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Abstract
Parallel programming keeps growing in importance, driven both by changes in hardware and the increas-
ing size of data sets. Hundreds of parallel languages have been proposed, but very few have taken hold
beyond the language developers themselves. One reason for this is usability - that is the degree of ease
with which one can develop and maintain parallel programs that are both correct and reach the desired
level of performance. The few studies of parallel language usability have not been informed by a theoret-
ical framework. Existing theoretical models of program comprehension need to be extended to parallel
programming to help address the challenges of developing new languages, programming frameworks,
development tools, and pedagogy. The contribution of this article is to motivate research on parallel pro-
gram comprehension, and to suggest a way forward by expanding the two-level program/situation model
of program comprehension to include a model of program execution and by applying the extensive work
on human reasoning by Johnson-Laird to understand how people reason about parallel programs.

1. Introduction
The cognitive psychology of computer programming has been well studied since the 1970’s, and has
led to deep insight into how programmers design, build and understand software (Détienne, 2001). This
knowledge is vital for the development of software engineering tools and techniques, for the design of
programming languages, and for computer science education. Program comprehension is relevant to
many programming tasks. When implementing a design, programmers need to read and assess what
they have written. Design also frequently involves reuse, which requires comprehension of the code
to be reused. Other programming tasks require program comprehension, such as modification to add
features, improve performance or software quality, and of course debugging. In order to comprehend a
program, a programmer constructs a mental representation based on the program text and the program-
mer’s knowledge (Détienne, 2001).

Theories about the mental representation of computer programs have informed the research and de-
velopment of software engineering tools (Storey, 2006). Existing theoretical models of program com-
prehension include knowledge stored in long term memory (language syntax and semantics, program-
ming schemas) and the development of mental models of programs in working memory. These compo-
nents were brought together in von Mayrhauser and Vans’s Integrated Code Comprehension Metamodel
(1994).

The mental model theories of program comprehension are based on theories of natural language text
comprehension (Détienne, 2001). One important question is whether a text is represented mentally by
its propositional structure or by its meaning. Johnson-Laird has made a strong case that it is the meaning
that is represented, in the form of mental models (P. N. Johnson-Laird, 1983). For computer program
comprehension the propositional structure is referred to as the program model and the meaning is repre-
sented by the situation model. This two-part model has been successfully applied to the comprehension
of procedural and object-oriented programs (Détienne, 2001), but has not been studied for parallel pro-
grams. Understanding a parallel program requires additional work, such as reasoning about multiple
streams of execution and awareness of execution at the machine level.

Parallel programming keeps growing in importance, driven both by changes in hardware and the in-
creasing size of data sets (Asanovic et al., 2006). Hundreds of parallel languages have been proposed,
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but very few have taken hold beyond the language developers themselves. One reason for this is us-
ability - that is the degree of ease with which one can develop and maintain parallel programs that are
both correct and reach the desired level of performance. The few studies of parallel language usability
have not been informed by a theoretical framework (Mattson & Wrinn, 2008). Sadowski and Shew-
maker’s (2010) survey found that the existing literature on usability of parallel programming languages
was inconclusive and that there were significant challenges in measuring usability.

The existing theoretical models of program comprehension need to be extended to parallel programming
to help address the challenges of developing new languages, programming frameworks, development
tools, and pedagogy. The contribution of this article is to motivate research on parallel program com-
prehension, and to suggest a way forward by expanding the two-level model of program comprehension
to include a model of program execution and by applying the extensive work on human reasoning by
Johnson-Laird to reasoning about parallel programs.

Sections 2-4 review three types of mental models. Section 2 reviews the mental model theory of pro-
gram comprehension, and concludes with an illustrative example to discuss the extra work required in
parallel program comprehension and introduce the idea of an execution model. Section 3 discusses the
importance of machine models in parallel programming, and how they are related to the concept of
notional machines. Section 4 briefly presents Johnson-Laird’s understanding of human reasoning with
mental models. Finally, Section 5 presents a proposal for an execution model component of program
comprehension and how it might be used in reasoning about parallel programs.

2. Mental Models in Comprehension of Computer Programs
The experimental study of computer program comprehension dates back to the early ’80s (Bidlake,
Aubanel, & Voyer, 2020). Détienne provides a thorough analysis of work up until the late ’90s in her
book Software Design – Cognitive Aspects (2001). She classifies work on program comprehension
into approaches that use schemas, representing domain and programming knowledge, problem solving
approaches, and the mental model approach. According to Détienne (2001, ch. 6), "It appears that
the mental model approach is the one that explains most completely the processes employed and the
representations constructed in the course of understanding a program."

The mental model approach began with work by Pennington (1987). Pennington’s experiments revealed
that programmers construct a program model using control flow structures, when reading a program
for the purpose of comprehension. When the comprehension stage is followed by a modification stage,
which requires comprehension of the meaning of the program, a situation model is constructed. The
situation model represents the program’s data flow and goals. Any competent programmer can construct
the program model. The situation model is constructed when the meaning of the program is important,
and is more difficult to construct than the program model. The data flow is not as obvious as the control
flow, and the function of the program is the hardest to discover.

Later work expanded Pennington’s model by considering the effect of expertise, programming paradigm,
and task (Bidlake et al., 2020). While both novice and expert programmers show no differences in the
construction of the program model, novices do have more difficulty in constructing the situation model
(Burkhardt, Détienne, & Wiedenbeck, 2002). Object-oriented program comprehension does not proceed
in the same way as procedural program comprehension, in that both program and situation models
are constructed in parallel. Burkhardt et al. expanded the program model to include a macrostructure
consisting of the control flow between functions. They expanded the situation model for OO programs
to take into account objects and their interrelationships. The majority of program comprehension studies
use program understanding, also known as read-to-recall as their task (Bidlake et al., 2020). The read-
to-recall task is to remember program code after a study period, either by answering questions about
the code or paraphrasing it. Other tasks used in studies can be classified as read-to-do, which includes
modification, debugging, and classifying programs (Bidlake et al., 2020). As suggested in Pennington’s
study and confirmed in later work, the development of the situation model is more likely given a read-
to-do task, where understanding the meaning of the program is important.
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2.1. Illustrative Example
There are many parallel programming models, suitable for parallel execution using vector instructions
and threads on multicore processors and graphics processing units, and processes across processors in a
cluster. We use OpenMP as an easy to understand and popular shared memory programming model in
our illustrative examples. Consider the nested loops in Figure 1 written in the C programming language,
annotated with an OpenMP parallel directive (Liao, Lin, Asplund, Schordan, & Karlin, 2017).

double a[len][len];
\\ ...
#pragma omp parallel for private(j)
for (i = 0; i < len - 1; i += 1) {
for (j = 0; j < len ; j += 1) {
a[i][j] += a[i + 1][j];

}
}

Figure 1 – C/OpenMP simple race condition example

We can examine this code as a miniature program comprehension exercise, and identify the components
of the two-level program/situation model. We’ll start by ignoring the OpenMP pragma. The program
model contains both a micro- and a macro-structure (Détienne, 2001), but here only the former is rele-
vant. The microstructure represents the surface details and the control flow of the program: two nested
for loops updating elements of a two-dimensional array a. This model is built automatically by any
programmer with syntactic/semantic knowledge of the language. The situation model has static and
dynamic components. Here the dynamic situation model represents the data flow of the program and the
static situation model represents the goal of the program. Construction of the situation model is optional,
and takes more effort. It involves tracing updates to the matrix, where elements of each row are replaced
by the sum of their value and their lower neighbour. In this small code sample this is also the goal of the
program.

The OpenMP pragma tells the compiler to parallelize the outer loop by forking threads and assigning
contiguous blocks of iterations to them. All variables are shared among threads by default, except for
the iteration counter i (implicitly) and the counter j (using the private clause) of the inner loop,
which are private. This adds to the program model the text itself, but not its meaning, other than its
identification as a compiler directive. It adds to the situation model the parallelization of the outer loop
and the knowledge that the iteration variables i and j are private to each thread, that a is shared, and
that there is an implicit barrier at the end of the outer loop. Analysis of the data flow must now take
into account multiple threads. This analysis reveals a problem, namely a data race. A thread working on
row i could read from a value in row i+1 while a thread working on row i+1 is writing to the same
memory location, leading to incorrect results.

Whereas the above analysis of the comprehension of the non-parallel code is based on mental structures
for which there is considerable experimental evidence, there is no evidence that the analysis in the
previous paragraph reflects how programmers think about parallel programs.

Full parallel program comprehension might even seem impossible. In the words of Skillicorn and Talia
(1998), "An executing parallel program is an extremely complex object." There may be hundreds of
threads executing concurrently, and threads may communicate with each other synchronously or asyn-
chronously. The interleaving of memory accesses by multiple threads may change from execution to
execution, which can lead to nondeterministic results in a faulty program. How can comprehension of
such complex execution happen? We propose that the programmer builds mental models of representa-
tive cases of parallel execution, and then reasons about the correctness and meaning of the code using
these models. We further propose to introduce a new component to the memory model theory, namely
the execution model, which represents the execution of a program. In the example above, the execution
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model would represent the execution of multiple threads and how they lead to a data race by reading and
writing to the same locations of the a array.

3. Notional Machines and Machine Models
Texts written in a high-level programming language must be translated into machine instructions in or-
der to be executed on a computer. This has important implications for the programmer’s mental model.
Any educated programmer knows that a single high-level instruction may be translated into multiple
low-level instructions. However, as the programmer traces through some code and executes it in their
working memory, they do so on an abstract mental representation of a machine that can execute the
high-level instructions directly. This abstract machine has been called the notional machine in the con-
text of computer science education. (Du Boulay, 1986): "A notional machine is a characterization of
the computer in its role as executor of programs in a particular language or a set of related languages."
(Sorva, 2013, p. 2). In this definition ’computer’ refers to both hardware and system software (com-
piler/interpreter, operating system). There can be multiple notional machines for the same language, at
different levels of abstraction. For example, it’s possible to mentally execute a C program without con-
sidering how memory is divided into stack and heap. It’s also possible to track the memory management
with a lower-level notional machine.

Notional machines, together with the literature on knowledge mental models, are valuable for computer
science pedagogy. Experiments have shown that novice programmers’ mental models are inadequate
(Sorva, 2013), and computer science instructors commonly observe students’ superstitions about the
behaviour of the notional machine. A challenge in educating programmers is to help them build viable
notional machines, so that they can accurately reason about programs and simulate them mentally.

We argue that something akin to notional machines is relevant for expert program comprehension. This
knowledge can be called a machine model. It adds the cost of execution to the programming schema
knowledge that experts possess, including the contribution of compilers, operating systems, runtime
software, and hardware. For instance, it allows programmers to assess the overhead of function execution
and the desirability of function inlining. For a programmer performing incremental parallelization of a
sequential program, knowledge of the machine model allows them to reason about whether parallelizing
a loop is worthwhile, based on the cost of the parallelization overhead. The machine model also supports
the dynamic aspects of the mental model of the expert programmer, when faced with a comprehension
task. While comprehension relies to a large extent on static knowledge of programming plans, it also
can involve the dynamic aspects of the mental model, particularly data flow. Mental execution may
be required if the programmer is unfamiliar with a programming plan, either because the plan doesn’t
follow the rules of programming discourse or because the programmer has not seen the plan before
(Détienne, 1990). For parallel programming, reasoning about the execution of the program is crucial in
assessing correctness and performance, as in the example in Figure 1.

Previous work has not emphasized the dynamic aspects of program comprehension. We argue that it
would be fruitful to move comprehension of data flow from the situation model into a separate compo-
nent called the execution model. We believe that the construction of the execution model in working
memory depends on the machine model that is used, but we will focus on the former in what follows.

4. Mental Models for Reasoning
According to Johnson-Laird there are at least three types of mental representations:

1. Propositional representations (strings in a natural language)

2. Images, which are perceptions from a particular point of view

3. Mental models, "which are structural analogues of the world" (P. N. Johnson-Laird, 1983)

Mental models can be manipulated, and can be used to reason without formal logic. The structural
analogues are usually two or three-dimensional icons. As Johnson-Laird explains in a 2010 review, "A

PPIG 2020 11 www.ppig.org



visual image is iconic, but icons can also represent states of affairs that cannot be visualized", such as
"the abstract relations between sets that we all represent." (P. N. Johnson-Laird, 2010). These icons are
not restricted to a single point of view but can be manipulated.

Johnson-Laird’s main concern is with understanding how people reason using mental models. His re-
search has convincingly demonstrated that humans don’t reason using formal logic (the "doctrine of
mental logic"). He makes an important point about the complexity of reasoning, which is relevant
to the comprehension of parallel programs: "Almost all sorts of reasoning,..., are computationally in-
tractable. As the number of distinct elementary propositions in inferences increases, reasoning soon de-
mands a processing capacity exceeding any finite computational device,..., including the human brain"
(P. N. Johnson-Laird, 2010). Humans deal with this complexity by constructing representative mental
models.

Consider the following sentence (P. N. Johnson-Laird, 2004):

> The cup is on the right of the spoon

It might be reasonable to postulate that the meaning of this sentence is represented by the reader in a
mental language. What if we add three more sentences:

> The plate is on the left of the spoon.
> The knife is in front of the cup.
> The fork is in front of the plate.

and ask the question: what is the relation between the fork and the knife? Answering this question
requires spatial reasoning, not reasoning about language. A mental model for these four premises can
be given as:

> plate spoon cup
> fork knife

This model can then be used to give the answer to the question: the fork is on the left of the knife.

Consider now the same four premises with a small change to the second one:

> The plate is on the left of the cup.

These premises can be represented with at least two models, the model above and this one:

> spoon plate cup
> fork knife

The answer to the question is still the same (the fork is on the left of the knife), however the reasoning
is more difficult, because more than one model needs to be considered. The extensive literature on
reasoning with mental models is likely to contain insights into how programmers reason about code.

5. Execution Model
Comprehension of the illustrative example in Figure 1 requires applying knowledge of how the loop
iterations are assigned to threads (the C/OpenMP machine model). Comprehension of the parallel aspect
of this code requires reasoning about the data access pattern of the threads, in other words the parallel
data flow. This comprehension can be done independently of the understanding of the meaning of the
program, which forms the static part of the situation model. The programmer, faced with the task
of verifying the correctness of this code, could conceivably focus on the parallel data flow without
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bothering to understand the meaning of the code. In contrast, the essence of the situation model in text
understanding is the situation of the text, that is its meaning.

We propose to carve out a separate mental execution model, which would include the dynamic aspect of
the situation model, namely the data flow. The separation of the execution model could account for the
separate understanding of the behaviour of the the program from its meaning. This behaviour occurs at
two levels: data flow in the program text and data flow in the computer. The latter behaviour is key to
understanding parallel programs. It is also key to understanding the performance of any program, for
example the flow of data between levels of the memory hierarchy. The first level bears more discussion.
While the data flow of a program can be considered between variables in a program, it is often considered
in the context of one or more data structures. Part of the comprehension of a non-trivial program is
understanding the data structures, which are not evident in the surface of the text. They form part of the
understanding of the underlying algorithms used in the program. Data structures do not seem to have
been considered in models of program understanding (Détienne, 2001, ch. 6, footnote p. 94).

The execution model can be divided into three layers of abstraction. At the top, it represents the be-
haviour of the operations on the data structures. In the middle, the data flow between variables in the
program text. At the bottom, the data flow in the processing elements of the computer.

The comprehension model in Table 1 modifies Burkhardt et al.’s version of the program/situation model
(2002), which accounts for object oriented programs, by moving data flow from the situation model to
the execution model, and adding two aspects of data structures to the execution and situation models.
The identification of the data structure refers to the program’s meaning, and is part of the situation
model. The behaviour of the data structure, that is its mutation by one or more threads of execution, is
part of the execution model. The parts of the execution model that are unique to parallel programs are
discussed in the following example.

Program Model

Microstructure:
Program statements
Control flow
Macrostructure:
Functional structure
Control flow between functions

Execution Model

Data structures (behaviour)
Data flow (text)
Data flow (machine)
Parallel programs:
Decomposition
Communication

Situation Model

Data structures (identification)
Program goals
Domain objects (classes)
Relations between objects
Communication between objects

Table 1 – Three-part comprehension model.

5.1. Another Illustrative Example
Consider another C/OpenMP example (Mattson & Meadows, 2014) in Figure 2, where p is a struct
containing a node *next pointer and a pointer to some payload that will be used in the execution of
the process() function.

Ignoring the parallel directives for the moment, the following comprehension process can be sketched.
The program model would identify a loop that continues as long as pointer p is not NULL, the initializa-
tion of pointer p and its updating in the loop, and its passing to function process. The situation model
would contain the meaning of this code as the processing of data that is stored in a linked list. The role
of the execution model could depend on whether the programmer is a novice or an expert. An expert
would not likely have to mentally invoke the dynamic aspect of the linked list; its static meaning should
be sufficient. A novice who was unfamiliar with linked lists, might need to trace execution of the linked
list, that is invoke the execution model, on their way to understanding its meaning.

The execution model is more pertinent to the parallel version of the code. Adding parallel directives
doesn’t change the meaning of the code, so the situation model is unchanged. It does require under-
standing how the code executes in parallel, hence the execution model is vital. This understanding
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#pragma omp parallel{
#pragma omp single{
node * p = head;
while (p) {
#pragma omp task
process(p);
p = p->next;
}

}
}

Figure 2 – C/OpenMP parallel linked list example

includes the forking of threads at the beginning of the code, followed by the restriction of the code’s
execution to a single thread. Each iteration of the while loop involves creation of a new OpenMP task
which is scheduled by the OpenMP runtime on another thread. In other words, one thread dispatches
the tasks, which are executed by multiple threads.

Decomposition and communication are two key parts of the execution model which are found only in
comprehension of parallel programs. The former is an essential part of any parallel program (Aubanel,
2016). The example in Figure 2 exhibits a trivial decomposition into tasks. Data decomposition also
features prominently in parallel computing. The example of Figure 1 exhibits decomposition of the
two-dimensional array into blocks of rows. While commmunication is not explicit in shared memory
programs such as these, it can be present implicitly in the ordering of memory accesses of the threads.
Communication should form an explicit part of the execution model of distributed memory programs,
such as those that involve message passing.

5.2. Reasoning with the Execution Model
A mental model represents a possibility (P. Johnson-Laird, 2001). What are the possibilities for
the execution model for the example in Figure 1? Knowledge of the semantics of the OpenMP
parallel for directive reveal that the default scheduling is to partition the the iterations of the
outer loop into contiguous blocks, one per thread. The execution model would represent the de-
composition of the 2D array into blocks of rows and the dependence between blocks arising from
a[i][j] += a[i + 1][j];. It also needs to represent the dynamic behaviour of the threads.
A simplifying (but not generally correct) assumption is that threads start at exactly the same time and
proceed in lock step. This means that a thread working on the last row of its block would use values in
the next row which had already been updated by the thread working on the next block, yielding incorrect
results. This single possibility can be used to identify the data race.

Programmers can’t possibly follow the execution of multiple threads, especially since the relative timing
of the threads can vary from one execution to the next. Instead, programmers construct mental models for
representative cases, each corresponding to an interleaving of a particular number of threads. Reasoning
gets more difficult as the number of mental models increases (P. Johnson-Laird, 2001). The code in
Figure 3 (Liao et al., 2017) represents a more subtle race condition, where xa1 and xa3 point to two
elements of an array, where xa3 − xa1 = 12.

As hinted by the note, there is a dependence between iterations 0 and 5, where xa1[521] and
xa3[533] point to the same location. This is not a problem if iterations 0 and 5 are handled by
the same thread; a race condition occurs if they are handled by different threads. Assuming the same
static scheduling of the loop iterations, this means that iterations 0 and 5 would be handled by the same
thread if the total number of threads is less than 36. This requires mental models for two possibilities:
number of threads < 36 and ≥ 36. The programmer could miss the race condition by using a single
possibility of less than 36 threads, which could easily happen if they are used to working with a small
number of threads.
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#define N 180
int indexSet [N] = {
//Note: indexSet[5] − indexSet[0] = 533−521= 12
521, 523, 525, 527, 529, 533,
547, 549, 551, 553, 555, 557,

// omitted code here ...
};
#pragma omp parallel for
for(i=0; i< N; ++i){

int idx=indexSet[i];
xa1[idx]+=1.0;
xa3[idx]+=3.0;

}

Figure 3 – C/OpenMP tricky race condition example
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7. Conclusion
Understanding a program involves more than determining its meaning. It also involves understanding
its dynamic behaviour. This is particularly important for the comprehension of parallel programs, where
the behaviour of multiple streams of execution must be understood. We have argued that adding an
execution model to the current mental model theory would account for this understanding. This includes
data structures and their decomposition in the mental representations of parallel programmers.

Program comprehension involves knowledge stored in long term memory in addition to the mental
representations created in working memory during comprehension. Understanding a parallel program
requires a mental model of the parallel system, which could be viewed as a notional machine for ex-
pert programmers. Different parallel programming languages have different machine models (Aubanel,
2016; Skillicorn & Talia, 1998). The impact of a language’s machine model on the comprehension of
its execution would be worth studying. Languages that have a high level of abstraction may make it
difficult to understand what is happening at the machine level, which is necessary in order to reason
about performance. Languages at a lower level of abstraction may involve a tradeoff between expos-
ing execution at the machine level and increasing the cognitive load of having to understand multiple
streams of execution.

How do programmers actually reason about a parallel program’s behaviour? They likely use their knowl-
edge about the programming language’s machine model to construct representative cases. This could be
similar to how people reason about natural language texts, and could lead the way to understanding what
makes one program harder to understand than another, and what kind of mistakes even expert program-
mers make. Understanding how parallel programmers reason, and the challenges they face, could lead to
the development of representations that would aid in comprehension. This could include diagrammatic
representations, to show the decomposition of data structures and the communication between tasks.
Without knowing anything about programmers’ mental representations, it’s hard to predict whether a
proposed representation would be helpful.
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