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Abstract
The availability, affordability, and portability of Eurorack format modular synthesizers has lead to an
increase in their use in live, improvised performance. Decreasing prices and physical size, coupled
with increasing reliability has meant modulars are finally leaving the studio and appearing on stage.
While modular synthesizers are typically prepatched (configured at leisure) ahead of time, contemporary
synthesists are adopting livepatching — wiring up a modular — as an integral part of their performance
practice. This paper uses the cognitive dimensions framework to analyse the programmatic content of
modular livepatching, in the context of the author’s experience with modular synthesizers for performing
improvised noise.

1. Introduction
Modular synthesizers are finally leaving the esoteric world of academic electronic music studios and
moving into concert halls, rock venues, and dodgy experimental performance spaces (Paradiso, 2017;
Auricchio & Borg, 2016). The key innovation has been the gradual adoption of the Eurorack format
for modular synthesizers, developed by Doepfer in the late 1990s, which are physically smaller than
classical modulars of the 1960s (Moog and Roland modules were 5U high and used large “1/4 inch”
(6.35mm) plugs and sockets; Eurorack modules are 3U high and use 2.5mm plugs and sockets). Relying
on electronics of the 1990s and beyond (rather than the 1960s) means Eurorack modulars are cheaper
and lighter than traditional modulars (as well as smaller), greatly easing their practicality for musical
and sound-art performance (Rossmy & Wiethoff, 2019).

Figure 1 A Quite Noise: Winter Livepatching

This paper interprets modular synthesizer patch-
ing — particularly “livepatching” where modules
are (re-)connected as part of a public noise-art
performance1 — as a live physically-embodied
domain specific programming language (see Fig-
ure 1. Modular synthesizers are essentially do-
main specific analogue computers; configuring
analogue computers by patching modules to-
gether and adjusting parameters is domain spe-
cific programming, distinct from “playing” the
synthesizer by triggering notes from a keyboard.
“Livepatching” — adding and changing connec-
tions between modules and adjusting the param-
eters of those modules — is the modular ana-
logue of music performance by live programming
— a.k.a. “livecoding” (McLean, Rohrhuber, &
Collins, 2014; Hutchins, 2015).

The next section briefly overviews modular syn-
thesis and gives the context of my experience livepatching improvised modular noise. Section 3 then

1A Quiet Noise: Winter, rDc, Dunedin, 14 June 2019. Further illustrations and video available from https://
dunedinsound.com/gigs/a-quiet-noise-winter/ by fraser@dunedinsound.com under CC-BY-SA 4.0.

PPIG 2019 ppig.org

138



considers livepatching using the cognitive dimensions framework, section 4 discusses some related
work, and section 5 concludes.

2. Livepatching Eurorack
For the last five years I’ve been livecoding, improvising, and livepatching as half of “Selective Yellow”,
an experimental improvisation duo of indeterminate orthography drawing on New Zealand’s heritage
of experimental music practice (Russell, 2012; McKinnon, 2011) that seeks to recreate (electronically)
all the worst excesses of free jazz with all the enthusiasm of antisocial teenagers meeting their first
MOS6851 (Wilson & Noble, 2014). Selective Yellow performances typically employ a number of
different synthesizers or sound generators as well as modular synthesizers, ranging from digital toys
(Kaosscilators, Buddhamachines) to semi-modular analogue and MIDI digital synthesizers, played with
a variety of controllers (wind controllers, monome grids, knob boxes etc) — while eschewing a primary
role for digital audio workstation software and computer-based virtual instruments. Since Selective
Yellow rehearses and performs only a few times each year, we’re probably only Grade 4 (Nilson, 2007).

Figure 1 shows the configuration of typical modular synthesizer — a smaller version of the modular I
used in a recent Selective Yellow performance. The modular rack is in front of the performer, who is
interacting with a separate control surface (Beatstep Pro sequencer). A couple of smaller standalone
synthesizers are to either side of the main modular. There is a tangle of patch cables on the modular,
some from the sequencer to the modular proper, the majority interconnecting modules in the rack.

Figure 2 shows a simple modular patch. On the left a MIDI module is providing a regular clock signal;
this signal is being used to control the sequencer module next to it. The outputs from the sequencer (a
gate signal and a pitch control voltage) are then used to control the Edges oscillator bank module. The
“MIX” audio output of Edges is linked into the audio input of the Wasp filter; the cutoff frequency of the
filter is modulated by two separate LFOs from the Quadruple LFO module. Finally the filter’s output is
patched into the “Outs” module, which can then be connected to a terrifyingly large amplifier.

Figure 2 Example modular patch. Screenshot of modularGrid.com. From left to right the modules are
MIDI (as clock source); micro-sequencer; Edges oscillator bank; Wasp filter; Quadruple LFO; Outputs.

The dynamics of textual livecoding — performance programming to produce music — using relatively
traditional textual programming languages and editors or development environments has been well ex-
amined (McLean et al., 2014; A. Blackwell, McLean, Noble, & Rohrhuber, 2014; Magnusson, 2014).
One of the goals of Selective Yellow has been to transfer that aesthetic from the disembodied, virtual,
digital world of programming languages to the embodied, tangible, analogue world of modular synthe-
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sis. Our approach is similar to Hutchins (2015) in following classical livecoding practice (Nilson, 2007):
as much as possible starting with an empty, unpatched synthesizer; performing the patching either where
it can be seen directly by the audience (Figure 1 was taken from the audience less than two metres from
the performers) or, in larger venues, indirectly projecting an image of the modular to the audience; and
explicitly focusing on the programmatic aspects of patching — connecting modules via patch cords.

Modular livecoding is centred on two main activities “patching” and “tweaking” (Bjørn & Meyer, 2018).
Patching is constructing circuits by connecting modules together, and tweaking (also “twiddling”) in-
volves adjusting the settings of the patched modules by e.g. turning the knobs or operating other controls
on their faceplates, or adjusting settings on control surfaces. Neither patching nor tweaking are really
direct analogues of playing a traditional musical instrument: tweaking comes closest but is often more
tentative or exploratory.

Modular synthesizers can also include traditional performance-oriented controllers such as joysticks,
light sensors, monome grids, or theremins, and via MIDI or OSC, can have access to essentially any
contemporary digital performance controller. This gives rise to a third potential activity — that of
an instrumental soloist where much of the expression of the generated sound is under the performer’s
immediate control. (Even without such controls, there is always the option of performing a solo by
“playing” the pitch control knob of an oscillator and filter cutoff or mixer attenuation in real time. I
find this soloing activity qualitatively different to adjusting module parameters to configure their place
in a larger patch: tweaking an oscillator pitch control while gurning like a 70s guitar hero is direct and
immediate, much more like playing a conventional musical instrument, while configuring a module by
turning a knob that controls the amount of LFO modulation to be applied to the pitch is much more
indirect and delayed, and much more like programming.

3. Cognitive Dimensions
The Cognitive Dimensions framework (Green, 1989; Green & Petre, 1996) analyses notations of any
kind, including but by no means limited to data or code visualisations and programming languages. For
example, the framework has been used to compare and contrast Ableton Live and the ChucK program-
ming language (A. F. Blackwell & Collins, 2005) and to evaluate the design of a tangible programming
language (A. F. Blackwell, 2003); earlier I used this framework to interrogate programming with the
LittleBits SynthKit (Noble, 2014).

The Cognitive Dimensions framework is a collection various “dimensions” that can be used qualitatively
to evaluate a design. The framework is flexible in that there is no canonical set of dimensions, rather
existing dimensions can be adopted and new dimensions proposed to suit the task at hand. Following
A. F. Blackwell (2003), in this section I evaluate livepatching under twelve commonly-used dimensions,
writing the name of the dimension in boldface and the key words of the analysis in italics.

Medium The medium of expression is primarily the patch cables that link modules; the action of
livepatching is ultimately the manipulation of patch cables. The medium of expression also involves
the configurations, programs, or knob settings of individual modules. Module parameter knobs are also
manipulated in livepatching — more time may be spent tweaking knobs to adjust fine details of a patch
rather than the higher-level (and more visible) module patching itself.

Inasmuch as livepatchers (like other Eurorack synthesists) typically select and combine modules to con-
figure their own unique modular synthesizer, this is also part of the medium of expression: the choice
of modules, and their layout within rack cases. Unlike patching and knob twiddling, actually building
modular synthesizers is not typically part of a livepatched modular performance.

Unlike some other tangible interfaces, patching locations are necessarily constrained to the various
inputs and outputs on each module, and knob settings are likewise constrained to the options offered
by each module. Both livepatching and twiddling expression is transient, as cables can be patched or
modules twiddled at any time. The transience of the patching is important: as the name implies, it is the
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livepatching, rather than the knob twiddling, that distinguishes a livepatched modular performance from
a more typical “prepatched” modular performance — where modules parameters will be adjusted, and
sounds triggered e.g. using sequences or other gestural controllers, but where the patching is primarily
fixed before performance.

Both twiddling and patching are based on the absolute position of modules within a rack, and of inputs
and outputs within a module.

Activities The key livepatching activity is incremental construction and then modification of patches,
by connecting modules with patch cables, and also modification of module parameters by tweaking
the parameter knobs. This is essentially exploratory design — how exploratory depends on both the
courage and ignorance of the synthesist: courage to try something when they’re not sure of the result,
and ignorance to increase the likelihood of not being sure of the result.

While modular synthesists may use transcription to record patches and module settings, I have not
transcribed settings as part of Selective Yellow performances.

Figure 3
Oscilloscope.

Visibility To livepatch a modular synthesizer, the physical synthesizer and
patch cables must be to hand: in principle, then, the patch is always visible.
Unfortunately this principle is not realised in practice: where “spaghetti code” is
a metaphor, “spaghetti patching” (or “rat’s nests”) are the rule rather than the ex-
ception (see figure 1). While a judicious use of different colours of patch cables
and careful module placement within a rack can help mitigate this, it is in prac-
tice difficult to “read” a complex modular patch without tracing each individual
patch cable — under stage lighting, tracing may mean physically following the
path of a cable by touch rather than sight (a novel sense of tangible interface).

Most modules are designed so that the settings of their knobs and switches are
visible, at least given sufficient lighting of the performance space (either ambient
light, or e.g. small LEDs illuminating the modular). Reasonable visibility of the
modular itself is required to successfully patch outputs to inputs. Some modules
backlight input and output sockets, mostly to look cool, although this does assist
livepatching on stage.

Modules may have other visual outputs — from individual LEDs and 7-segment
displays right up to embedded OLED screens (see Figure 3) — to make at least
some of their internal state visible. Even individual LEDs can be surprisingly
useful: particularly for low frequency oscillators (LFOs) which are primarily
used to control other modules. Often the amount of LFO modulation taken into
a module will governed by a separate knob: being able to see where the LFO is
in its cycle (maximum, minimum, or somewhere in between) can help setting the
right levels to create a particular audio effect.

Diffuseness Any given modular will have a fixed physical size. Most modular
cases are designed to fit into standard 19" wide racks, each module occupying 3U of rack space. Indi-
vidual modules are moderately sized ranging from about 1cm wide to as much as 30cm or more. Thus
modular patches are relatively compact because they have to fit within the available hardware. Even
though modulars are larger than most laptops, they are physically smaller than e.g. a pair of large LCD
panels used by a professional programmer — and of course, while a program in most languages can
be much larger than the available screen real estate, that is not possible with actual hardware. Con-
versely, the entirety of a modular patch is immediately accessible to the synthesist, whereas editing most
programs requires first mapping some parts of the program into the available screen space.
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Figure 4
Verbtronic Module.

The density of interaction items (input and output sockets, knobs, LEDs etc)
varies somewhat across modules, and is limited by the physical size of 2.5mm
jacks, LEDs, and knobs. The highest practical density is around one interaction
item per couple of square centimetres, with some larger modules being signifi-
cantly more diffuse — in Figure 1, the left-most “MIDI” module (19 controls in
40cm2) is significantly more dense than the central “Edges” module (26 controls
in 130cm2). Individual interaction items also vary in size from jack sockets and
thin knobs e.g. up to MIDI sockets, LED screens, or knobs that are bigger than
usual — either to offer finer control than a smaller knob, for aesthetic reasons, or
because twiddling a big knob is somehow more fun than twiddling a smaller one
(see Figure 4).

Viscosity Patch cables can be unpatched and repatched between modules, re-
sulting in relatively low viscosity. Adjusting module parameters by adjusting
knobs is pretty much as direct as possible — the limit being less in actually mak-
ing changes (viscosity) than in determining which change to make (visibility,
above).

Many kinds of changes can involve more than one patch cable, i.e. more than two
modules: these kinds of changes encounter rather higher viscosity. Consider an
LFO patched to one aspect of a sound (filter cutoff, say) that the performer would
like to connect to another aspect of the same sound (amplitude) so that they will be modulated together.
This requires the cable linking the LFO and filter to be unpatched, that cable to be repatched into a
“multiple” module (which takes a single input and connects it to multiple outputs), then separate cables
run from the multiple outputs to the filter and VCA modules. Another common case is inserting one
module in the middle of an existing signal path: a drum module could be connected directly to a mixer
channel on the way to an output, but the performer would like to process the drum through a low-pass
filter modulated by an LFO. This single logical interaction requires three distinct actions (unplugging
the output, plugging that into the filter, and then plugging the filter output back into the mixer channel),
four actions if fetching another patch cable is counted! Here is one case where tangibility of interaction
looses out to the greater flexibility e.g. offered by virtual modulars such as the Nord (Clavia DMI AB,
1999) which supports multiple connections from outputs and interlinking modules as single interactions.

Figure 5
Wogglebug Module.

Secondary Notation Eurorack modules come from a wide range of manufac-
tures other than Doepfer, so the physical and graphical design varies immensely.
Even Doepfer, who began with a very utilitarian grey-on-grey design, have more
recently branched out into “special editions” and “vintage series” with different
panel and knob colours. The design of the modules themselves is decoupled from
their function and serves as a secondary notation to distinguish modules from one
another. Depending on their design, modules may be labelled with their name,
and the functions of the various inputs, outputs, knobs, or other interaction de-
vices — either explicitly with text or simple graphical icons, or implicitly by
incorporating controls and sockets as integral parts of a more complex graphical
design (see Figure 5). Knob size also serves as secondary notation, making it
easier to distinguish between otherwise similar controls. Eurorack modules often
follow implicit secondary notation conventions. A very common arrangement is
that a parameter of a module is governed by three controls: a knob to set the base
value of that parameter (b), a CV input which modulates the value of the param-

eter (c), and a control knob that attenuates the modulation (m) — the overall value being b+mc. The
convention here is that the base knob (b) will be larger than than modulation attenuator (m); that ideally
all three controls will be placed close to each other (gestalt), or at least the modulation CV input and
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attenuator will be placed close together (see the large “OUTPUT MIX” knob, and the smaller “MIX CV
IN” knob and socket on the Verbtronic in Figure 4). Where that is not done, graphical elements will link
the three controls together (usually from the CV socket c to the attenuator a then to the base control b).
Graphically, the base control is a metonomy for the underlying function it performs.

Finally, it is in theory possible to use qualia of the patch cables themselves as secondary notation —
different brands of patch cables are different colours, with different finishes (plastic vs fabric). In practice
I make little use of this — perhaps because the main supply of patch cables I have use colour coding for
length, but more likely because while carefully selecting a cable may be possible in a studio setting, in
a livepatching live performance it is difficult to give attention to such details.

The one exception is for initial cabling from the external Beatstep Pro sequencer and control surface:
here the patch outputs are on the back of the device, that is, facing away from the performer. I therefore
take care to pre-patch cables into the outputs before a performance starts and choose different cable
designs for different functions (melodic sequencers vs drum triggers). Even so, more than once I have
ended up peering into the back panel of the Beatstep trying to understand why a particular CV signal
isn’t behaving the way I expected2.

Hidden Dependencies Because every intermodule connection is explicit, embodied by a patch cable,
there are no structural (or syntactic) hidden dependencies between modules. This true at least in the
modular configuration I most commonly use: some particular sets of modules (often the same brand)
may support extra connection busses that are not part of the Eurorack specification — cables connecting
the rear sides of modules, resulting in dependencies not visible on their faceplates.

Some modules have hidden dependences within their design: so called “normalled” connections that
take a signal from an input or output socket in a module into a second input when there is no patch
cable in the socket for the second input. For example, the “Edges” module (Figure 2) contains four
separate oscillators, each with a separate Gate and Pitch (V/Oct) input socket. The gate and pitch inputs
are normalled, so that a single pitch and gate input can control all four oscillators in parallel: additional
patching can then take control of each oscillator individually.

The most critical hidden dependencies in modular patching are semantic, rather than syntactic. While
patch cables establish explicit connections between modules, the interactions between those modules can
be much more subtle that a simple connection might imply. A common experience patching modulars
(and indeed with much synthesizer programming) is that the patch produces no sound. This can be for as
simple a reason as no trigger patched into a gate input, so that oscillators are never switched on, or rather
more complex, e.g. if a lowpass filter’s cutoff frequency is below the audio frequency of the oscillator
patched into its input, then all that audio will be filtered out. These semantic dependencies are not just
hidden, but also silent.

Role Expressiveness Livepatching can be conceived within two distinct roles. First, concretely (or
extensionally, or with the performer’s perspective centred), livepatching is primarily what its name sug-
gests: live patching of synthesizers. The domain model is modular synthesis itself: actions within that
domain model include “adding in another oscillator” or “adjusting a filter cutoff parameter” or “mod-
ulating oscillator pitch by a random stream”. In this role, the notation models the domain directly —
performers directly interact with the modular synthesizer qua modular synthesizer.

Second, abstractly (or intensionally, or centering the listener) livepatching is manipulating sound objects
rather than synthesizer modules. The domain is sound, rather than hardware, and activities include
“make the sound more plaintive” or “emphasize the bassline” or “descend into a howling vortex of

2There’s an example at about 3min of the video of the Quiet Noise: Winter performance, where the pitch of the sequenced
oscillator bank didn’t change: it turned out the patch cable going into the oscillator pitch input was plugged into the wrong
Beatstep output).
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feedback”. In general this role is not supported — rather performers must reconceptualise activities in
this domain back into the modular domain. Sometimes this mapping can be direct — “emphasize the
bassline” may be as simple as turning up the bass in the output mixer; while other times the mapping
can be very indirect — “make the sound more plaintive” could require many different manipulations of
module parameters, and unpatching and repatching of many modules.

In Selective Yellow, I have found myself switching between these roles. Part of this is due to the com-
plexity of constructing the mapping between sound object and synthesizer patching required for the
second role; part of this is often choosing to focus on the first role. As with other livecoding practices,
demonstrating the underlying construction, emphasizing the “modular-ness” of the sound production, is
a key part of the performance: making expansive gestures while patching in a new making module aims
to draw attention to the predominance of the first role.

Premature Commitment Repatching a modular synthesizer is essentially the same as patching from
scratch, and the generally low viscosity ensures that performers are not prematurely committed to par-
ticular structures or module settings. Patches can be built (or rebuilt) in any order — subject again to
the viscosity issues discussed above: inserting a third module into a signal flow between two modules
requires first disconnecting the two modules and then repatching. The physical embodiment of patch
cables, and the low cost of repatching, support a fluid experience.

The fixed hardware resources of a modular may seem to give rise to premature commitment: if you are
using a module for one thing (say an LFO modulating oscillator pitch) you cannot use that same mod-
ule for something else (say modulating a delay line’s feedback). My typical Selective Yellow modular
configuration has eight LFOs: once they are all used, there aren’t any more. This is a problem of com-
mitment rather than prematurity — an LFO can be unpatched from its current task, and then repatched
to perform some other function: this can be one in any order at any time, with only local changes.

Figure 6
Chronoblob.

Progressive Evaluation Modular patching is by its nature incremental. Sound
will be produced so long some audio-rate signal eventually flows to an output
module connected to a suitable PA system. Changes to module parameters are
typically evaluated immediately and become immediately audible — again, pro-
vided a suitable signal path from that module to the output.

Accurately patching modules does take time however, so there can be the ap-
pearance of a shorter or longer delay in evaluation, depending on the performer’s
virtuosity in the physical actions of patching. In the Quiet Noise Winter perfor-
mance, for example, the drums are introduced gradually, as individual percussion
modules are patched in. Explicit delay modules also induce delay (or repetition)
in evaluation — presumably a delay intended by the performer (see Figure 6).

Provisionality Cables can be patched and parameter knobs adjusted without
being connected to an output, supporting provisional arrangements but of course
without audible feedback (no progressive evaluation). As mentioned above, for
practical reasons I tend to pre-patch connections from sequencer control surfaces
simply because making such connections quickly and correctly in the middle of
a performance is impractical.

As with many livecoding disciplines I do not use a cue mix to monitor provisional
configurations. While separate headphone output modules, or integrated mixer modules with cue busses
are available, I choose to work so that “the performer hears only what the audience hears” (Nilson,
2007). If I need to test a particular audio signal, I typically patch that signal into a mixer channel going
to the main outputs: the audience can thus hear additional oscillators being brought into the mix, being
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tuned manually to match the existing sound material, their timbre being adjusted. This way of working
is much more feasible for performances in the noise subgenre rather than algorave bangers: in a noise
performance an illtuned oscillator can be a welcome feature of the performance, whereas it will at best
be distracting (and at worst incompetent) on the dancefloor.

Figure 7
Mult.

Abstraction The tangibility of hardware modular synthesizers is fundamentally abstraction
hating: the kinds of abstraction mechanisms found in programming languages (e.g. a sub-
circuit, packaging that behind an interface which encapsulates the implementation, exporting
as sub-set of the input and output connections and parameter controls) cannot be encompassed
within a fixed hardware system. There is also little benefit: all the parameters and connections
of the implementing modules are readily to hand. It is not possible to replicate multiple versions
of an abstract module in hardware the way a procedure can be invoked multiple times, or a Rack
in Ableton Live instantiated in multiple channels.

Modular livepatching does support some abstraction techniques, although they are obviously
more tangible (“concrete abstractions”) relying on the use of standard modules. Two kinds
of modules are useful here. First “multiples” (aka “mults” or splitters, a single input socket
connected to several output sockets, see Figure 7) can allow a single control voltage (or au-
dio source) to be used in several difference places in the synthesizer. A melodic pattern from
a sequencer could thus control several different oscillators playing (somewhat) in tune, pro-
moting the sequence into an abstraction in the sense that altering the sequence can alter the
performance of a number of different modules. Second, submixers can act in a complementary
way, combining a number of audio sources (say all the drum modules) or even a collection of
control voltages into a single output. That output can then be processed further “downstream”
— perhaps running a drum submix into a single channel of the primary output mixer; or into
a flanger or a filter. The downstream controls or processes will now act over the combination
of all the audio signals: the knob controlling the main mixer channel that is taking the drum
submix now offers a control over all the drums as a single abstractions.

Figure 8
Drum.

Finally, Eurorack systems (and thus livepatching) can incorporate higher-level abstrac-
tions, at the level of rack configurations (module choice) rather than individual patches.
Traditional analogue modules provide one function (a single oscillator, filter, or envelope,
built from discrete components) however many recent Eurorack modules combine more
than one function. A drum module could combine an oscillator, filter, and envelope, yet
offer far fewer control parameters, knobs, and input or output sockets than a similar circuit
built from individual modules (Figure 8). The reduction in degrees of freedom (“express-
ibility”) increases ease of use (“musicality”): it is much easier to produce a drum sound
from a drum module than it is to patch and configure a whole collection of other modules
to produce the same sound, not to mention cheaper. The smaller size of contemporary
electronic componentry means that integrated modules can be physically smaller collec-
tions of more basic modules, which is important when the synthesizers will be carried
into performance venues, rather that being bolted to walls of specialised electronic music
studios.

Many contemporary modules digitise incoming audio and control voltages, feed them into
a realtime audio algorithm, and then render the output back to analogue signals — evolving
towards embedded musical computers rather than single function analogue circuits (Scott,
2016). Interface modules can be used to route audio signals generated within the rack
to external signal processors or guitar pedals and then route the resulting audio back into
the modular (the hardware equivalent of a foreign function interface). Modules like the
AppiOsc (Lawson, Smith, & Appio, 2016) are the logical end-point of this evolution, bi-
directionally integrating a modular with a textual live coding environment.
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4. Discussion and Related Work
In “Live Coding For Free”, McLean (2008) describes how “We can think of coding live in the sense of
working on electricity live, re-routing the flows of control around a program with the real danger that a
faulty loop will get activated, causing the program to crash in sparks of logic”. Eurorack livepatching
works with live electricity — control voltages and audio signals — and loops or misconnections can
cause electrical sparks and shorts (although given the low voltages involved, without any serious conse-
quences). McLean also gives three criteria for livecoding. First, Rules must be explicit — “written down
and modified”. In modular livepatching rules are not written, rather they are embodied in arrangements
of patch cables and the settings of sequencers or contents of delay lines: modifying those rules is pre-
cisely the point of livepatching. Second, Higher order functions must be defined and manipulated: one
control signal modulating signal is a higher-order composition of those functions. Third, An audience
is not required. While I would agree with this philosophically, I have found there is a large difference
between rehearsing in private, and performing in public: especially performing to a paying audience
(most of who are waiting for the death metal band on next) rather that the privilege of presenting an
academic demonstration or educational workshop.

Hutchins (2015) has also investigated livepatching in the wider context of live programming — this paper
contributes an analysis based on cognitive dimensions to that investigation. The cognitive dimensions
analysis here is similar to an earlier study of livepatching the littleBits SynthKit (Noble, 2014). The
key difference is that the Synth Kit is “patched” by physically attaching modules to each other: cabling
modules at fixed positions in a rack has quite a different feel. Where manipulating littleBits seemed
more object-oriented, my experience of modular patching is more functional, threading streams of values
(time-varying control voltages) into functions that produce further value streams. This is in spite of the
fact that Eurorack modules often have more internal state than Synth Kit components.

The tension between real and virtual is explicit in comparison with tangible live music programming
language systems such as the reacTable (Jordà, Geiger, Alonso, & Kaltenbrunner, 2007), which uses
physical objects on a multi-touch table interface to produce music. Animations in the touch table make
the physical objects appear live, giving feedback along with the generated sound. In contrast, modular
patches are in fact live, tangible, and generate sound directly. Moodler (Piponi, 2015) goes one step
further and provides a “Mock Modular” with patch sockets and knobs mounted on a whiteboard so
“modules” can be sketched, in order to provide tangible control to a virtual modular in Haskell. Mosaic
(Mazza & de Pisón, 2019) moves in the other direction, providing a digital “virtual modular” designed
to support livepatching on a laptop computer.

There are still many dimensions of modular livepatching (or indeed modular synthesizer performance)
that we have not yet explored. Selective Yellow is a duo, but generally each performer acts independently
(other than listening to what the other is doing). We hope to explore the possibilities of multiple perform-
ers using a single modular synthesizer, or equivalently, several modular and semi-modular synthesizers
being patched together. This seems similar to multiple textual livecoders using computer networks to ex-
change code fragments during performances, although if anything with more direct interaction. Patching
modulars together means one performer can directly affect the sound produced by another, as in Cage’s
Imaginary Landscape No.4 where one performer controls a radio’s tuning, and a second independently
controls volume and tone, and where the result is silence as often as sound.

5. Conclusion
In this paper I have reflected on my performance practice livepatching modular synthesizers, through
the lens of the cognitive dimensions framework. Treating modular synthesizer as an embodied domain
specific programming language has helped identify points that make this practice unique, or at least,
positioned at an intersection of two better known practices: livecoding and instrumental improvisation.
The tangibility of the modular is the key linkage point, allowing rapid movement between indirect,
programmatic patching and configuring (tweaking); and occasional excursions into more direct soloing.
The complexity of modular synthesizers, the potential interactions, feedback loops, and higher-order
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constructions complements the tangibility: LFOs or random function generators can modulate volume or
timbre or any other parameter (including, of course, other modulation paths) and the resulting patches’
complexity is limited only by the available hardware. In a Selective Yellow improvisation, this often
results in silence (as Cage would have it) but equally often at least some kind of noise.
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