

Undergraduate students’ learning approaches
and learning to program.

Melanie Coles
Bournemouth University

mcoles@bournemouth.ac.uk

Keith Phalp
Bournemouth University

kphalp@bournemouth.ac.uk

Abstract
This study uses the Revised Two Factor Study Process Questionnaire (R-SPQ-2F) to explore
undergraduate students’ approaches learning to program. The expectation being that students using
deep learning approaches will gain higher programming grades than students who use surface
approaches. There is strong evidence to support the hypothesis that deep approaches are related to
higher grade outcomes, and surface approaches to lower. There is also strong evidence to support the
hypothesis that students who ‘hate’ programming do less well than those that do not. There is
however, no evidence that previous programming experience has an impact upon the student
programming grade.

1. Introduction
Discussions about the difficulties involved in learning to program and the best way to teach
programming have been part of the research field for decades, with educators reporting difficulties
and failure, and dropout rates being high for programming courses (Bennedsen & Caspersen, 2007;
Dijkstra, 1982; Hare, 2013; Jenkins, 2002; Mavaddat, 1976; Robins, Rountree, & Rountree, 2003;
Simon et al., 2009; Watson & Li, 2014). Recognition that computer programming appears difficult
for a high percentage of students, that many students settle for a pass grade, that students grasp
programming principles (if ever) at widely varying times and that a very small percentage of students
perform extremely well and demonstrate a keen interest in computing, have been reported since
programming teaching began in the 60s (Mavaddat, 1976).

If programming is difficult to learn then a corollary of this is a higher failure rate for programming
than for other undergraduate subjects. It is an often cited outcome that learning to program is
notoriously difficult (Bornat, Dehnadi et al. 2008; Jenkins 2002, Robins et al 2003) however only a
few papers fully explore the suggested higher failure rate and attempt to develop evidence to support
this supposition (Bennedsen & Caspersen, 2007; Watson & Li, 2014). The findings of both papers
suggest the majority of pass rates are in the range 50-80%, with an average of 67.7%.

Learning to programming involves a range of related, but also contentious elements, all of which need
to align should a student hope to do well. Jenkins identified a number of factors that relate
specifically to the domain of programming and what makes it difficult to learn rather than to the more
commonly explored student aptitude for learning to program. Such factors involve the multiple skills
and processes required, the language used to teach the students, the educational novelty of students
learning to program, the student interest, the image and the pace of teaching (Jenkins, 2002). Many
factors intertwine and have an impact upon the student individually: motivation, previous experience,
time spent programming, aptitude for programming and student attendance. Environmental factors
such as the teaching style, the programming language used, the assessment mechanism and a range of
pedagogical interventions can also influence student performance. This paper focuses on and explores
students’ motivation and learning approaches when studying programming, and also includes
students’ emotional response to programming and their previous background.

PPIG 2019 ppig.org

30

2. Background
Understanding students’ approaches to learning and exploring how such approaches relate to the
module outcomes for students is clearly valuable information. If we can understand and impact upon
students’ motivation, can we influence students’ success rates? Many interventions used in the
teaching of programming may work because they alter the students’ motivation and even that an
intervention itself is taking place, may alter the students’ motivation.

2.1 Motivation and Learning Approaches
Students’ motivation towards their studies seems an obvious factor that could impact upon their
outcomes on any module regardless of subject. If a student is motivated to succeed there is more
likelihood of them achieving that success. However could motivation play a greater role in students
learning to program than it does in other courses? Programming needs persistence and practice,
students must be motivated to spend time practicing, even if there is no explicit assignment (Jenkins,
2001). The combination of students’ motives to learn and the strategy they use determines their
learning approach (Everaert, Opdecam, & Maussen, 2017).

Motivation is an abstract concept that is difficult to measure in any meaningful way (Jenkins, 2001),
behaviour can be observed or questions can be asked but the true motivation behind behaviour is
never certain. Jenkins results showed that the main motivators for students were firstly aspiration, but
closely followed by the desire to learn, both classed as extrinsically motivated, rather than the intrinsic
motivation of interest in the subject itself. There was little evidence from any of Jenkins’ questions
that students were interested in programming, with almost 50% of students only doing programming
because it was compulsory – something that he cites (and is probably backed up by most
programming instructors) as a depressing observation (Jenkins 2001).

Students who are more intrinsically motivated are found to perform better, with higher levels of
intrinsic motivation leading to higher programming results (Bergin and Reilly 2005). Students with
intrinsic motivation usually undertook to learn programming in their own time, had prior
programming experience and displayed higher capabilities. Such students engaged in programming
meaningfully, showed persistence in playing with code and would apply what they had learnt to real
world problems, compared to others who approached their work in a more trial-and-error or impulsive
fashion (Carbone, Hurst, Mitchell, & Gunstone, 2009). Bergin and Reilly suggest that extrinsic
motivation does not appear to impact upon results, so suggesting that the use of grades, rewards or
student comparisons are not useful for motivating students and that educator efforts should focus on
improving students intrinsic motivation (Bergin and Reilly 2005).

Carbone et al found that students could experience a change in motivation, they could start off
intrinsically motivated but then experience a change so becoming extrinsically motivated and vice-
versa. This change in motivation could be triggered by a range of factors including: no reward for
extra effort, encountering difficulties they could not resolve, perceived waste of time on tasks, and
lack of technical skills. The technical skills were further catalogued into: an inability to identify
problems, ineffective tinkering, inability to break programming problem down, lack of problem
solving skills, and limited debugging skills. Carbone et al also identified some personal skills that
impacted upon students’ motivation: poor time management, independence (over reliance on others)
and attitude toward programming errors (Carbone et al., 2009). It is interesting how changeable and
sensitive motivation appears to be to external factors, such that reward (in the form of a grade) could
alter a student’s motivation (in both directions), how undertaking additional effort and perceiving no
reward (again from the marker) could impact negatively on a student’s motivation.

PPIG 2019 ppig.org

31

2.2 Emotion
The student’s emotional response to learning to program has not received much research attention
(Chetty & Van der Westhuizen, 2013) possibly due to the scientific, engineering domain and the
stereotypical lack of emotion in these subject area. The stereotype associated with the logical
approach, for example Mr Spock from Star Trek, seems to exist in isolation from emotion, yet it is
evident from interacting with students learning to program that they experience a range of strong
emotions. They “hate programming”, they “love programming”, they find it “frustrating”,
“challenging”, “rewarding” all of which indicate a strong emotional response. It would seem an
obvious corollary that such emotion would have an impact upon the student’s motivation and so their
programming performance. More successful students appear to have a more positive view of
programming (Simon et al., 2009), and whilst this does seem evident the further question maybe - is it
the higher grades that promote the liking or the liking that promotes the higher grades?

Simon et al in a survey of 697 students enrolled in seven courses at five institutions found that nearly
half (48%) of the 2553 comments received where classified as positive. The two most positive
categories listed by students were using the words fun/cool or interesting/rewarding. Nearly a third of
the comments made were negative (32%), with the most often response being hard/difficult and
frustrating/stressful (Simon et al., 2009). Does this third that make negative comments go in some
way to explain the high failure rate of programming undergraduates; is there a link between this
negative emotional response and a lower grade?

Many of my students say things like programming is “tough but rewarding”, “very difficult”, “too
complicated” and the one I have heard the most often “I hate programming”. Emotions can
profoundly affect students’ thoughts, motivation and action, positive emotions such as enjoyment of
learning may generally enhance academic motivation. Although negative emotions are not always
detrimental, for example task-related anger may trigger motivation to overcome obstacles (Pekrun,
Goetz, & Titz, 2002).

2.3 Previous background
One of the most important variables affecting general university performance is past academic results
(Alam, Billah, & Alam, 2014). Byrne and Lyons found some significance both in student’s
mathematics and science results from their Irish Leaving Certificate and their programming
examination score, although no such significance was found with English or Foreign Language results
(Byrne & Lyons, 2001). The higher grades in both maths and science correlated with students
programming scores. Other studies have also found that a maths background correlates with students
programming performance (Cantwell-Wilson & Shrock, 2001). So is it that students who have an
aptitude for science and maths also have an aptitude for programming or is it that the students who
undertook the maths and science (an option) were better prepared to succeed at programming?

What about students’ previous exposure to programming, a logical conclusion is that students who
could already program would do better than those who had not studied it before. Research does seem
to support his suggestion, that experience with programming does benefit students (Hagan &
Markham, 2000), but the specific language experienced may be the important factor (de Raadt,
Hamilton, Lister, & Tutty, 2005).

PPIG 2019 ppig.org

32

3. Hypotheses
Following on from the initial literature review four main hypotheses were developed:

H1: Students with a deep approach to learning will gain higher grades in programming than
students with a surface approach

H2: Students with a surface approach to learning will gain lower grades than students with a
deep approach

H3: Students who can already program or who have studied a programming before starting
university will gain higher grades than students who have not.

H4: Students who have negative emotions towards programming will gain lower grades than
students who do not.

4. Methodology
4.1 Instrument Used
The Revised Two Factor Study Process Questionnaire (R-SPQ-2F) was used, this questionnaire is
suitable for use to evaluate how students learn or how they approach learning. The revised version of
the questionnaire has two main scales Deep Approach (DA) and Surface Approach (SA) with four
sub-scales: Deep Motive (DM), Deep Strategy (DS), Surface Motive (SM) and Surface Strategy (SS),
shown in the Table 1 (Biggs, Kember, & Leung, 2001; de Raadt et al., 2005). Students adopting a
surface approach build their view from facts and details of activities with the aim of reproducing
material rather than making theoretical connections, while those adopting a deep learning approach
seek to understand the material they are studying.

 Surface Deep

Motive
fear of failure, emphasis is
external, from demands of
the assessment

intrinsic interest,
emphasis is internal

Strategy narrow target, rote learn
memorises information

maximise meaning
relates knowledge

Table 1: From Biggs (2001) and de Raadt (2005)

R-SPQ-2F was used, but rather than the generic form it was modified to apply specifically to learning
to programming, thus

1. I find that at times studying gives me a feeling of deep personal satisfaction
becomes

1. I find that at times studying programming gives me a feeling of deep personal satisfaction.
 and

 7. I do not find my course very interesting so I keep my work to the minimum.
becomes

7. I do not find my programming unit very interesting so I keep my work to the minimum.

This was to focus the questionnaire specifically on programming rather than on general strategies. As
the strategies used would be expected to differ for different disciplines studied. Additional questions
were also added to the questionnaire to explore students’ previous experience with programming

I can already program

I have completed a programming course (at school or college)

PPIG 2019 ppig.org

33

A further question was added to explore students’ general emotional response to programming:

I hate programming.

This question was used as it is the most used by the students themselves.

All questions had a five point Likert Scale response, using alpha characters:

A — this item is never or only rarely true of me
B — this item is sometimes true of me
C — this item is true of me about half the time
D — this item is frequently true of me
E — this item is always or almost always true of me

4.2 Process
The questionnaires were issued to all students present in lectures and seminars on third week of term,
so students had only had three weeks of teaching. There were 293 students on the course, of these

− 36 students did not complete both the coursework and the exam, for a variety of reasons and
these were removed from the study

− 121 students completed the questionnaire and both the coursework and the exam
− 136 did not complete the questionnaire, or did not complete it fully (no signature or not all

questions answered). Some students were present but elected not to complete it, others were
not present.

The students all undertook the same module (unit in our terminology); Principles of Programming
(PoP), which is an introductory programming unit, taught in the first semester of the students’ first
year, no previous programming knowledge was assumed. The students had a two hour lecture and a
two hour lab session each week, for 12 weeks. These lectures covered a foundational programming
topic, starting with variables and data manipulation, then selection, loops, file reading and writing and
finishing with sorting and searching. For the coursework students had to upload multiple tasks every
other week (four different sets of tasks), and the end of the 12 week block there was an exam. The
four pieces of coursework together give 50%, with the earlier ones being weighted less (5%, 5%, 20%
and 20%) of the overall unit total and the exam gives the other 50%.

All questionnaires were then put away until after the module had finished.

4.3 Threats to validity
Some students either elected to not complete the questionnaires or were not present when the
questionnaires were issued and such self-selection may have an impact upon findings. Was there a
difference in achievement between the students who completed the questionnaire and those that did
not? The analysis can be seen in table 2 below.

 Coursework Exam Unit Total
Completed 71.0 71.9 71.4
Did not complete 60.6 61.6 61.1

Table 2: Unit Averages

There was a difference for both coursework and exam scores individually and also obviously for the
unit total. This may indicate the difference in attendance vs non-attendance in the unit outcomes for
the students, those not attending are already engaging in behaviour that may impact negatively on
their grades. Students who were present and elected to not complete the questionnaire may be those
less interested in the academic discipline and helping with research, or possibly more concerned about
the relationship of completing the questionnaire to their programming marks.

PPIG 2019 ppig.org

34

As students are self-reporting what they say their approach to learning is and what it really is may
differ. Also the fact that they were completing the research study for one of their unit tutors may
impact upon their responses to questions, they may have responded as they thought was ‘best’, even
though students were assured the questionnaires would not be looked at until after they had finished
the unit.

5. Results
The first exploration of the results was to correlate the response to the overall unit average as can be
seen in Table 3 below.

Approach Correlation Significance
deep approach 0.3374 .000154
surface approach -0.3584 .000055
I could already program before starting university 0.1432 .11713
I had completed a programming course before starting university 0.1077 .239664
I hate programming -0.3269 .000263

Table 3: Correlation of questionnaire answers to unit total

So the deep approach is positively and significantly correlated with the student’s unit total and surface
approach is negatively correlated, both of which support the H1 and H2 hypotheses. However what is
interesting is that neither the students’ (reported) ability to be able to program or their having
previously studied programming had a significant correlation with the unit total. So not supporting
the H3 hypothesis. Students’ emotional response, the “I hate programming” question, is also
negatively correlated with the unit total, so supporting hypothesis H4.

5.1 Further Analysis
A more detailed analysis of the data was explored, examining the relationship between each of the
sub-scales and the unit assessment element, i.e. either coursework or exam; this can be seen in Table 4
below.

Approach Against Correlation Significance
Difference between deep - surface unit total 0.3968 .00001

deep motive coursework 0.3592 .000052
deep motive exam 0.3139 .000455
deep motive unit total 0.3760 .000021
deep strategy coursework 0.1569 .085679
deep strategy exam 0.2245 .013303
deep strategy unit total 0.2165 .017073

surface motive coursework -0.2636 .003563
surface motive exam -0.3307 .000219
surface motive unit total -0.3359 .000173
surface strategy coursework -0.2142 .018426
surface strategy exam -0.2886 .001359
surface strategy unit total -0.2849 .001595

Table 4 : Correlation of sub-elements to unit assessment

As the questions for both the deep and the surfaces approaches could all be scored at either A or E, the
difference between the scores was calculated (DA minus SA) to see if the difference would also

PPIG 2019 ppig.org

35

correlate to student outcomes. As can be seen in Table 4 above this proved significant, so whilst
some students may just have been entering As and Bs almost at random there was evidence that
students with a high deep approach score and low surface approach score would have improved
outcomes in programme.

Looking at the different groups of questions that make up the deep or surface approaches there are
more nuanced results. It is interesting to note that there is strong evidence for a relationship between
deep motive and coursework, exam and unit total outcomes, which are all significant. However the
correlation between deep strategy and coursework is not statistically significant, and there is weaker
significance for deep strategy and both exam and unit total. Also of note is that there is only weak
evidence for surface strategy to coursework.

6. Discussion
6.1 Deep Approaches
So clearly having an intrinsic interest in programming improves outcomes for students on an
undergraduate programming course. Although it could be that those attending and so filling in the
questionnaire were more likely to be those interested in programming. However the deep strategies
employed appear to have less of an impact upon the outcomes for students. Deep strategy: the five
questions that make up this group are:

− I find that I have to do enough work on a programming topic so that I can form my own
conclusions before I am satisfied.

− I find most new programming topics interesting and often spend extra time trying to obtain
more information about them.

− I test myself on important programming topics until I understand them completely.
− I spend a lot of my free time finding out more about interesting programming topics which

have been discussed in different classes.
− I make a point of looking at most of the suggested readings that go with the programming

lectures.

Is it just that such strategies do not apply entirely to programming as a subject? Whilst the last
question, following up on reading, is possibly not high on a programmers list of strategies as the staff,
the internet and other students are possibly more likely to be used as a source of support. The other
four questions are all stereotypical behaviours associated with the archetypal programmer: writing
extra code and playing with code until you understand it, writing code for fun in spare time. It is
interesting that these results suggest that such behaviour is not important to university outcomes for
coursework and exams in programming.

6.2 Surface Strategy
Surface strategy when applied to coursework does not appear to be negatively correlated. The five
questions that make up this group are:

− I only study seriously what’s given out in class or in the course outlines.
− I learn some things by rote, going over and over them until I know them by heart even if I do

not understand them.
− I generally restrict my programming study to what is specifically set as I think it is

unnecessary to do anything extra.
− I believe that lecturers shouldn’t expect students to spend significant amounts of time

studying programming material everyone knows won’t be examined.
− I find the best way to pass examinations is to try to remember answers to likely questions.

PPIG 2019 ppig.org

36

Such approaches clearly do not have an impact on the quality of the coursework. The coursework
submitted by students does focus on a particular topic being covered that week – so for example of
writing loops, potentially the assessment used does not suffer when surface approaches are used?
Strategy as applied to such coursework would not particularly suffer from a surface approach as once
done the student moves onto the next task, that is they become task focused.

6.3 Previous Experience
Previous experience does not impact on unit outcomes, this suggests that approach to study is more
important than previous experiences. Previous experience may also have an impact upon both
learning approaches and upon emotion before starting their undergraduate course. Many students
have anecdotally reported poor experiences of programming at school or college, therefore previous
experience could also negatively impact upon results.

6.4 I hate programming
Possibly it is of no surprise that emotional response is negatively correlated with performance. The
questionnaire was distributed early in the unit, therefore the response cannot be related to students’
coursework grades as they had not yet been returned or potentially to the perceived difficulty of the
unit as students do tend to be comfortable with the concept for the first few weeks of programming.
However students who had met programming at school previously and who had struggled with it may
already have a negative emotional response to programming that does impact upon their unit grades.

6.5 Relationship to Other Subjects
Whilst the questionnaire was focused on student approaches to programming, and there is evidence
that the approaches adopted by students do impact upon their programming grades, the obvious
further question is … do these approaches apply to all subjects?

Approach Against Correlation Significance
deep approach Application of Programming 0.3182 0.00045
surface approach Application of Programming -0.3230 0.00034
deep approach Networks and Cyber Security 0.1611 0.08157
surface approach Networks and Cyber Security -0.3481 0.00011
deep approach Systems Analysis and Design 0.1107 0.23315
surface approach Systems Analysis and Design -0.3053 0.00078
deep approach Computer Fundamentals 0.1826 0.04781
surface approach Computer Fundamentals -0.2875 0.00163
deep approach Data and Databases 0.1830 0.04734
surface approach Data and Databases -0.2392 0.00915

Table 5: Correlation of questionnaire answers to other unit totals

There is still strong evidence for deep approaches correlating positively to the second semester
programming unit, there is only weak or no evidence for deep approaches correlating to other
subjects. Not necessarily to be unexpected as the questionnaire was specifically focused on
programming. However what is interesting is the strong evidence that surface approaches negatively
relate to all unit outcomes. This suggests that students who use surface approaches for programming
use such strategies for all units, and that this has an impact upon their success at university.

PPIG 2019 ppig.org

37

7. Conclusion
So whilst there is strong evidence for H1, H2 and H4 from the analysis of the questionnaires, there is
no evidence to support H3. This does lead to further questions:

− Is there a relationship between previous experiences of programming and emotional
response?

− How can students’ approaches to learning be impacted by the tutors?
− Can different assessment strategies impact upon students’ approaches?
− Could explicit discussion of students’ approaches help them adopt more useful strategies?

Motivation and the learning approaches used by students do appear to impact upon their success rates
on an introductory programming module. Deep approaches have a positive impact specifically on
programming grades, there is less evidence for other subjects. Surface approaches have a negative
impact upon grades for programming and also extend across other subjects, evidencing that such
strategies are to the detriment of student performance.

8. References
Alam, M. M., Billah, M. A., & Alam, M. S. (2014). Factors Affecting Academic Performance of

Undergraduate Students at International Islamic University Chittagong (IIUC), Bangladesh.
Journal of Education and Practice, Vol.5(No.39).

Bennedsen, J., & Caspersen, M. E. (2007). Failure Rates in Introductory Programming. The SIGCSE
Bulletin, Volume 39(Number 2).

Bergin, S. and R. Reilly (2005). The influence of motivation and comfort-level on learning to
program. Psychology of Programming Interest Group (PPIG 17). Sussex University.

Biggs, J., Kember, D., & Leung, D.Y.P. (2001). The Revised Two Factor Study Process
Questionnaire: R-SPQ-2F. British Journal of Educational Psychology, 71, 133-149.

Byrne, P., & Lyons, G. (2001). The Effect of Student Attributes on Success in Programming. Paper
presented at the ITiCSE, Canterbury, UK.

Cantwell-Wilson , B., & Shrock, S. (2001). Contributing to Success in an Introductory Computer
Science Course: A Study of Twelve Factors Paper presented at the ACM SIGCSE 2001,
Charlotte, NC, USA.

Carbone, A., Hurst, J., Mitchell, I., & Gunstone, D. (2009). An Exploration of Internal Factors
Influencing Student Learning of Programming. Paper presented at the Australasian
Computing Education Conference (ACE 2009), Wellington, New Zealand.

Chetty, J., & Van der Westhuizen, D. (2013). " I hate programming " and Other Oscillating Emotions
Experienced by Novice Students Learning Computer Programming. Paper presented at the
EdMedia: World Conference on Educational Media and Technology, Victoria, Canada.

de Raadt, M., Hamilton, M., Lister, R., & Tutty, J. (2005). Approaches to learning in computer
programming students and their effect on success. Paper presented at the Higher education in
a changing world Research and development in higher education, Sydney, Australia.

Dijkstra, E. W. (1982). How do we tell truths that might hurt? ACM SIGPLAN Notices, 17(5), 13-15.
doi:10.1145/947923.947924

Everaert, P., Opdecam, E., & Maussen, S. (2017). The relationship between motivation, learning
approaches, academic performance and time spent. Accounting Education.
doi:10.1080/09639284.2016.1274911

PPIG 2019 ppig.org

38

Hagan, D., & Markham, S. (2000). Does It Help to Have Some Programming Experience Before
Beginning a Computing Degree Program? Paper presented at the ITiCSE 2000, Helsinki,
Finland

Hare, B. K. (2013). Classroom Interventions To Reduce Failure & Withdrawal In Cs1 – A Field
Report Journal of Computing Sciences in Colleges Volume 28(Issue 5).

Hawi, N. (2010). Causal attributions of success and failure made by undergraduate students in an
introductory-level computer programming course. Computers & Education, Volume 54.

Jenkins, T. (2001). The Motivation of Students Programming. Paper presented at the ITICSE,
Canterbury, UK.

Jenkins, T. (2002). On the Difficulty of Learning to Program. Paper presented at the LTSN-ICS
Conference, Loughborough University.

Mavaddat, F. (1976). An experiment in teaching programming languages. ACM SIGCSE Bulletin,
8(2), 45-59. doi:10.1145/382220.382470

Pekrun, R., Goetz, T., & Titz, W. (2002). Academic Emotions in Students’ Self-Regulated Learning
and Achievement: A Program of Qualitative and Quantitative Research. Educational
Psychologist.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and Teaching Programming: A Review and
Discussion. Computer Science Education, Vol 13(No 2.), p 137-172.

Simon, B., Hanks, B., McCauley, R., Morrison, B., Murphy, L., & Zander, C. (2009). For me,
programming is ... Paper presented at the ICER '09, Berkeley, California.

Watson, C., & Li, F.W.B. (2014, 06/21/2014). Failure rates in introductory programming revisited.
Paper presented at the Proceedings of the 2014 conference on Innovation & technology in
computer science education.

PPIG 2019 ppig.org

39

