
Programming “systems” deserve a theory too!

Joel Jakubovic
School of Computing

University of Kent
Joel.Jakubovic@kent.ac.uk

Abstract

It is comparatively easy to find new languages and derivative work within academic publishing, but
somewhat harder for more general programming "systems" or "environments" which encompass more
than that. This is a shame, since some of these have a dedicated following and have influenced program-
ming and computing at large. We concentrate on some examples of such that, for various reasons, do
not have much material written about them. We suggest some reasons to expect this, and draw attention
to some characteristics (both "cognitive" and "technical") marking them worthy of further study. We
conclude with a sketch of further steps to make the most of these software artefacts from a research
perspective.

1. Introduction
Programming language theory, implementation and evaluation is an expansive and well-established field.
Even entire applications, “environments” or “systems”, developed for the purposes of research, con-
tribute to progress by being discussed and evaluated within a certain academic scope (for example,
HCI). However, there exist innovative, influential or otherwise noteworthy systems that nevertheless fall
outside of these realms. As we expand on later, this is in part due to originating outside of the academic
environment, and it is also pushed against by the nature of the publishing medium. We will lead in with
three such systems to illustrate our later points.

1.1. Smalltalk
Smalltalk could be described as a self-sufficient desktop environment programmed in a language of the
same name. It was influential on the rise of object-orientation and graphical user interfaces, and was
itself intended to be widely embraced. However, it did not manage to achieve this goal, and lives on in
its own niche on a par with other programming language ecosystems.

Whenever a language or IDE feature spreads across the mainstream, Smalltalkers have a reputation
for pointing out that Smalltalk was able to do the same thing back in the ’80s. This is a plausible
claim, owing to the deliberate high-level, flexible and totalising architecture of the system. Noting
its following by a community of devotees, this is evidence of something special and valuable to learn
from and build upon. However, despite having a literature presence in virtual-machine optimisation and
related implementation technologies, insight into Smalltalk’s design seems to be mostly scattered around
historical magazine articles (BYTE Magazine Volume 6, Number 8, 1981), web pages and blog posts.

Without a well-structured design discussion, it is only clear that there is “something about Smalltalk” that
is worth improving on. In other words, it is difficult to distinguish which specific aspects of Smalltalk are
essential to its value and which are incidental. We can identify characteristics such as meta-circularity
and self-sufficiency, by which the software within lives in a world where “everything is Smalltalk”. An-
other identifying feature is that instead of transient “applications” and manual saving to “files”, the entire
system state is persisted as a continuously evolving “image”. Smalltalk also embeds its programming
language within a larger prescribed context of graphical interface and device utilities, encompassing the
same roles (and scope) of an entire Operating System. Such prescription of a graphical interface is char-
acteristic of what we are referring to as “systems”, but this last “encompass the world” aspect is more
unusual.

PPIG 2020 78 www.ppig.org



1.2. HyperCard
HyperCard was a platform for exploring and creating interlinked sets of multimedia pages, often re-
garded as a precursor to the Web. Explicitly designed with the goal of end-user empowerment, with
a slogan of “programming for the rest of us”, HyperCard was a popular platform both to share and to
author among teachers, businesspeople, and other non-programmers. This was no doubt in part due to
its (initial) default inclusion in Macs. However, the existence of other default apps (such as Terminal)
not enthusiastically adopted by end-users means that HyperCard itself still stands on its own merit.

HyperCard applications were organised into “stacks”, with typical UI elements (text, pictures, buttons)
added and edited by direct manipulation. Every such element could have a script attached to it in
HyperTalk, a language designed to resemble English. HyperCard also distinguished itself in having
separate “beginner” / “advanced” layers, allowing novices to make their way through straightforwardly
using and maybe editing stacks superficially, before digging into more advanced authoring and scripting.

Unfortunately, despite its popularity and originality, HyperCard fell out of use due to corporate and
marketing decisions and subsequent declining technical support, eventually falling out of compatibility
with newer versions of the Mac OS. As HyperCard was primarily a commercial product, not much has
been written about its design, but its popularity suggests that it is worth studying and possibly adapting
for future software systems. Sample design characteristics for HyperCard include its layered design
allowing progression from using to developing card stacks, and the fact that such developing is not
considered something far away but instead occurs in the same user interface.

1.3. Flash
Adobe Flash was a widely popular browser plugin providing “rich” content (video, audio, and games)
for the primitive early Web. Such applications were created using Flash Builder: an advanced graphical
workspace for various forms of vector graphics and animation, scripted with an event-driven language
called ActionScript.

Flash gave rise to an explosion of animations, games and websites across the early Web, often by indi-
viduals and within online communities. Because it was used so widely for websites and games, Flash
can be considered a success case, to some extent, of “end-user” software development. Unfortunately,
Flash was thought to be too insecure and poorly-optimised for the emerging mobile platforms of the
2010s. Apple’s decision not to support Flash on the iPhone ultimately spelled its decline and planned
official demise at the end of 2020.

Following from our previous two examples, what are the interesting design characteristics of Flash? Its
success may be attributed to the fact that it merely filled a gap and achieved rapid ubiquity as a result,
even defining a new medium of interactive Web content. This is certainly true, but suggests this role
could have been filled by any other provider of rich content support. Flash Builder, though, does seem to
be an effectively designed tool for its audience. It is a graphical editor centering around a WYSIWYG
“stage” metaphor, surrounded by many specialised sub-interfaces (for example, managing the broad and
narrow details of keyframe animation), and with an attached scripting sub-editor. Are there more specific
design principles hiding here than merely “use the right interface for the job”?

2. What to do?
2.1. Rational Reconstruction
The main point of focusing on such systems is that they exist outside of the academic literature, having
been commercial or educational ventures rather than research artefacts. This means that theoretical
analysis or design rationale, if it exists at all, may have never been published or be scattered around
documents for internal use. In some cases, there may not be any such written material or what existed
has been lost.

This means that it is currently hard to do rigorous follow-up work on these artefacts. If we wish to build
on their successes and learn from their failures, in a scholarly way, there needs to be more than the arte-
fact itself and documentation. They need to be made “legible” to academic literature by reconstructing

PPIG 2020 79 www.ppig.org



what their design and theoretical analysis would have been in such a counterfactual world.

2.2. Cognitive and Technical Dimensions
One component of such a “rational reconstruction” could be an analysis in terms of a common vocab-
ulary of named characteristics. For example, the Cognitive Dimensions of Notation framework (Green
& Petre, 1996) suggests a number of “dimensions” along which a user interface or “notation” may be
measured, along with linkages and tradeoffs between different dimensions. This is certainly useful, but
its emphasis on the cognitive aspect of interfaces might leave uncharted other aspects – what we suggest
to be technical dimensions – of the “rest” of a software system.

For example, a programming language in which “code” is expressed in the same form as “data” is said
to exhibit “homo-iconicity”. We could extend this to systems-in-general, perhaps, as a measure of how
much automating a task resembles manually performing it. Similarly, “self-sufficiency” measures the
extent to which a system can be improved and evolved from within, without relying on external tools.
Smalltalk was designed to be quite high on this measure (intended to “obsolete itself”), while HyperCard
and Flash (along with most other software) facilitate creation of separate artefacts (HyperCard stacks,
Flash applications) and can only be changed via in-application preferences or by editing their source
code.

Our desire for “technical” dimensions comes from a feeling that there are also properties of “the system
itself” rather than merely its interface. If cognitive dimensions are about how a system is received or
experienced by users, then technical dimensions are about how the system was intended or designed.
However, this does rest on an assumption that separating the “interface” from the “system itself” is a
meaningful or useful thing in the first place, and we invite further discussion of this.

Whatever the details, such a set of technical dimensions would introduce a common language for com-
parisons between systems, which is currently lacking. It would give systems research a shot at “charac-
terising the design space” of possible systems (Church & Marasoiu, 2019) and enable the identification
of currently unexplored gaps in that space.

2.3. The Medium is the Message
Another important thing to note is that academic publishing is by and large a paper (virtual or physical)
medium; as such, the ease with which one can publish varies according to the medium of the subject
matter. Programming languages, being strings of characters equipped with syntax and semantics, lend
themselves very well to describing in a paper. However, our systems of interest is that tend to be
graphical, interactive systems rather than languages alone. They define much more of a given computing
environment than languages; they additionally state how they are graphically presented and manipulated.
So, in order to properly present or discuss these systems in full, one needs to at least provide pictures
and ideally provide a running version.

While videos or runnable artefacts can be part of academic submissions, they are still seen as “sup-
plementary material” to accompany a written paper. It is plausible that this makes it less attractive to
present general “systems” in academic publishing, and the non-academic nature of our examples is eas-
ier to understand in light of this. This is recognised in (Edwards, Kell, Petricek, & Church, 2019), which
begins a conversation about how format, submission and peer-review ought to look for such interactive
systems and work on their design. Such a model would support a “gallery of interactions” with (possibly
simplified) re-creations of systems as one possible corrective.

3. Conclusions
In summary, there exist interesting holistic “systems” which seem to have been ignored in published
research. To be able to do follow-up work on them, we need a deeper and more rigorous understanding.
But their typical commercial or educational nature means there was no initial body of literature to seed
such a process. Additionally, the (virtual) paper medium is not well suited to “systems” in the first place.
We propose to re-create the design analysis in light of innovations like the Cognitive Dimensions frame-
work, and taking advantage of more appropriate media like video or interactive essays. A Smalltalker

PPIG 2020 80 www.ppig.org



might say that “everything was already invented in the 1970s”; we agree that there was little explicit
building upon the visionary work of the past. To remedy this, we need to take a fresh, academically
rigorous look at such old work on programming systems.

4. References
Byte magazine volume 6, number 8. (1981). Retrieved from https://archive.org/details/

byte-magazine-1981-08/
Church, L., & Marasoiu, M. (2019). What can we learn from systems? In Proceedings of the conference

companion of the 3rd international conference on art, science, and engineering of programming.
New York, NY, USA: Association for Computing Machinery. Retrieved from https://doi
.org/10.1145/3328433.3328460 doi: 10.1145/3328433.3328460

Edwards, J., Kell, S., Petricek, T., & Church, L. (2019). Evaluating programming systems design. In
Proceedings of 30th annual workshop of psychology of programming interest group.

Green, T. R. G., & Petre, M. (1996). Usability analysis of visual programming environments: a ‘cog-
nitive dimensions’ framework. JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 7,
131–174.

PPIG 2020 81 www.ppig.org




