires a resizing of the remaining blocks to occupy the whole
probability space, which leads to a prop with 3 blocks that each have an associated probability of .

(HT) (T,H) (T,T)
1/4 1/4 1/4
(H,T) (T,H) (T,T)
1/3 1/3 1/3

The third step requires the grouping of all blocks that match the query “What is the probability that the
other one is Heads?” It is easy to see that this event occupies two blocks which occupy % of the prop. We
can make this step explicit through an additional flow graph that merges the blocks, see (Erwig and
Walkingshaw 2013).

At this point we have a method for explaining probabilistic values and computations with them in terms
of spatial partitions. Specifically, computing joint probabilities can be explained through the intersection

62

https://www.draw.io/?page-id=EUWO6x5LKs6zwy--jKeD&scale=auto#G1T172Uq--n3WsRqiQrAq6DgdkL3SZRuvU
https://www.draw.io/?page-id=EUWO6x5LKs6zwy--jKeD&scale=auto#G1V5s-fzugNq0sEvV8evgrCmp0mAezcLsN

PPIG 2019 ppig.org

of partitions, computing marginal probabilities can be explained by relabeling and union of partitions, and
computing conditional probabilities can be explained filtering and resizing partitions. Many probabilistic
programs are using these basic operations as building blocks, and we can, in principle, apply the
partition-based explanation mechanism to explain the execution of such programs. In (Erwig and
Walkingshaw 2013) we have used this approach to explain linear programs employing a story-telling
metaphor (Erwig 2017), but this approach could also be used to explain non-linear representations as used
in probabilistic reasoning in Bayesian networks.

To make this explanation approach practical, more work is required. First, the formalization of props is
straightforward by building on our earlier work (Erwig and Schneider 1997). Second, we need a
collection of programs as a benchmark for evaluating prop explanations. Third, we probably need several
extensions to the notation. For example, to visually explain inference in Bayesian networks we need to
represent conditional probability tables. Given the prop notation proposed here, there are some obvious
ways for doing it. A more serious challenge is the question of how to scale the notation for bigger
programs. This will probably require a notion of partial explanation, see (Cunha et al. 2018) where we
also discuss a number of general principles for explanation languages.

A furthest-first initiative: Al tools for African students and researchers

A common strategy in other fields of usability research and human-centric system design is to consider
the “furthest first”. This identifies the class of users who are least well served by the current generation of
technology or user interface, and gives priority to meeting the needs of those people. It often turns out that
a design strategy focused on those who are least well-served results in benefits for all users. Perhaps the
most dramatic example of this strategy in programming language research was the Smalltalk language,
initially proposed as part of the KiddiKomp project at Xerox PARC (Kay 1996), as one of the first
programming languages that would be accessible to children. As it turned out, Smalltalk was more
popular among adult programmers than among children (although the underlying principles did continue
to benefit very young programmers, in particular through the Smalltalk architecture that underpins the
Scratch language). But an even more dramatic outcome of the Smalltalk project was the way in which it
required the developers to rethink many other aspects of the programming user interface, leading to the
invention of icons, windows, menus, and many other elements of the modern GUI. A furthest-first
approach to programming language research can have extraordinarily far-reaching impact.

One of the authors (Blackwell) is currently planning a year-long project, investigating the requirements
for probabilistic programming among a population that are currently not well-served by existing
languages for Al and data science research. He plans to collaborate with programmers, end-users and
students in four different African countries (Uganda, Kenya, Ethiopia and Namibia). This builds on work
by Church and others (Church, Simpson et al 2018) designing new tools and architectures for social
science, public health and humanitarian research using text data obtained via SMS from regions with poor
communications infrastructure. The application of Al methods in such contexts is often intended to
empower local actors rather than follow the typical business models of software start-ups, meaning that
greater access to configuration and control through accessible programming languages could be
particularly important. Economic and political models may also differ from those in typical software
technology contexts, for example considering whether those who contribute cognitive labour as a
condition of access to media should be paid for their work. The specific aspirations of people in low
income countries are also likely to be different, in shaping the imagination of what Al systems can
possibly do - providing tools that allow people to explore their own imaginative ideas therefore offers
support for innovations that might not have been anticipated in corporate laboratories or universities in
wealthy countries.

63

PPIG 2019 ppig.org

Some research issues that may be productive in these furthest-first contexts include:

Redraw system boundaries to consider interaction between labelling and modelling
Consider reform of school curricula in maths and probability

Explore Al as enabling structural innovation, not data science as statistical bureaucracy
Acknowledge the economic and political tensions in cognitive labour such as labelling

We have already noted the specifically educational challenges and opportunities in the design of PPLs.
These may present differently in low-income countries, and in relation to the mathematics curriculum
taught in those countries. One interesting possibility is the role of probabilistic models in public discourse
and activism, for example Carroll and Rosson’s investigation of end-user development practices as part of
participatory design for community informatics (2007). Experiments such as use of AgentSheets to
discuss local community policy (Arias et al 1999) demonstrate the ways that simulation models might be
integrated into other social contexts. We might describe this as “broad learning” in contrast to “deep
learning”, where a wider range of people are able to participate in the definition of models, rather than
simply providing training data labels.

If teaching resources are limited, we might also consider following the design strategy of Sonic Pi and
other educational languages, in which all tutorial content is integrated into the IDE itself. Sonic Pi has
been successfully applied in an African context during the CodeBus Africa project that toured schools in
10 African countries over 100 days in 2017 (Baki¢ et al 2018).

Conclusion

This discussion represents work in progress, and we expect discussion to continue at the PPIG workshop.
Although some initial advances have been reported here (summarising earlier publications), this paper
should primarily regarded as a manifesto for promising research directions in the development of more
usable PPLs. Several of the authors have substantial research projects in progress, and readers interested
in this topic are encouraged to follow developments from those who have contributed.

A key message emerging from our discussions is that the core principles in PPLs are going to be relevant
to several very different classes of programmer, and that each of these classes will have very different
usability requirements. At present, most users of PPLs are researchers. Researchers do have usability
needs, including straightforward considerations of effective software engineering tools (debuggers,
tracers, smart editors and so on). It would be possible to carry out more comprehensive task analysis of
research work processes, for example as in Marasoiu’s study of data scientists, to identify the activity
profiles of these researchers and identify ways to optimise tools and notations that suit those profiles. It
would also be possible to study the design representations that they already use, and integrate versions of
these more closely into data science tools (for example, as in Gordon et al’s (2014) Tabular alternative to
“plates and gates” diagrams). A second class of programmer is the person who needs to define, explore
and apply probabilistic models, but is unlikely to have specialised training (the end-user case). For this
class, building on familiar representation conventions such as spreadsheets is likely to be valuable, in
addition to supporting more casual and data-centric workflows. A third class is the pedagogic application,
where the users are students acquiring an understanding of data science methods or even simple principles
of Bayesian probability. For this class, conceptual clarity, minimal distracting syntax, and correspondence
to naturalistic descriptions is likely to be important. Many standard considerations of software
engineering, including debugging, version control etc have little relevance to the pedagogic situation,
beyond the simple need to avoid distraction.

64

PPIG 2019 ppig.org

A Probabilistic Postscript

Two of our authors (Advait Sarkar and Tobias Kohn) will not be available to attend the PPIG workshop,
because they are getting married on the same day. Not to each other. We invite readers to create a PPL
model that would estimate the prior likelihood of such an event, for any given research publication, and
thus assess the risk that this might occur again in future. We also record our congratulations to Advait and
Tobias!

References

Arias, E. G., Eden, H., Fischer, G., Gorman, A., & Scharff, E. (1999, December). Beyond access:
Informed participation and empowerment. In Proceedings of the 1999 conference on Computer
support for collaborative learning (p. 2). International Society of the Learning Sciences.

Baki¢, 1., Puukko, O., Himaildinen, V., and Subra, R. (2018). CodeBus Africa Study. Aalto Global
Impact; Aalto University. Washington, DC : World Bank Group.
http://documents.worldbank.org/curated/en/357931528940784006/Codebus-Africa-Study

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., Siskind, J. M. (2018). Automatic Differentiation in
Machine Learning: a Survey. Journal of Machine Learning Research (JMLR) 18 (153): 1-43.
http://jmlr.org/papers/v18/17-468.html.

Baydin, A. G., Shao, L., Bhimji, W., Heinrich, L., Meadows, L. F., Liu, J., Munk, A., Naderiparizi, S.,
Gram-Hansen, B., Louppe, G., Ma, M., Zhao, X. Torr, P. H. S., Cranmer, K., Lee, V., Prabhat, Wood,
F. (2019). Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale. In
Proceedings of the International Conference for High Performance Computing, Networking, Storage,
and Analysis (SC19), November 17-22, 2019.

Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F., Pradham, N., Karaletsos, T., Singh, R., Szerlip,
P., Horsfall, P., Goodman, N. D. (2018): Pyro: Deep universal probabilistic programming. Journal of
Machine Learning Research, 2018.

Blackwell, A.F. (2006). Psychological issues in end-user programming. In H. Lieberman, F. Paterno and
V. Wulf (Eds.), End User Development. Dordrecht: Springer, pp. 9-30

Blackwell, A.F. (2017). End-user developers - what are they like? In F. Paterno and V. Wulf (Eds). New
Perspectives in End-User Development. Springer, pp. 121-135.

Blei, D. M., Kucukelbir, A., McAuliffe, J. D.. (2017). Variational inference: A review for statisticians.
Journal of the American Statistical Association, 112(518):859-877.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo,
J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of statistical
software, 76(1).

Carroll, J. M., & Rosson, M. B. (2007). Participatory design in community informatics. Design studies,
28(3), 243-261.

Carroll, J.M., Rosson, M.B., Isenhour, P., Ganoe, C., Dunlap, D., Fogarty, J., Schafer, W. and Van Metre,
C., 2001. Designing our town: MOOsburg. International Journal of Human-Computer Studies, 54(5),
pp-725-751.

65

PPIG 2019 ppig.org

Cheng, P. C. H. (2011). Probably good diagrams for learning: representational epistemic recodification of
probability theory. Topics in Cognitive Science, 3(3), 475-498.

Church, L., Simpson, A., Zagoni, R., Srinivasan, S. and Blackwell, A.F. (2018). Building socio-technical
systems for representing citizens voices in humanitarian interventions. In S. Tanimoto, S. Fan, A. Ko
and D. Locksa (Eds), Proceedings of the Workshop on Designing Technologies to Support Human
Problem Solving. University of Washington. pp. 19-21.

Cunha, J., Dan, M., Erwig, M., Fedorin, D. and Grejuc, A. (2018). Explaining Spreadsheets with
Spreadsheets. ACM SIGPLAN Conf. on Generative Programming: Concepts & Experiences
(GPCE'18), 161-167.

Dillon, J. V., Langmore, 1., Tran, D., Brevdo, E., Vasudevan, S., Moore, D., Patton, B., Alemi, A.,
Hoffman, M., Saurous, R. A. (2017): Tensorflow distributions. arXiv preprint arXiv:1711.10604.

Du Boulay, B. (1986): Some Difficulties of Learning to Program. Journal of Educational Computing
Research, 2(1), pp. 57-73.

Edge, D., & Blackwell, A. (2006). Correlates of the cognitive dimensions for tangible user interface.
Journal of Visual Languages & Computing, 17(4), 366-394.

Erwig, M. (2017). Once Upon an Algorithm - How Stories Explain Computing. MIT Press, Cambridge,
MA.

Erwig, M. and Walkingshaw, E. (2013). A Visual Language for Explaining Probabilistic Reasoning.
Journal of Visual Languages and Computing, Vol. 24, No. 2, 88-109.

Erwig, M. and Schneider, M. (1997). Partition and Conquer. 3rd Int. Conf. on Spatial Information Theory
(COSIT'97), LNCS 1329, 389-408.

Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2019). Visualization in Bayesian
workflow. Journal of the Royal Statistical Society: Series A (Statistics in Society), 182(2), 389-402.

Gelman, A., Lee. D., Guo, J. (2015): Stan: A Probabilistic Programming Language for Bayesian Inference
and Optimization. Journal of Educational and Behavioral Statistics, 40(5):530-543, 2015.

N. D. Goodman, J. B. Tenenbaum, and The ProbMods Contributors (2016). Probabilistic Models of
Cognition (2nd ed.). Retrieved 2019-6-25 from https://probmods.org/

Goodman, N., Mansinghka, V., Roy, D. M., Bonawitz, K., Tenenbaum, J. B.(2012): Church: a language
for generative models. arXiv preprint arXiv:1206.3255.

Gorinova, M.1., Sarkar, A., Blackwell, A.F. and Syme, D. (2016). A Live, Multiple-Representation
Probabilistic Programming Environment for Novices. In Proceedings of CHI 2016, pp. 2533-2537.

Tom Hitron, Yoav Orlev, Iddo Wald, Ariel Shamir, Hadas Erel, and Oren Zuckerman. 2019. Can
Children Understand Machine Learning Concepts?: The Effect of Uncovering Black Boxes. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI '19). ACM,
New York, NY, USA, Paper 415, 11 pages. DOI: https://doi.org/10.1145/3290605.3300645

Hoffman, M. D., Gelman, A. (2014). The No-U-turn Sampler: Adaptively Setting Path Lengths in
Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1):1593-1623.

Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2019). Visualization in Bayesian
workflow. Journal of the Royal Statistical Society: Series A (Statistics in Society), 182(2), 389-402.

66

https://probmods.org/
https://doi.org/10.1145/3290605.3300645

PPIG 2019 ppig.org

Gordon, A. D., Graepel, T., Rolland, N., Russo, C., Borgstrom, J., & Guiver, J. (2014). Tabular: a
schema-driven probabilistic programming language. In ACM SIGPLAN Notices (Vol. 49, No. 1, pp.
321-334). ACM.

Alan C. Kay. 1996. The early history of Smalltalk. In History of programming languages---11, Thomas J.
Bergin, Jr. and Richard G. Gibson, Jr. (Eds.). ACM, New York, NY, USA 511-598. DOLI:
https://doi.org/10.1145/234286.1057828

Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A.F., Burnett, M., Erwig, M., Lawrence, J., Lieberman,
H., Myers, B., Rosson, M.-B., Rothermel, G., Scaffidi, C., Shaw, M., and Wiedenbeck, S. (2011). The
State of the Art in End-User Software Engineering. ACM Computing Surveys 43(3), Article 21.

Kohn, T., Komm, D.: Teaching Programming and Algorithmic Complexity with Tangible Machines. In:
Pozdniakiv, S., Dagien, V. (eds): Informatics in Schools. Fundamentals of Computer Science and
Software Engineering. ISSEP 2018. Lecture Notes in Computer Science, vol. 11169, Springer, Cham.

Le, T. A., Baydin, A. G., Wood, F. (2017): Inference compilation and universal probabilistic
programming. In Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics (AISTATS), volume 54 of Proceedings of Machine Learning Research, pages 1338—1348,
Fort Lauderdale, FL, USA, 2017. PMLR.

Lister, R. (2011). Concrete and Other Neo-Piagetian Forms of Reasoning in the Novice Programmer. 13th
Australasian Computer Education Conference (ACE 2011).

Minka, T., Winn, J., Guiver, J., Knowles, D. (2013): Infer.net 2.4, Microsoft Research Cambridge. URL:
http://research. microsoft. com/infernet.

Pane, J. F., Myers, B. A., & Garlan, D. (2002). A programming system for children that is designed for
usability (Doctoral dissertation, School of Computer Science, Carnegie Mellon University).
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.481.2364

Pennington, N. (1987). Comprehension strategies in programming. In Empirical studies of programmers:
second workshop (pp. 100-113). Ablex Publishing Corp..

Pennington, N., Lee, A. Y., & Rehder, B. (1995). Cognitive activities and levels of abstraction in
procedural and object-oriented design. Human-Computer Interaction, 10(2), 171-226.

Peyton Jones, S., Blackwell, A and Burnett, M. (2003). A user-centred approach to functions in Excel. In
Proceedings International Conference on Functional Programming, pp. 165-176.

Repenning, A., & Ambach, J. (1996). Tactile programming: A unified manipulation paradigm supporting
program comprehension, composition and sharing. In Proceedings 1996 IEEE Symposium on Visual
Languages (pp. 102-109). IEEE.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A.,
Rosenbaum, E., Silver, J.S., Silverman, B. and Kafai, Y.B., (2009). Scratch: Programming for all.
Comm. ACM, 52(11), 60-67.

Scaffidi, C., Shaw, M., & Myers, B. (2005). Estimating the numbers of end users and end user
programmers. In 2005 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC'05) (pp- 207-214). IEEE.

Spiegelhalter, D., Thomas, A., Best, N., Gilks, W. (1996): BUGS 0.5: Bayesian Inference Using Gibbs
Sampling Manual (version ii). MRC Biostatistics Unit, Institute of Public Health, Cambridge, UK,
pages 1-59,

67

PPIG 2019 ppig.org

Stan Development Team. (2017). ShinyStan: Interactive visual and numerical diagnostics and posterior
analysis for Bayesian models. R Package Version, 2.

Staton, S., Wood, F., Yang, H., Heunen, C., Jammar, O. (2016): Semantics for probabilistic
programming: higher-order functions, continuous distributions, and soft constraints. In 2016 31st
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1-10. IEEE, 2016.

Stead, A., & Blackwell, A. F. (2014). Learning syntax as notational expertise when using drawbridge. In
Proceedings of the Psychology of Programming Interest Group Annual Conference (PPIG 2014) (pp.
41-52).

Tran, D., Hoffman, M. D., Saurous, R. A., Brevdo, E., Murphy, K., Blei, D. M. (2017): Deep probabilistic
programming. arXiv preprint arXiv:1701.03757

Van de Meent, J.-W., Paige, B., Yang, H., Wood, F. (2018): An Introduction to Probabilistic
Programming. arXiv e-prints, Sep 2018

Watt, S. (1998). Syntonicity and the psychology of programming. Proceedings of PPIG 1998.

Wingate, D., Stuhlmueller, A., Goodman, N. (2011). Lightweight implementations of probabilistic
programming languages via transformational compilation. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, pages 770—778.

Wood, F., Van de Meent, J.-W., Mansinghka, V. (2014): A new approach to probabilistic programming
inference. In Artificial Intelligence and Statistics, pages 1024-1032, 2014.

Zhou, Y., Gram-Hansen, B. J., Kohn, T., Rainforth, T., Yang, H., Wood, F. (2019): LF-PPPL: A
low-level first order probabilistic programming language for non-differentiable models. arXiv
preprint arXiv:1903.02482

68

PPIG 2019 ppig.org

Towards a Consensus about Computational Thinking Skills: Identifying
Agreed Relevant Dimensions

Bostjan Bubnic Tomaz Kosar
Faculty of Electrical Engineering and Faculty of Electrical Engineering and
Computer Science Computer Science
University of Maribor University of Maribor
b.bubnic@gmail.com tomaz.kosar@um.si

Abstract

Research on Computational thinking (CT) has already entered its second decade, but still lacks a clear
definition that researchers would agree upon. There are even suggestions that the definition of CT is
not indispensable and that researchers should focus on other aspects, such as how to include CT in
courses, curriculums and how to observe the acquisition of CT. However, it is generally agreed that
CT is an important skill within the computer science, while it also extends beyond computing as being
a fundamental skill for problem solving in all scientific and engineering disciplines. Moreover, there
is a great interest of researchers and educators to explore how to include CT in K-12 context. Our
study builds upon the consensus, that multiple skills are involved in CT. Based on the literature
review, this study tries to identify a basic, domain independent dimensions of CT that researchers
agree upon. The results of this study identify abstraction and algorithms as relevant, domain
independent dimensions to build upon consensus. We hope that the study results will encourage
further research towards consensus ab