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Abstract

Learning computer programming could and should be made easier. It is widely accepted that learning
to program is fraught with challenges and the literature is not short of work that supports this view.
There are many studies related to programming difficulties, barriers, and misconceptions as well as
topics such as what language is best for learning and what techniques for teaching programming are
most effective. It is often overlooked that globally, the majority of programming students are non-native
English speakers. In addition to the barriers faced by all programming students, these non-native English
speakers face a substantial class of additional barriers. This is because English is often the language upon
which programming languages and their documentation are based, as well as the language of instruction
and other environmental conditions.

There have been relatively few studies on the impact of human language on learning programming and
the potential barriers this may cause. These barriers also span a wider range than may be obvious
upon initial inspection. To complicate matters, natural language issues can add an additional layer of
complexity to more universal barriers to learning. For instance it is well known that programming error
messages present most novice programmers with difficulty. When these messages are in English as they
most often are, any difficulties interpreting them and using them to produce error-free code are most
likely compounded for non-native English speakers.

Particularly in a time when broadening participation in computing is a primary objective, the community
can no longer afford to overlook the unique barriers faced by non-native English speakers who want to
learn to program. This paper discusses these barriers, presents some questions to guide future research,
and outlines the author’s work-in-progress in the area.

1. Introduction
There have been few studies on the impact of human language on learning programming (Guo, 2018)
and the challenges faced by non-native English speakers when learning how to program are poorly
represented in the literature (Becker, 2015). This does not mean that it is not a very important area
for research. It is likely that there are far fewer programmers whose native language is English than
those who are non-native English speakers based on the fact that 95% of the world’s population does
not have English as their first language (Guo, 2018). However almost all programming languages are
designed using English (Veerasamy & Shillabeer, 2014) and most likely the majority of resources and
documentation are as well (Guo, 2018; Li & Prasad, 2005). These points alone provide significant
justification to studying the differences between how native and non-native English speakers program,
and learn to program.

It is also important to note that the treatment of programming languages as similar to natural languages is
being discussed and acted upon by many, possibly more outside academic and educational communities
than within. It seems that many believe that learning programming is more important than learning
foreign natural languages and importantly there is also a reported difference in the degree to which
people of different genders believe this.1 There are also several political movements underway in the

1https://www.teachingpersonnel.com/news/people-would-rather-learn-coding-than-a
-foreign-language--62462135356

PPIG 2019 ppig.org

40



United States where programming languages may be categorised as a foreign language in curricula2 and
counted as foreign languages for college entrance requirements3. Less than two years ago Tim Cook
remarked “If I were a French student and I were 10 years old, I think it would be more important to
learn coding than English. I’m not telling people not to learn English – but this is a language that you
can [use to] express yourself to 7 billion people in the world.”4 When global technology leaders talk
people listen, and there is a serious issue with this message – it implies that English language ability
and learning programming are not intricately related. This view neglects to address the fact that there is
substantial evidence – some of it bordering on common sense – that those who don’t speak English can
be at a real disadvantage when it comes to learning programming compared to native English speakers.

It is not a goal of this paper to provide a comprehensive view of the work on how non-native English
speakers learn to program. It is a goal of this paper to set out a discussion on some of the barriers that
these students face to inform future work on overcoming these barriers. We also pose some questions
that may guide future research on the relationship between programming and natural languages and on
the barriers that non-native English speakers may face when learning to program. Finally we present
some early work-in-progress in the area.

2. Natural Languages and Programming Languages
Larry Wall, the developer of Perl, whose has a background in linguistics stated that “there is a scale
of how much a computer language resembles human language primarily based on how much context
is involved”.5 Programming languages are not natural languages, however they are languages (albeit
artificial, and most commonly written only) that are designed to convey instructions to a computer and
therefore have a restricted vocabulary and tightly-defined specifications (Eastman, 1982). However
a computer program can (and arguably should) also convey meaning to other humans (Tenenberg &
Kolikant, 2014). Further, it would be surprising if programming languages designed by humans did not
share characteristics of the natural languages used by the language designers (Naur, 1975).

The relationship between programming and natural languages is complex. It is accepted that parsing
natural language by computational means is more difficult than parsing programming languages by the
same means. This may indicate that the human parsing mechanism works by other means making
it less suitable for parsing programming languages. This would not be surprising, as programming
languages were designed to be easily parsed by computational means and natural language evolved along
with human brains for millennia. Nonetheless the relationship between natural and artificial languages
(and specifically programming languages) is not frequently studied but some work has been done. For
instance, Tenenberg and Kolikant (2014) presented several views that relied on multiple established
theoretical perspectives on social cognition and human communication, speculating that these may be
crucial to understanding how people learn to program computers. Specifically, by casting computer
programs as speech acts, they considered that novices learning to program might, can, and sometimes do
rely upon their prior and often extensive experience as skilled natural language users. Along similar lines
Eastman (1982) demonstrated that programming keywords can be formed using mechanisms analogous
to those observed in English such as neologism formation. Miller and Settle (2019) also presented
a relationship between natural language and programming in metonymy. We discuss these findings
further in Section 4.1.

It is beyond doubt that programming languages and natural languages are related. The extent to which
this is true is beyond the scope of this paper. However, even if weak, if this relationship exists to any
extent, it is likely that one’s native language affects how a programming language is learned. Regardless

2https://www.usnews.com/news/stem-solutions/articles/2016-10-13/spanish-french
-python-some-say-computer-coding-is-a-foreign-language

3https://www.fastcompany.com/3042122/washington-bill-would-count-programming-as-a
-foreign-language-on-college-apps

4https://qz.com/1099791/apples-tim-cook-says-coding-is-better-than-learning
-english-as-a-second-language/

5https://bigthink.com/videos/why-perl-is-like-a-human-language
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of the parallels one draws between programming and natural languages, it is accepted that programmers
have to speak ‘computerish’ – we are able to ‘speak’ C, Pascal, SQL or even machine code – and it
has been stated that humans learn a computer language using the same faculties as learning natural
languages, in an intuitive manner, yet without a profound understanding of what is going on in our
brains during this process.6 There is also some fresh empirical evidence in this department when it
comes to programming languages that supports this hypothesis using human brain studies. In Section
3 we discuss an fMRI study that has provided evidence that code comprehension stimulates the same
areas of the brain that natural languages do.

Unlike natural languages which can be quite forgiving due to their ambiguity (and the human ability to
interpret that), modern high-level programming languages have a well-defined structure and syntax. De-
viating from these specifications renders a program of little use. Therefore it is reasonable to hypothesise
that non-native English speakers may be at more of a disadvantage compared to those fluent in English
when it comes to code construction, code reading, and debugging. It is also possible that some of these
means of interacting with programs may be more severely hampered than others, which requires that
these factor be studied on a case-by-case basis. What is clear is that we are operating with high-level
languages that are (hopefully) natural-language-like enough for people to use them freely without the
need to spend large amounts of time just to figure out what the code should look like and at the same
time exact enough for computers to parse it unambiguously.6

Another debate that we will not explore here but should be pointed out is ‘teaching’ or ‘pedagogical’
languages (Crestani & Sperber, 2010) vs. ‘real’ languages, which normally refers to languages that are
used in industry. Interestingly, teaching languages may have parallels in natural languages when one
considers Esperanto. Esperanto is an artificial natural language which has some features of a natural
language – just as pedagogical programming languages have some features of industrial programming
languages. Interestingly Esperanto even has some native (or first) speakers (Lindstedt, 2006). It should
also be noted that there is at least one programming language that is a subset of a natural language.
That language is – quite unsurprisingly – English. Inform 7 is a (highly domain-specific) programming
language for creating interactive fiction using a natural language syntax. Inform 7 draws on ideas from
linguistics and literate programming and is used in literary writing, games development and education.7

It is fairly well-known that fluent speakers of multiple natural languages can ‘pick up’ or acquire ad-
ditional languages with an ease that seems much greater than that of learning one’s first non-native
language. Many programmers would say the same for programming languages. Portnoff (2018) makes
a case that acquiring a second or subsequent programming language is even easier than it is for natural
languages as “they all implement the same set of control and data mechanisms in very similar ways, the
task of learning a second programming language for those with in-depth knowledge of a first program-
ming language is more like learning a dialect than an entirely new language” (2018, p. 39). Arguably
this makes learning one’s first programming language as easily as possible extremely important as it can
be seen as the main key to acquiring other languages, a trait common amongst, and very advantageous
for, professional software developers.

2.1. English and Programming Languages
In general non-native English speakers program and learn in English (in as much as one can pro-
gram in English), as almost all programming languages are designed using the English language as
a base (Veerasamy & Shillabeer, 2014). Additionally, most sources of documentation are in English (Li
& Prasad, 2005) as are most secondary sources of information such as Stack Overflow. Attempts to de-
velop programming languages using natural languages other than English have been few, and have not
gained popularity or use at university level teaching (Veerasamy & Shillabeer, 2014). However, many
non-native English speakers, despite using languages that have English keywords choose to use their

6http://www.ppig.org/news/2006-06-01/linguistics-and-programming-languages
7http://inform7.com/about/
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native language for comments, variable, method and function names.8

It is (probably) unlikely that a programming language will ever be created that is equivalent to a nat-
ural human language such as English, but being able to construct a computer program with a natural
language would be obviously advantageous. Natural language programming, where a high-level pro-
gramming language is either bypassed or constructed automatically from the input of natural language
expressions has been researched for many years but is not currently near a state of useful widespread
reality. For a review of such systems, see (Pulido-Prieto & Juárez-Martínez, 2017). However, imagine
if perfect natural (English) language programming was achievable today. We can take this to be an
extreme case along a continuum where at the opposite end programming languages have a syntax that
is completely random. It is quite possible that the programmer’s knowledge of English, or any other
natural languages for that matter, would be of little use and therefore it is possible that non-native and
native English speakers would be on an equal footing. Going back to a perfect (again English) natural
language programming reality, it is not hard to imagine that if one can’t speak English they have no
chance whatsoever in constructing a program. The current situation of high-level languages designed
in large part by English language speakers, with English keywords, and English resources, would put
non-native English speakers at a disadvantage, but one between these two extremes. Figure 1 depicts
this continuum and the hypothetical but plausible difficulty gap between native and non-native learners.

Language with
Randomly generated 

keywords and identifiers

Perfect Natural
(English) Lanugage

Compiler

High-level language
-English keywords

-English documentation
-English resources

easier

harder

difficulty gap

Native English speakers

Non-native English speakers

Figure 1 – A hypothetical difficulty gap between native and non-native English speakers grows as
one progresses from a language with randomly generated keywords and identifiers through a typical
(English) high-level language, through to a perfect (English) natural language compiler

How large this difficulty gap is, and what factors affect it is not well studied. Some influencing factors
such as the computer language being used would obviously play a role but we do not currently have
definitive answers for seemingly simple questions like: What is more difficult for non-native English
speakers to learn, Java or C? It is worth noting that such questions are reasonable because the differences
between computer languages, and therefore their differing relationships with natural languages can be
substantive; for instance one of the biggest differences between object-oriented and non-object-oriented
programming is the possibility to identify the actor of an action using purely syntactic means6. There is
some recent work that sheds some light on this that we discuss in Section 4.1.

Our lack of knowledge in this area is at least in part because educators are far from agreement on
what programming language is best for learning (and for whom), although this debate seems to have
gained less attention in recent decades (Becker & Quille, 2019). It is possible that the debate of what
language(s) are best for teaching will continue, perhaps indefinitely. However it is worth noting that
there is an obvious reason that introductory programming courses rarely use low-level languages like
assembly – it is accepted that it is too difficult and perhaps not that useful. Instead we use high-level
languages that are by definition more like natural language. This observation alone provides sufficient

8https://softwareengineering.stackexchange.com/questions/1483/do-people-in-non
-english-speaking-countries-code-in-english
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poiblí aicme DiaDuitDomhan{
poiblí statach folús príomh(Sreang[] args){

// Priontáil "Dia duit, Domhan" go dtí an fuinneog teirminéal
Córas.amach.priontáilln("Dia duit, Domhan");

}
}

Listing 1 – How HelloWorld.java might look with Irish keywords and identifiers

motivation to explore the relationship between programming and natural languages and specifically, how
this impacts the way that programming languages are learned.

2.2. An Example
Although to a native English speaker it may seem a somewhat trivial matter to have to deal with non-
English keywords and identifiers, consider the fact that in Java the “Hello World” program – traditionally
the first program a novice programmer writes – is almost entirely made up of keywords and identifiers.
Listing 1 shows what a HelloWorld.java program might look like with Irish language keywords and
identifiers, and a comment which is also in Irish.

Unless one reads Irish, it is probably not apparent at all what this program is, or what it would do. It
is not unreasonable to assume that to someone who doesn’t know English, or who has a limited grasp
of English, would have similar difficulties with the traditional ‘English’ version of the Hello World
program.

Anecdotally, the author has had conversations with a Greek colleague who has pointed that ironically, to
use LATEX, native Greek speakers have to learn the English names of Greek symbols such as delta (∆) in
order to typeset documents requiring these symbols. Although this may seem trivial, it is a real example
of an often overlooked barrier that non-native English speakers can face. It is likely that there are many
more examples such as this.

3. Programming Languages: Theories and the Human Brain
It might seem counter-intuitive that the small syntactic footprints of programming languages, with their
relatively simple and compact grammars, would translate into a lengthy and involved learning pro-
cess (Portnoff, 2018). Yet, citing (McCracken et al., 2001; Soloway, Bonar, & Ehrlich, 1983; Tew &
Guzdial, 2011) amongst others, Scott and Ghinea (2013, p. 1) concluded that “despite considerable re-
search into programming instruction since the inception of Computer Science as an academic discipline,
many learners have not acquired the desired level of competency”.

Evidence on the lack of theoretical approaches to teaching computer programming can be found in a
recent review of 5,056 introductory programming papers from the period 2003-2017 – which eventually
cited 735 papers – stating: “there are relatively few papers on theories of learning, with no obvious trends
across the period of our review” (Luxton-Reilly et al., 2018, p. 66). This paper also provided supporting
evidence that many papers on teaching programming don’t have a theoretical foundation. Only 19 of
the papers examined were coded as theory-related and the majority of these dealt with “learning styles”
which have been largely discredited as “pseudoscience, myths, and outright lies” (Kirschner, 2017,
p. 171).

Portnoff (2018, p. 38) also supported this view, stating:

CS educators, however, currently operate with no evidence-based cognitive model for how
students learn to program. When partial models have been invoked, they have generally pre-
supposed the involvement of psychological constructs – such as that “cognitive loads” are
lowered with drag-and-drop programming interfaces like Scratch or Alice – without having
done research (i.e., taking experimental measurements) to corroborate such assumptions.
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These are profound observations and insights when one considers the fact that learning programming
necessarily involves learning a new (written, artificial) language, and the process of teaching and learn-
ing new natural languages has been well studied. Even ‘language-agnostic’ introductory programming
courses that use pseudocode in essence require the learner to acquire a new language, and pseudocode
has been argued as an unsuitable choice for assessment (Cutts, Connor, Michaelson, & Donaldson,
2014).

Bypassing any intermediate theory, a team consisting of a psychologist, a neurobiologist, a linguist, as
well as computer scientists and software engineers, went straight to the source of programming learning
– the human brain – conducting a controlled study on brain function of 17 participants using functional
magnetic resonance imaging (fMRI)9 while they were comprehending short source-code snippets which
they contrasted with locating syntax errors (Siegmund et al., 2014). They found a clear, distinct ac-
tivation pattern of five brain regions, which are related to working memory, attention, and language
processing. The authors justly note that “Understanding program comprehension is not limited to the-
ory building, but can have real downstream effects in improving education, training, and the design and
evaluation of tools and languages for programmers” (2014, p. 378).

Writing about this study, Portnoff (2018, p. 36) reported: “The programmers in the study recruited parts
of the brain typically associated with language processing and verbal oriented processing (ventral lateral
prefrontal cortex). At least for the simple code snippets presented, programmers could use existing
language regions of the brain to understand code without requiring more complex mental models to be
constructed and manipulated.”

What this means for how novices learn to program remains to be seen. It should be noted that fMRI
studies such as this do have some threats to their validity – see (Siegmund et al., 2014, p. 385). If
such anatomical studies prove to be robust it is likely that new theory will need to be developed, and
new experiments carried out to test them, in order to inform the practice of teaching programming most
effectively for both native and non-native English speakers.

These results do support the work of Portnoff (2018) who as part of a MSc thesis (Portnoff, 2016), as
well as in his practice, argues that implicit (natural) language learning strategies are effective for teaching
programming languages to novices. Portnoff found that applying foreign (natural) language pedagogies
in programming instruction lead to a dramatic reduction in syntax issues with his students (Portnoff,
2018). He argues that the current prescriptive model of programming language instruction is at odds
with the implicit way that native, and second (natural) languages are acquired.

4. Barriers to Programming faced by Non-native English Speakers
Guo (2018) pointed out that non-native English speakers face a range of well-known challenges in
English-language classrooms in a wide range of disciplines including math, science, engineering,
medicine, and the humanities. These ranged from cognitive to affective to social. Guo also pointed
out that often these challenges, such as needing to mentally translate concepts into one’s native language
– especially in real time while listening to a lecture – increases extraneous cognitive load and decreases
comprehension. Even difficulties with formulating verbal questions, and anxiety about a lack of English
fluency makes these students less likely to ask clarifying questions. Bouvier et al. (2016) noted that the
contextual background of a problem can also impact cognitive load (regardless of the native language
of the student) and that computer science has unique characteristics compared to other disciplines, with
the consequence that results from other disciplines may not apply to computer science, thus requiring
investigation specifically within computer science. It should also be noted that different languages of in-
struction can hinder conducting and replicating research into these questions, further hampering progress
in the area (Zingaro et al., 2018).

9fMRI (Functional Magnetic Resonance Imaging) measures brain activity by detecting changes associated with blood flow.
This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area of the brain is in
use, blood flow to that region also increases.
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Given these well-accepted issues faced by non-native English speakers across many disciplines, and
within computer science, it is not unrealistic to hypothesise that these learners may face barriers spe-
cific to learning to program. To investigate this, Guo (2018) conducted a survey of 840 responses from
programmers spanning 86 countries and 74 native languages, identifying several barriers faced by non-
native English speakers. Guo found that these programmers faced barriers with: reading instructional
materials; technical communication (listening and speaking); reading and writing code; and simultane-
ously learning English and programming.

These respondents also expressed a desire for instructional materials to use simplified English without
culturally-specific slang, more use of visuals and multimedia, more use of code examples that are cul-
turally agnostic, and the incorporation of inline dictionaries. Additionally, some respondents reported
that programming actually served as a motivating context for them to learn English better and helped
clarify their logical thinking about natural languages, which provides further support for researching
these barriers and how to help students overcome them.

Similarly, but perhaps counterintuitively, Li and Prasad (2005) found that native English speakers pre-
ferred examples and practice much more than non-native English speakers, and that non-native English
speakers preferred lectures more than native English speakers. They found this to be consistent with
their observations, but felt that this was possibly more of a cultural issue than a language issue. Further
research needs to be carried out to explore these issues.

Supporting the theory that non-native English speakers face more severe barriers than native English
speakers when programming, Dasgupta and Hill (2017) found that novice users who code with their
programming language keywords and environment localised into their home countries’ primary lan-
guage (German, Italian, Norwegian Bokmål, Portuguese, and Brazilian Portuguese) demonstrated new
programming concepts at a faster rate than users from the same countries whose interface was in the
default of English. In developing Spoken Java, a semantically identical variant of Java that is easier to
say out loud, Begel and Graham (2005) found several differences between how native and non-native
English speakers vocally express in code. An example is the use of Prosody (volume, timbre, pitch, and
pauses). They found that the semantic use of prosody was limited mostly to native English speakers
– many non-native English speakers who speak English typically use the prosody of their native lan-
guage, in which pauses, in particular, do not hold the same meaning. This affected how spoken Java was
interpreted for instance when dealing with brackets and punctuation.

In the following subsections we explore two very different classes of barriers faced by non-native English
speakers when learning to program. It should be stressed that these barriers are present for both native
and non-native English speakers, but they might affect these groups differently. These two classes are
only two of potentially many more. First we look into a core aspect of programming – dealing with
keywords and syntax. We then look into other aspects of the code base – error messages and code
comments.

4.1. Syntax, Keywords and Reference Errors
Miller and Settle (2019) explained how novice programmer reference errors are consistent with the
use of metonymy, a form of figurative expression in human communication where the name of an at-
tribute is substituted for the name of something closely associated with that attribute; for example ‘suit’
being used as a substitute for ‘business executive’. Miller (2016) provided three possible knowledge
sources for why novice programmers produce reference-point errors that are consistent with the use of
metonymy. Some of these knowledge sources may differ between native and non-native English speak-
ers, implying that these groups of students may experience the complex relationship between natural
and programming languages differently. One of these sources involves misconceptions about notional
machines which brings up a question on if native and non-native English speakers may form differ-
ent models of notional machines. Miller and Settle (2019, p. 2) note that “In contrast to the relative
ease with which humans comprehend figurative language such as metonymy, it presents difficulties with
human-to-machine communication, particularly in the domain of programming”. They also showed that
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the presentation of examples can affect the construction of references in student solutions. They suggest
that reference-point errors may be the result of well-practiced habits of communication rather than mis-
conceptions of the task or what the computer can do. As the habits of communication between native
and non-native English speakers differ to varying extents, it is most likely that these two groups of stu-
dents will face different difficulties, or difficulties of varying severity, when it comes to constructing and
interpreting programs that contain references influenced by this mechanism.

An examination of keywords in high-level programming languages showed that they are also formed
using mechanisms analogous to those observed in the English – for instance, the choice of keywords by
language designers is similar to neologism formation in English (Eastman, 1982). A neologism is a new
word; it may be either a newly created word or an existing word whose meaning has changed (1982).
This process is also related to the choice of identifier names by the programmer. Eastman also noted a
conspicuous exception; the use of mirror words such as fi to close an if statement. This might not
be as trivial as it sounds. Mirror keywords can evoke strong reactions. Writing about fi, Don Knuth
stated: “I don’t really like the looks of fi at the moment; but it is short, performs a useful function,
and connotes finality, so I’m confidently hoping that I’ll get used to it” (1974, p. 266). In the same
paper he stated that Alan Perlis “has remarked that fi is a perfect example of a cryptic notation that
can make programming unnecessarily complicated for beginners” (1974, p. 266). These reactions are
based on the fact that those doing the reacting correctly recognised that they are in fact mirror words. A
non-native English speaker might miss this. Therefore it is possible that in some cases, native and non-
native English speakers may react differently (and possibly strongly) to keywords. If these groups react
differently, it would not be surprising if they find learning and using them to be different experiences. If
how these groups use a language differ, it is likely that how they would best learn that language would
differ also.

Eastman (1982) put forward a good reason why mirror words could seen as nonsense – one could al-
most take them as being random. Interestingly, Stefik and Siebert (2013) carried out four experiments on
(largely native English speaking) novice programmer accuracy rates using six programming languages:
Ruby, Java, Perl, Python, Randomo, and Quorum. Randomo was designed by randomly choosing key-
words from the ASCII table. They found that that Perl and Java – languages using a more traditional
C-style syntax – did not afford accuracy rates significantly higher than Randomo, a language with ran-
domly generated ‘gibberish’ keywords. However they found that Quorum, Python and Ruby – languages
which do deviate from a traditional C-style syntax – did. One of the main conclusions drawn by Stefik
and Siebert (2013) was: syntax does matter to novices and accuracy rates vary by language. Given
this it is quite probable that the experience of non-native English speakers would also vary according to
language. The question is, how would their experience differ? It is interesting that the results for Ran-
domo were not worse than some well-established languages. This could lead to a hypothesis that at least
for these languages, the experience of non-native English speakers may be similar to native speakers.
Clearly more work needs to be carried out in this area.

Keyword and identifier names also share similarity to natural language words in that they are often
compound. Additionally, abbreviations (and acronyms) are not uncommon in both natural language and
programming keywords and identifiers. Keywords made up of parts of existing words can be regarded as
blends – something between compounds and acronyms. Suffixes and prefixes are also occasionally used.
Guo (2018) provided references that Non-native speakers report struggling to decipher the meanings of
code identifiers, especially when they are abbreviated; for instance the C function getch() stands for
“get character”. Liblit, Begel, and Sweetser (2006) found that programmers choose and use names (for
programming constructs) in regular, systematic ways that reflect deep cognitive and linguistic influences.
Blackwell (2006) found several categories of vocabulary used in Java documentation revealing extremely
complex terminology with similarly complex underlying concepts. These findings also indicate that non-
native English speakers may face substantial difficulty in navigating code and documentation.
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4.2. Programming Messages and Code Comments
A specific facet of the programming experience that can be affected by natural language ability is deal-
ing with programming messages – error, warning, or other messages resulting from errors with code that
result in what are commonly called ‘compiler error messages’. These messages have been shown to be
a barrier to learning for students, including both native and non-native English speakers (Becker et al.,
2018; Ko, Myers, & Aung, 2004). Arguably these messages, in an ‘English’ programming language,
should be comprised of English text that is comprehensible to English speakers, and for native English
learners should be easy to interpret, allowing for effective error resolution. An effective message there-
fore, by definition, should be presented in plain English as much as possible. It is simple to conclude that
if native English speakers have trouble with these messages, non-native speakers would have at least as
much trouble as native speakers, and in most cases, more. Ko et al. (2004) noted that attempts to trans-
late APIs and error messages have faced a lack of adoption since programmers cannot as easily search
for online help using the localised terms. It should also be noted that some of the difficulties with error
messages such as ‘cascading’ error messages (Becker et al., 2018) likely affect native and non-native
English speakers similarly. However, other difficulties likely affect these groups differently.

Programming messages are a part of the programmer-facing code base on the output side. They are
intended to be read and interpreted by humans. Similarly, another aspect of programming, but on the
input side, are code comments. Like error messages, code comments are an essential part of program-
ming, and somewhat differently to writing code itself, are primarily intended to be read and interpreted
by other humans. Comments are written largely in natural language, and therefore require a high de-
gree of fluency in the language being used. The author is unaware of any studies that investigate how
non-native English speakers programming in ‘English’ programming languages write comments. The
most related work found was Stefik and Siebert (2013) who reported that when creating single-line
comments, non-programmers rated the English words note and comment highly. Interestingly, non-
programmers rated the traditional C-style single line comment denotation \\ approximately the same as
note and comment. Similar to the discussion in Section 4.1, one could hypothesise that using note
and comment would be more disadvantageous for non-native English speakers. Interestingly though,
the results for \\ could lead to a hypothesis that there are ways of denoting comments that may be sim-
ilar in usefulness to native and non-native English speakers. Again, it is clear that more work is needed
on this front.

5. Questions
In this section we enumerate some of the questions that arise from the topics discussed in this paper and
can be used for the basis of future work in the area.

1. How similar are the processes of learning programming languages and natural languages?

(a) How is learning a programming language different for native and non-native English speak-
ers?

(b) It is obvious that natural languages are much more difficult to parse by computational means
than programming languages. This implies that the human parsing mechanism works quite
differently to computational parsing. Does that mean that humans (regardless of natural
language) experience a ’natural’ difficulty in parsing programming languages because of
biology?

2. Do non-native English speakers have more difficulty programming specific languages compared
to native English speakers?

(a) If so, for what languages is the experience for non-native English speakers more similar to
that of native English speakers?

3. What techniques can be borrowed from natural language acquisition that would improve program-
ming language acquisition?
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(a) Would non-native English speakers benefit from these techniques in the same way as native
English speakers?

4. Apart from the programming language itself, how do different mediums of instruction, and differ-
ent tools such as IDEs impact how non-native English speakers learn to program?

5. How do specific facets of the programming experience such as keywords, syntax, comments and
error messages affect non-native English speakers?

6. Future Work
There have been attempts to create programming languages with non-English keywords, but none have
been widely adopted, and attempts to translate APIs and error messages have faced a similar lack of
adoption (Guo, 2018). There are also non-English programming environments for languages such as
Arabic (Al-Salman, 1996), but these have not been adopted widely (Veerasamy & Shillabeer, 2014).

Inspired by Dasgupta and Hill (2017), the author has piloted a study with approximately 120 non-
native English speakers using an online IDE. These students are all native Chinese (Mandarin) speakers
enrolled in an introductory programming course as part of Computing/Engineering degrees. The next
phase involves a study where similar students will be provided the same IDE with both English and
Chinese (Mandarin) interfaces. The IDE currently allows programs to be written in C, Java, and Prolog.
The planned research questions are:

1. Do non-native English speakers receiving programming instruction in English prefer to use an
IDE in their native language when given the choice?

2. What barriers does the IDE present to non-native English speakers who are learning to program?

3. Is there a correlation between performance and IDE language for non-native English speakers?

7. Conclusion
Learning to program is fraught with challenges and there have been numerous studies over several
decades exploring the barriers that novices face when learning to program. However, how non-native
English speakers learn to program, and how this differs from native English speakers, is an understudied
area.

This paper set out several of the high level issues that non-native English speakers may face when
learning to program. There is mounting evidence that there are commonalities between how natural
and programming languages are learned, but very little has been carried out on how this would affect
non-native English speakers.

It is probable that the barriers that non-native English speakers experience when learning to program
are different to those that native English speakers face. Many of these barriers may affect both native
and non-native English speakers, but could affect non-native English speakers to a greater extent. Most
likely, there are barriers to learning programming that are faced by non-native English speakers that
native English speakers do not face.

This paper presented an overview of some of the challenges that non-native English speakers face when
learning to program. It also presented several unanswered questions that may lead to future research
that may help these students overcome such challenges. It also presented the author’s planned work in
the area of how the language of the programming environment affects non-native English speakers. It
should be noted that this is not a comprehensive literature review, but the author has been collecting
papers on the relationship between natural and programming languages and on how non-native English
speakers learn to program for years and this paper cites about half of that collection. The interested
reader is guided to the following as entry points for further reading Guo (2018); Pal (2016); Portnoff
(2018, 2016).
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Particularly in a time when broadening participation in computing is seen as a primary objective, the
community can no longer afford to overlook the unique barriers faced by non-native English speakers
who want to learn to program.
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