
Constructing a Model of Expert Parallel Programmers’ Mental Representations
Formed During Parallel Program Comprehension

Leah Bidlake Eric Aubanel
Faculty of Computer Science, Faculty of Computer Science, Department of Psychology

University of New Brunswick
leah.bidlake@unb.ca, aubanel@unb.ca, voyer@unb.ca

Daniel Voyer

Abstract
Parallel programmers are frequently tasked with modifying, enhancing, and extending parallel applica-
tions. To perform these tasks and maintain correctness, parallel programmers must understand existing
code by forming mental representations. The comprehension of parallel code requires programmers to
mentally execute multiple timelines that are occurring in parallel at the machine level. The goal of the
proposed research is to develop a model for parallel program comprehension. The study will investigate
the mental representations formed by expert parallel programmers during the comprehension of parallel
programs. The task used to stimulate the comprehension process will be verifying the correctness of
parallel programs by determining the presence of data races. Eye tracking data and questionnaires will
be used to formulate a model.

1. Introduction
During the comprehension process, programmers form mental representations of the code they are work-
ing with (Détienne, 2001). Understanding these representations is important for developing program-
ming languages and tools that enhance and assist programmers in the comprehension process and other
tasks. The cognitive component of program comprehension that is of interest here is the abstract mental
representations that are formed during program comprehension. These mental representations, often re-
ferred to as mental models, are founded in the theories of text comprehension (Pennington, 1987). The
mental model approach to program comprehension is based on the propositional or text-based model
and the situation model that were first developed to describe text comprehension (Détienne, 2001).

2. Research Goals
In parallel programming there is a significant lack of theory to inform the development of programming
languages, instructional practices, and tools (Mattson & Wrinn, 2008). Empirical research on mental
representations formed by programmers during program comprehension has been predominately con-
ducted using sequential code. Studies involving parallel programmers are most often concerned with
productivity (Hochstein et al., 2005; Ebcioglu et al., 2006).

The comprehension of parallel code requires programmers to mentally execute multiple timelines that
are occurring in parallel at the machine level. Therefore, parallel program comprehension may require
additional dimensions to construct a mental representation. The goal of the research proposed here is to
develop a model for parallel program comprehension that is based on the abstract mental representations
formed by parallel programmers during program comprehension.

3. Research Ideas
Parallel programming has introduced new challenges including bugs that are hard to detect, making it
difficult for programmers to verify correctness of code. One type of bug that occurs in parallel pro-
gramming is data races. Data races occur when multiple threads of execution access the same memory
location without controlling the order of the accesses and at least one of the memory accesses is a write
(Liao et al., 2017). Depending on the order of the accesses some threads may read the memory loca-
tion before the write and others may read the memory location after the write. Data races are difficult
to detect and verify as they will not appear every time that the program is executed. To detect data
races programmers must understand how a program executes in parallel on the machine and the memory
model of the programming language.

PPIG 2019 ppig.org

119



In the proposed study, participants will be assigned the task of determining if a parallel program contains
a data race. Participants will then be asked to identify the location of the data race if they believe that
one exists and their level of confidence in their answer. The task of searching for a data race will
be used to stimulate the comprehension process and as a result the programmer will form an abstract
mental representation of the program. To determine if a program contains a data race programmers
must mentally execute the program. This requires understanding how the program would execute on the
machine and the possible interaction of executing multiple timelines of the program in parallel. To study
the comprehension process an eye tracker will be used. Data from the eye tracker that may be able to
assist in creating a model of program comprehension would be the order the code is read in, the sections
of code that are revisited, and how often and how long the programmer spends reading sections of the
code. This information will help to reconstruct their process for understanding and inform how they
model the code. Additional information will be collected from participants in the form of questionnaires
that will be developed to gain insight into their mental representations and understanding of the code.

Participants will be expert parallel programmers. The study of experts is important for informing the de-
velopment of programming languages, instructional practices, and tools. To perform research on expert
programmers it is necessary to be able to determine if participants are in fact experts. There has been a
lack of agreement among researchers on how expertise should be measured and as a result there remains
no standard for measuring programmer expertise. The distinction between expert and experienced also
needs to be established. Experience is a measure of time spent working in a particular field or perform-
ing a task but does not necessarily translate into expertise, which is a measure of performance (Ericsson
et al., 2006). Another research activity is to develop a tool for assessing programmer expertise.

4. Conclusion
Detecting the presence of data races in parallel code requires understanding the memory model of the
programming language and how the program executes in parallel at the machine level. Using this task to
stimulate the comprehension process will likely result in the formation of abstract mental representations
with additional dimensions compared to those formed during the comprehension of sequential code.
Through eye tracking and questionnaires we will develop a model for the mental representations formed
by expert parallel programmers. To determine the level of expertise of participants, criteria will need to
be developed that evaluates their programming skills.

5. References
Détienne, F. (2001). Software design-cognitive aspect. Springer Science & Business Media.
Ebcioglu, K., Sarkar, V., El-Ghazawi, T., Urbanic, J., & Center, P. S. (2006). An experiment in mea-

suring the productivity of three parallel programming languages. In Proceedings of the third
workshop on productivity and performance in high-end computing (pp. 30–36).

Ericsson, K., Charness, N. E., Feltovich, P. J., & Hoffman, R. R. (2006). The cambridge handbook of ex-
pertise and expert performance. Cambridge University Press. doi: 10.1017/CBO9780511816796

Hochstein, L., Carver, J., Shull, F., Asgari, S., Basili, V., Hollingsworth, J. K., & Zelkowitz, M. V.
(2005, 11). Parallel programmer productivity: A case study of novice parallel programmers. In
Supercomputing, 2005. proceedings of the acm/ieee sc 2005 conference (p. 35–35). doi: 10.1109/
SC.2005.53

Liao, C., Lin, P.-H., Asplund, J., Schordan, M., & Karlin, I. (2017). Dataracebench: A benchmark
suite for systematic evaluation of data race detection tools. In Proceedings of the international
conference for high performance computing, networking, storage and analysis (p. 11:1–11:14).
ACM. (event-place: Denver, Colorado) doi: 10.1145/3126908.3126958

Mattson, T., & Wrinn, M. (2008). Parallel programming: Can we please get it right this time? In
Proceedings of the 45th annual design automation conference (pp. 7–11). New York, NY, USA:
ACM. doi: 10.1145/1391469.1391474

Pennington, N. (1987). Empirical studies of programmers: Second workshop. In G. M. Olson, S. Shep-
pard, & E. Soloway (Eds.), (pp. 100–113). Norwood, NJ, USA: Ablex Publishing Corp.

PPIG 2019 ppig.org

120




