
Open Piping: a Visual Workflow Environment

1. Introduction
This submission presents our work on Open Piping1, a visual workflow environment to make functional
programming and data handling accessible to inexperienced learners.

2. Motivations
Four elements motivate our work: the growing ease of use and learning of programming tools; the rise
of big data and data analytics, underpinned by functional programming; the visual model of functional
computation; and finally the access barriers to this programming paradigm and to data science.

2.1. A systematic improvement in access to programming
Usability breakthroughs mark the progress of all computer science, including programming. One re-
markable advance is the wide range of programming learning and novice developer environments, using
a jigsaw puzzle metaphor to represent individual statements, such as MIT Scratch (Resnick et al., 2009).

2.2. The rise of data processing
While simple applications have become more accessible, computation has shifted to new domains, and
to programming languages that support multiple paradigms, like R, Clojure, or Python which add func-
tional programming to imperative, object-oriented and event based development. Yet, the jigsaw puzzle
metaphor favours an imperative perspective on programming: the programming paradigms computing
education tools support best, are becoming less used in professional practice.

2.3. Modelling functional computation visually
Lambda calculus’ mapping to directed acyclic graphs provides a visual model, summarised table 1. The
graph, or boxes-and-wires (hereafter BW) model, can read as a data flow.

Notation Represents Graphical equivalent

x Variable

λx. f Abstraction (function f has parameter x)

f x Application (function f is applied to variable x)

Table 1 – Basic elements of untyped λ -calculus and their representation as boxes and wires (BW)

2.4. Access limitations to visual functional programming
Data analysis applications require mastery of complex systems to apply mathematical techniques and
represent information in non-trivial domains. Users’, particularly novices, need carefully designed pre-
sentation and interaction devices. Below, we consider some variations that have been attempted.

3. Visual design
Coordinating code with result. The BW model represents computer code, but many visualisations
offer multiple coordinated views of results, as Shneiderman and North (2000) propose. Yahoo pipes2

1http://boisvert.me.uk/openpiping
2Discontinued by Yahoo, Inc. Wayback machine archive: https://web.archive.org/web/20150604234337/http://pipes.yqlblog.net

Charles Boisvert
Sheffield Hallam University

c.boisvert@shu.ac.uk

PPIG 2019 ppig.org

117



co-ordinates code with a sample of the resulting data. Selecting subsets of code supported debugging.

Data Typing. Viskell shows textual type annotations, and PROGRAPH visual shape clues, as seen in fig.
1 below. Yahoo pipes did not show types, but enforced type checking through interaction.

Figure 1 – BW in Viskell, left (Wibbelink, 2016) and PROGRAPH, right (Cox and Mulligan, 1985)

Representing Conditionals. A conditional execution function directly maps to a box and three wires,
but this ’direct’ solution may not be ’directly’ understood by end-users. PROGRAPH uses a frame to
divide code in chunks that end-users best consider separately.

First class functions. First-class functions’ representation in the model is clear: a box represents a
function, unless a wire shows its application to a variable. But as Viskell’s use of this solution (pictured
above) shows, a novice would not understand it without help. An alternative is to represent first-class
functions within frames. Fukunaga et al.’s (1993) discusses a full representation of first-class functions
with this solution. It shows the need for careful study to represent the notions in ways that users can
understand and control.

4. Conclusion
We believe that Data Processing is inaccessible to the public, mainly due to a cognitive barrier, but that
existing work shows ways to effect greater ease of learning, of use and availability to the functional
languages and data analysis tools. To make the visual model support development by end-users, learn-
ing by novices, understanding by learners, we will need to propose and evaluate alternative solutions
empirically.

References
Cox, P. and Mulligan, I. (1985). Compiling the graphical functional language prograph. In Proceedings

of the 1985 ACM SIGSMALL symposium on Small systems, pages 34–41. ACM.

Fukunaga, A., Pree, W., and Kimura, T. D. (1993). Functions as objects in a data flow based visual
language. In Proceedings of the 1993 ACM Conference on Computer Science, CSC ’93, pages 215–
220, New York, NY, USA. ACM.

North, C. and Shneiderman, B. (2000). Snap-together visualization: A user interface for coordinating
visualizations via relational schemata. In Proceedings of the Working Conference on Advanced Visual
Interfaces, AVI ’00, pages 128–135, New York, NY, USA. ACM.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A.,
Rosenbaum, E., Silver, J., Silverman, B., et al. (2009). Scratch: programming for all. Communications
of the ACM, 52(11):60–67.

Wibbelink, F. (2016). Interacting with conditionals in viskell.

PPIG 2019 ppig.org

118




