

Toward meaningful algorithmic music-making for non-programmers

Matt Bellingham
School of Performing Arts

University of Wolverhampton
matt.bellingham@wlv.ac.uk

Simon Holland
Music Computing Lab
The Open University

s.holland@open.ac.uk

Paul Mulholland
Knowledge Media Institute

The Open University
p.mulholland@open.ac.uk

Abstract
Algorithmic composition typically involves manipulating structural elements such as indeterminism,
parallelism, choice, multi-choice, recursion, weighting, sequencing, timing, and looping. There exist
powerful tools for these purposes, however, many musicians who are not expert programmers find
such tools inaccessible and difficult to understand and use. By analysing a representative selection of
user interfaces for algorithmic composition, through the use of the Cognitive Dimensions of Notations
(CDN) and other analytical tools, we identified candidate design principles, and applied these
principles to create and implement a new visual formalism, programming abstraction and execution
model. The resulting visual programming language, Choosers, is designed to allow ready visualisation
and manipulation of structural elements of the kind involved in algorithmic music composition, while
making minimal demand on programming ability. Programming walkthroughs with novice users were
used iteratively to refine and validate diverse aspects of the design. Currently, workshops with
musical experts and teachers are being conducted to explore the value of the language for varied
pragmatic purposes by expressing, manipulating and reflecting on diverse musical examples.

Introduction
Algorithm composition can be defined as the ‘partial or total automation of music composition by
formal, computational means’ (Fernández and Vico, 2013), and typically involves structural elements
such as indeterminism, parallelism, choice, multi-choice, recursion, weighting, and looping (Baratè,
2008). At PPIG 2014 (Bellingham et al., 2014) we presented a review of existing tools, such as Max
(Puckette, 1991) and SuperCollider (McCartney, 2002), for manipulating these and other elements of
music. This review, using the Cognitive Dimensions of Notations framework (Green and Petre, 1996),
resulted in the following findings. First, we found that most existing software requires the user to have
a considerable understanding of programming constructs—represented either graphically (e.g Max,
Pure Data) or textually (e.g. SuperCollider, ChucK, Csound): such constructs require a significant
learning overhead. Second, in some software, users are required to have an understanding of musical
notation and/or music production equipment such as mixing desks and patchbays. Third, several
systems imposed working practices unconducive to compositional processes. Fourth, in some cases
the user was unable to define, or subsequently change, the musical structure. Finally, complex visual
design in graphical programming languages led to patches with multiple connections, making them
difficult to read and navigate. These findings led to the development of a prototype visual
programming language (Bellingham et al., 2017) designed to allow structural elements of the kind
involved in algorithmic music composition to be readily visualised and manipulated, while making
little or no demand on programming ability. This system, called Choosers, centres around a novel
non-standard programming abstraction (the Chooser) which controls indeterminism, parallelism,
choice, multi-choice, recursive data, weighting, and looping. We have performed two programming
walkthroughs (Bellingham et al., 2018) to test the ability of self-taught music producers without
programming skills to use Choosers to carry out a range of rudimentary algorithmic composition
tasks; to identify usability and user experience problems in the current design; and to identify tensions
and trade-offs in the interaction design of the system. These experiments were carried out using a
Wizard of Oz interface supported by a fully implemented back-end written in SuperCollider. Through
this empirical work we demonstrated the ability of non-programmers to work with this type of
notation. We are now interested in understanding the range of musical material that can be expressed
using Choosers.

PPIG 2019 ppig.org

84

This paper considers the ability of Choosers to represent musically meaningful pieces while
promoting structural malleability at the surface. To enable understanding of the more musically
meaningful examples that form the central part of the paper, we first present a brief overview of the
principal elements of Choosers.

Choosers; annotated practical examples
Sound samples are shown in boxes, and can be auditioned by clicking on them. Samples can be
assembled into sequences using arrows, shown in Figure 1. Samples in a sequence play in the order
indicated by the direction of the arrows. Only a single arrow can enter or exit each element in a
sequence. This deliberate limitation reflects the fact that parallelism and choice are dealt with
elsewhere in the language. Boxes and sequences can be put inside other boxes, thereby packaging
them into a single unit.

Figure 1 - Samples shown in boxes, and sequence shown using arrows.

Soundable Chooser
Boxes referring to samples or sequences can be snapped together vertically to create what are known
as Choosers. Figure 2 shows a Chooser with two lanes, each containing a sample. The number in the
nose cone indicates that, at run time, just one of the lanes will be selected at random (subject to the
restrictions described below). On different runs, different choices may be made. By manipulating the
number in the nose cone, any number of lanes from 0 to 2 can be chosen randomly to play
simultaneously. A Chooser can have any number n of lanes. By manipulating the number in the nose
cone, any number of lanes from 0 to n can be chosen randomly at run time and played simultaneously.
Each lane has a weight associated with it; in Figure 2, changing the weight of one of the lanes to 2
would result in that lane being twice as likely to be chosen as the other. Any sample can be set to loop
indefinitely when selected on a particular run, or to play just once by turning the lane’s loop setting on
or off. Alternatively, a finite number of loops can be specified by adding a number inside the loop
icon. Indefinite looping of a single sample may not always be desired, and for this reason we now
introduce Time Choosers.

Figure 2 - A Soundable Chooser which allows control over indeterminism, parallelism, choice,

multi-choice, weighting, and looping.

Time Choosers and Full Choosers
Figure 3 shows a Time Chooser, containing a duration (typically measured in bars or beats), attached
to the bottom of a Soundable Chooser. This creates a Full Chooser, or just a Chooser for short. When
the Full Chooser shown in Figure 3 is played, if the looping drums or bass samples are chosen on a
given run, they will not play indefinitely but will be cut off after 4 bars by the Time Chooser. If the
Time Chooser duration is cleanly divisible by the sample duration, every repetition of the sample will
run to completion, but if the Time Chooser duration is not cleanly divisible by the sample duration

PPIG 2019 ppig.org

85

(for example, if the bass sample in Figure 3 had a duration of 3 bars), the Time Chooser would cut
playback mid-sample. This is called a hard stop.

Figure 3 - A Full Chooser, consisting of a Soundable Chooser on the top and a Time Chooser on the

bottom. The duration of the Soundable Chooser is moderated by the Time Chooser.

In Figure 3, the drums and bass samples are set to a hard stop, and the vocal sample is set to a soft
stop. In contrast to a hard stop, when a Time Chooser’s duration has elapsed, a chosen lane with a soft
stop will continue to play until the end of its current loop. A Time Chooser can be used alone as part
of a sequence—however, when used in this way it will simply result in a rest of the specified duration.
A Time Chooser's nose cone can be set to either one or zero. If set to one, a single time lane will be
chosen at run time. If it is set to zero, no time lanes will be selected and the Soundable Chooser will
run as though there is no Time Chooser. This allows for quick low viscosity changes of arrangement,
with the possibility of infinite playback if the Soundable Chooser lanes are set to loop. If the
Soundable Chooser is not set to loop, the sample(s) will play and the Chooser will be released when
they have finished playing, regardless of length.

Choosers uses ‘infinity’ as a maximal setting in three contexts; weight, time-lane duration, and
Soundable Chooser nose cone. The effect of infinite weight, as seen in Figures 3 and 4, can be
explained using a ‘priority boarding’ analogy. In Figure 3, the vocal sample has infinite weight and so
must be the first selection, leaving one further selection to be made between the drums and bass
samples. If the nose cone number is lower than the number of infinite-weighted lanes then the
selection will only occur between the infinite-weighted lanes, and each lane has an equal weighting. If
a lane has a weight of zero it has ‘no ticket’ and cannot be selected, regardless of the nose cone
number. Infinite duration in a time lane is an alternative to running a Soundable Chooser with no
corresponding Time Chooser. Finally, when used in a Soundable Chooser’s nose cone, infinity will
select all available lanes.

We will now present examples of Choosers in practice to explore the range of musical structures that
can be expressed and how musically meaningful variations can be made and auditioned in range of
different genres. In an attempt to avoid dancing about architecture we offer audio from the examples
in this paper . 1

Example 1
Figure 4 shows a simple example in the rock genre. The sequence shown in Figure 4 is populated by
the named Choosers shown underneath them; note that Choosers may be named via a fin at the top of
each Chooser, with these names used to refer to them elsewhere in the sequence. Thus, the sequence
shown at the top of Figure 4 sounds the same as a sequence created by drawing a line directly between
the two Choosers. Note that a named Chooser can be referenced from multiple locations in a visual
program, meaning that changes to the named Chooser will be reflected across all referents.

1 https://figshare.com/s/d2edaf6486812ff1f596

PPIG 2019 ppig.org

86

https://figshare.com/s/d2edaf6486812ff1f596

Multiplication notation (e.g. ‘x2’, as seen in the sequence at the top of Figure 4) is very commonly
used and understood by musicians (e.g. lead sheets, chord charts) and it allows for low-viscosity
auditioning.

Figure 4 - An example showing sequence, nesting, naming via a fin at the top of the Choosers, and

nondeterministic duration.

In a classic paper on the nature of musical creativity and algorithmic music composition, Bruce Jacob
(1996) considers the ‘hard work’ of iteratively trying various options before making a final choice. A
goal of our system is to support the user during this ‘hard work’ phase to make quick, impactful, and
non-destructive changes, and to audition the results. By limiting options, surfacing key parameters,
and maximising combinatorial usage, the possible interactions between the settings of Soundable and
Time Choosers can make the results more varied than might be imagined. In precision-timed rock
examples, the different effects of hard and soft stops provide a wide range of musical results. For
example, consider the Chooser named ‘myVerse’ in Figure 4; the Soundable Chooser nose cone is
currently set to 2, meaning that two of the three lanes will be selected when it is run. If the number
were set to 0 then no lanes would be selected, but as the Time Chooser’s nose cone is set to 1 then a
duration will be selected and the Chooser will run silently for that duration. If the Soundable Chooser
nose cone is set to 2 and the Time Chooser nose cone is set to 0 then no duration will be selected,
meaning that the Soundable Chooser will run without being stopped prematurely. If both nose cones
are set to 0 then the Chooser will be skipped. Note that the Time Chooser nose cone can only be set to
either 0 or 1; multiple durations cannot be selected. A soundable file can be used in a Time Chooser
lane and, if selected, the sample’s length will become the duration used by the Time Chooser. An
example of this can be seen on the lower right of Figure 4; a marimba sample is used in a lane in the
Time Chooser. The sample can be used for duration only, or for both duration control and playback,
by setting the sample to play or mute via the speaker icon.

Example 2
When there is one or more levels of nesting then considerably more complex structures and
meaningful modifications become possible. The next example, shown in Figure 5, shows a piece of
music in which the Chooser named ‘top’ refers to the two instruments (piano and violin) which are, in
turn, populated by named Choosers. The piano is split into ‘lefthand’ and ‘righthand’ Choosers, which

PPIG 2019 ppig.org

87

each select one of two possible samples. Note that the ‘lefthand’ and ‘righthand’ child Choosers are
set to not loop, while the ‘piano’ Chooser is set to loop. If we focus on ‘lefthand’, we can see that the
‘piano’ Chooser will trigger the choice of one of two samples for playback. Once complete, the
‘lefthand’ Chooser will be triggered again due to the loop setting of the ‘piano’ Chooser, with the
potential for a different sample choice. An alternative would be for the ‘lefthand’ Chooser’s lanes to
be set to loop; this would result in the choice of one sample which would then loop continuously.

The Choosers shown in Figure 5 can be manipulated to yield significant musical changes, such as:

- Changing the nose cone of ‘top’ or ‘piano’ to 1 will result in the selection of just one lane.
Alternatively, setting the weight of a lane to 0 will remove it from the selection.

- The ‘...hand’ Choosers can be set to loop, and the corresponding lanes in the ‘piano’ Chooser
set to not loop. This will result in the selection and looping of one sample, rather than
continual reselection. Additionally, the nose cone values of the ‘...hand’ Choosers can be set
to 0 (no selection) or 2 or infinity (playback of both samples simultaneously). The same
techniques can be used with the ‘violin’ Chooser.

Figure 5 - Piano and violin example. The ‘lefthand’ pattern is three beats long and the ‘righthand’

pattern is four beats long, meaning that they will align every twelve beats. The ‘violin’ sample is eight
beats long.

A central aspect of music is timing. By adding Time Choosers to the nested structure shown in Figure
5 we are able to manipulate time at different levels; an example is shown in Figure 6. Here we see that
the ‘lefthand’, ‘righthand’, and ‘violin’ Choosers have been converted into Full Choosers by the
addition of Time Choosers, with the durations mirroring the duration of the samples. Note that the
‘violin’ Chooser now has an added blank lane in the Soundable Chooser with a weight of 2; if selected
a blank lane will ‘play’ silently for the duration set by the Time Chooser, which in this case will
introduce a rest of 8 bars.

PPIG 2019 ppig.org

88

Figure 6 - The piano and violin example shown in Figure 5 with additional Time Choosers added to
moderate duration. Note the use of a blank lane in the violin Chooser; if selected this lane will result

in a rest (silence) for the duration of the Chooser.

As shown, Figure 6 builds on Figure 5 by adding duration controls, meaning that the user can now
change these durations to make structural changes to the music. Examples of these changes include:

- Changing the ‘violin’ Time Chooser’s duration to 10 beats; if one of the eight-beat-long
samples is selected this will introduce a two-beat rest before the next selection, and if the
blank lane is selected there will be a 10 beat rest;

- Changing the duration of ‘lefthand’ to 4 beats; this will introduce a 1-beat rest at the end of
each sample, and will align the duration with ‘righthand’. A duration of 5 beats will introduce
a 2-beat rest, and so on;

- More interestingly, changing one of the ‘...hand’ Choosers to a fractional value can create
phase music effects. For example, changing ‘lefthand’ to 3.5 beats creates an alternating
syncopated/synchronised pattern. A duration of 3.05 beats creates a slower, tape-phase-style
shift.

Example 3
The final example, shown in Figure 7, includes two doubly-nested Choosers. In order to clearly show
the nesting hierarchy we present the Choosers in columns to be read from left (parent) to right
(children), but the design of Choosers allows users to freely place objects as they wish. The example
in Figure 7 shows beat-level durations in the child Choosers of the ‘perc’ Chooser (upper row).

PPIG 2019 ppig.org

89

Figure 7 - An example showing doubly-nested Choosers. The nesting hierarchy has been visualised in
columns and rows for the reader’s benefit; in fact, Choosers and sequences may be laid out freely.

PPIG 2019 ppig.org

90

Consider the 'hats' Chooser shown in the upper right of Figure 7; when run it will select and play one
of three samples without looping and, after a duration of either 1 or 2 beats, will be triggered again by
the looping lane in its parent Chooser (‘perc’). This, in combination with the ‘kick’ and ‘toms’
Choosers, forms the rhythmic pattern for the piece. The ‘electricpiano’ Chooser contains two nested
Choosers, each selecting one of three electric piano samples; the 'electricpiano' Chooser will trigger
new selections every 8 or 12 beats. Finally, the ‘glock’ Chooser is a singly-nested Chooser which will
play one of three glockenspiel samples every 24 or 48 beats. The parent Chooser, ‘all’, has a total
duration of 64 beats, after which a hard stop message will immediately stop all lanes. The structure of
the piece can be changed as we have seen in the previous examples:

- Durations for each Full Chooser can be changed via Time Chooser lanes; for example, the
'hats' Chooser's durations can be shortened to create a denser, more rapidly-changing pattern.
Note that the duration control for the electric piano part is in the 'electricpiano' Chooser,
which triggers a selection from child Soundable Choosers (‘top’ and ‘bottom’) when it is
triggered by the ‘all’ Chooser. Compare this to the ‘perc’ Chooser, in which the child
Choosers ('hats', ‘kick’, and ‘toms’) control the duration of each separate musical part. Each
child Chooser makes a selection of both sample and duration, plays the selected sample for
the selected duration, and is then triggered again by the ‘perc’ Chooser's looping lanes.

- Nondeterministic choices can be controlled via Chooser nose cones and weights. Lanes can be
given a zero weight to remove them from selection, and infinite weight can be added to ensure
the selection of one or more lanes given a sufficient nose cone value. For example, consider
the changes that could be applied to the ‘all’ Chooser on the far left of Figure 7; the
Soundable Chooser nose cone value could be reduced to 2, meaning that two of the three
lanes will be selected. The user could change the weight of ‘perc’ to infinity, resulting in the
selection of ‘perc’ plus one other lane. If desired, the weight of ‘glock’ could be changed to 0
to remove it from selection.

- Let us now consider a specific change to the drum pattern in the upper right of Figure 7. If the
user wanted to remove ‘toms’ from selection they could do so in one of four ways; the ‘toms’
lane in the 'perc' Chooser could be given a weight of zero; the Soundable Chooser nose cone
of the ‘toms’ Chooser could be given a weight of zero (resulting in a rest of either 5 or 10
beats if the Time Chooser is not also set to zero; if both nose cones are set to zero the Chooser
will be skipped completely); or the weights of all three lanes in the ‘toms’ Chooser could be
set to zero.

- If the user wanted one glockenspiel sample to be selected and played repeatedly, rather than a
new selection each time, the ‘glock’ lane in the ‘all’ Chooser could be set to not loop, and the
lanes in the ‘glock’ Chooser set to loop.

- The ‘all’ Chooser has a Time Chooser with a duration of 64 beats, with all Soundable Chooser
lanes set to a hard stop. This sets the total length of the piece. If the user wanted infinite
playback they could change the Time Chooser nose cone to zero; set the duration to infinity;
or remove the Time Chooser from ‘all’.

Work-in-progress - control panel, variables
Choosers were designed to be ‘tweakable’; they surface musically useful tools which allow for
meaningful structural changes to be performed while minimising both viscosity and premature
commitment. One musically useful example is to allow the user to change the length of a sample, and
the start point for playback, via a control panel that can be opened for any sample in the system. A
sketch of the control panel is shown in Figure 8.

PPIG 2019 ppig.org

91

Figure 8 - A control panel to access trim (downwards arrows) and anchor point (upwards arrow).

The control panel allows the user to make a quick manual adjustment before re-running the system to
audition the changes. The panel contains standard playback controls such as volume and pan.
Alongside these the user can make use of a trim control, combining control over the length of the
sample via ‘top’ and ‘tail’ controls (downwards-pointing arrows on the top of the horizontal line) and
the starting playback position of the sample shown via an anchor control (the upwards-pointing arrow
underneath the horizontal line). The user can set an optional grid, set to ‘12’ in Figure 8, which
introduces a visual grid and to which the trim and anchor controls will conform. The grid can be
disabled by clicking on the number, allowing freehand control of the trim and anchor settings. One
notable use of this system is Clapping Music by Steve Reich, which can be performed making use of
the Chooser in Figure 8.

An extended version of the system, beyond the scope of this paper, puts this and many other features
under programmable control by end users. This extension allows variables to be assigned to numbers,
samples, sequences, or choosers, and allows such variables to be used in diagrams wherever those
elements might appear (e.g. trim and anchor points, nose cone values, weights, durations, and choices
of sample). An interesting feature of these extensions is that simple textual expressions that alter the
value of variables may appear in Soundable Chooser lanes. Such expressions are executed when the
corresponding Soundable Chooser lane is selected and played, and are subject to the same
nondeterministic and time-structuring controls as the soundable elements. In this way, a rich variety of
nondeterministic and highly structured outcomes can be manipulated.

Conclusions
In earlier research (Bellingham et al, 2014, 2017, 2018) we identified and then implemented a number
of design principles to allow non-programmers access to algorithmic composition tools. Specifically,
we sought to leverage parsimony in order to enhance learnability; to surface musically meaningful
actions, and to make them quick and easy; to allow both bottom-up and top-down construction; and to
make use of progressive disclosure to allow for advanced use without harming usability for beginners.
In this paper we have illustrated these principles in the context of exploring the range of
non-deterministic algorithmic musical expression facilitated, the kinds of structural manipulations
supported, and the extent to which structural malleability has been brought to the surface.

The design of Choosers allows for user preference where possible; for example, it allows for both
top-down and bottom-up construction and low-viscosity changes in structure, leading to the simple
graphical sequencing design shown in Figures 1 and 4. Figure 4 shows a sequence which is then
populated via the named Choosers, which is an alternative to drawing a sequence arrow directly
between the two Choosers. The latter would enhance the closeness of mapping; reduce hard mental
operations; increase role expressivity; and reduce hidden dependencies. However, the version shown
in Figure 4 presents a different set of tradeoffs; it is better suited to more complex Choosers and
arrangements; viscosity is reduced and visibility enhanced; the closeness of mapping to the musical

PPIG 2019 ppig.org

92

arrangement is improved; and both juxtaposability and hard mental operations are improved when
used in complex examples.

Choosers is capable of making complex music, with no limit in principle to the length of a piece, time
resolution, or depth of nesting. The next phase of the project will be to test Choosers with expert users
and educators, and we welcome feedback on the design thus far.

References
Baratè, A. (2008) Music Description and Processing: An Approach Based on Petri Nets and XML,

INTECH Open Access Publisher [Online]. Available at
http://www.researchgate.net/profile/Adriano_Barate/publication/221786820_Music_Description_a
nd_Processing_An_Approach_Based_on_Petri_Nets_and_XML/links/004635268b80f75f6b00000
0.pdf.

Bellingham, M., Holland, S. and Mulholland, P. (2014) ‘A Cognitive Dimensions analysis of
interaction design for algorithmic composition software’, Boulay, B. du and Good, J. (eds),
Proceedings of Psychology of Programming Interest Group Annual Conference 2014, University
of Sussex, pp. 135–140 [Online]. Available at
http://www.sussex.ac.uk/Users/bend/ppig2014/15ppig2014_submission_10.pdf.

Bellingham, M., Holland, S. and Mulholland, P. (2017) ‘Choosers: designing a highly expressive
algorithmic music composition system for non-programmers’, 2nd Conference on Computer
Simulation of Musical Creativity [Online]. Available at http://hdl.handle.net/2436/621151.

Bellingham, M., Holland, S. and Mulholland, P. (2018) ‘Choosers: The design and evaluation of a
visual algorithmic music composition language for non-programmers’, Church, L. and Basman, A.
(eds), Proceedings of the 29th Annual Workshop of the Psychology of Programming Interest
Group - PPIG 2018 [Online]. Available at
http://www.ppig.org/sites/ppig.org/files/PPIG-2018-proceedings.pdf.

Bullock, J., Beattie, D. and Turner, J. (2011) ‘Integra Live: a new graphical user interface for live
electronic music’, International Conference on New Interfaces for Musical Expression [Online].
Available at
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.449.533&rep=rep1&type=pdf.

Fernández, J. D. and Vico, F. (2013) ‘AI methods in algorithmic composition: A comprehensive
survey’, Journal of Artificial Intelligence Research, pp. 513–582 [Online]. Available at
http://www.jair.org/papers/paper3908.html.

Green, T. R. and Petre, M. (1996) ‘Usability Analysis of Visual Programming Environments: a
’Cognitive Dimensions’ Framework’, Journal of Visual Languages and Computing, vol. 7, pp.
131–174.

Jacob, B. L. (1996) ‘Algorithmic Composition as a model of creativity’, Organised Sound, Cambridge
University Press, vol. 1, no. 3, pp. 157–165.

McCartney, J. (2002) ‘Rethinking the Computer Music Language: SuperCollider’, Computer Music
Journal, vol. 26, no. 4, pp. 61–68 [Online]. Available at
http://dx.doi.org/10.1162/014892602320991383.

Puckette, M. (1991) ‘Combining Event and Signal Processing in the MAX Graphical Programming
Environment’, Computer Music Journal, The MIT Press, vol. 15, no. 3, pp. 68–77 [Online].
Available at http://www.jstor.org/stable/3680767.

Wilson, S., Cottle, D. and Collins, N. (2011) The SuperCollider Book, MIT Press.

PPIG 2019 ppig.org

93

http://www.researchgate.net/profile/Adriano_Barate/publication/221786820_Music_Description_and_Processing_An_Approach_Based_on_Petri_Nets_and_XML/links/004635268b80f75f6b000000.pdf
http://www.researchgate.net/profile/Adriano_Barate/publication/221786820_Music_Description_and_Processing_An_Approach_Based_on_Petri_Nets_and_XML/links/004635268b80f75f6b000000.pdf
http://www.researchgate.net/profile/Adriano_Barate/publication/221786820_Music_Description_and_Processing_An_Approach_Based_on_Petri_Nets_and_XML/links/004635268b80f75f6b000000.pdf
http://www.sussex.ac.uk/Users/bend/ppig2014/15ppig2014_submission_10.pdf
http://hdl.handle.net/2436/621151
http://www.ppig.org/sites/ppig.org/files/PPIG-2018-proceedings.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.449.533&rep=rep1&type=pdf
http://www.jair.org/papers/paper3908.html
http://dx.doi.org/10.1162/014892602320991383
http://www.jstor.org/stable/3680767

