
Developing Testing-First Labs For a Less Intimidating Introductory CS
Experience

Angela Zavaleta Bernuy
Dept. of Computer and
Mathematical Sciences

University of Toronto Scarborough
angelazb@cs.toronto.edu

Brian Harrington
Dept. of Computer and
Mathematical Sciences

University of Toronto Scarborough
brian.harrington@utoronto.ca

Abstract
When introducing non-majors to programming in an introductory computer science course, the simple
mechanics of code writing can be intimidating. Many students report feeling overwhelmed by the re-
quirements of user interfaces and syntax guides before even writing their first line of code. In an attempt
to combat this anxiety, we have developed a tool called Code Detective, which allows students to learn
fundamental skills of computer science: testing, program description, debugging and tracing before ever
having to write any code.

Code Detective starts by completely hiding the code, asking students to reverse engineer the specifica-
tions of each module from only the inputs and outputs. Over several weekly laboratory sessions, students
are then introduced to program definition, documentation and testing, as more elements of the code are
revealed. Students then learn tracing and debugging, all before actually being required to directly write
or edit any code.

In this experience report, we discuss the development and deployment of Code Detective in an Introduc-
tion to Programming course for non-majors course at a large North American research university.

1. Introduction
Learning to program is perceived by many students as a very challenging academic task (Bennedsen
& Caspersen, 2007). It is a common understanding that students can get intimidated and overwhelmed
when they are introduced to programming, especially if they have a fixed idea on their minds about the
levels of difficulty of the subject.

Reports show that there are high failure rates when learning to program, and many students choose
not to take computer science courses because they find the concept of programming to be intimidating
(O’Donnell, Buckley, Mahdi, Nelson, & English, 2015). Educators have been trying to improve the
overall students’ satisfaction as it is connected with students’ retention (Rybarczyk, 2020). As non-
majors have different learning habits from traditional computer science students (Rybarczyk, 2020),
increasing engagement during a non-majors class is always a challenge (O’Donnell et al., 2015).

Previous work about other strategies to introduce programming includes educational games, breadth-
first approaches, testing first, among others. Educational games have been used to increase students’
engagement and retention (Lee, Ko, & Kwan, 2013). Another approach is breadth-first, which includes
teaching students everyday computer tasks like image editing, OS installation and building home com-
puter networks in an undergraduate course (McFall & DeJongh, 2011). There has been work done
in testing-first approaches to introductory programming. Marrero Settle conducted a course where stu-
dents were required to implement their test cases before completing their assignments (Marrero & Settle,
2005).

This work explores an alternative way of introducing programming to non-major students that combines
some elements of breadth-first and testing-first approaches, utilizing more traditional deductive reason-
ing skills in place of technical abilities that may be new and intimidating to novice programmers. The
focus of this work is to present programming as a deductive logical process first, allowing students to
think algorithmically, and become comfortable with fundamental concepts of programs and functions,
before presenting them with actual code. In this way, students can begin by using tools and methods with

PPIG 2020 66 www.ppig.org



which they are already familiar while they are gradually introduced to more specific computer science
concepts.

2. Code Detective
Code Detective is a tool that was designed as part of an Introduction to Programming course for non-
major students at The University of Toronto Scarborough. The web tool was developed by a team of
undergraduate computer science students. Code detective focuses on introducing non-major students to
the concept of computing in a way that emphasizes skills they already possess, without forcing them
to write (or initially, even read) code that they may find overwhelming. The programming languages
taught in the course were Scratch and Python, and this tool was easily adaptable to both languages.

Code Detective consists of nine modules that are aligned with the material covered during the weekly
lectures starting on the second week of the semester. Students worked in pairs on the Code Detective
modules during two-hour weekly laboratory sessions supervised by teaching assistants. The teaching
assistants were mainly tasked with providing guidance to groups as needed. At the end of each session,
students were asked to present their solutions and explain their reasoning.

Each module consists of a series of questions about various programs with simple logic. In the first
modules, the program’s code is entirely hidden, only offering input and output on the screen where
the students are asked to experiment with the program and deduce what it does, formally define the
program’s function, and develop a testing plan to determine if the program has any bugs. For later
modules, students practice how to trace and repair code, without the need for writing any code. Only in
the later modules are students asked to write or edit code.

The nine modules were created following a gentle, yet increasingly difficult pedagogy as follows:

2.1. Lab 0: Program definitions
Consists of twenty questions. Each question has a small program with a series of input/output boxes
(check-boxes, text boxes, date selectors). The students need to provide some input, click the "run"
button and keep track of the response. After experimenting with the program, they are asked to provide
a formal definition for the function which includes: stating what the function does, valid input and
expected output.

2.2. Lab 1: Program definition and introduction to algorithms
Consists of two parts, five questions each. For the first five questions, the students are given the definition
of a program and a high level algorithm that would implement the definition in a flawed way. Their goal
is to find the flaws in the algorithm by providing a list of test cases that will fail and write the fixed
algorithm. For the last five questions, the students only get the definition of a program and they have to
provide an algorithm to solve the problem.

2.3. Lab 2: Test dimensions and black-box testing
Consists of two parts, five questions each. For the first five questions, the students were provided with
the definition of a program and are tasked with designing a testing plan. They need to provide the
dimensions of the testing space, decide which are the important points on each dimension, and calculate
the number of tests required for a full coverage testing. For the last five questions, they need to perform
black-box testing of a given program and provide a list of failed test cases specifying the input, expected
output, and actual output.

2.4. Lab 3: Tracing and white-box testing
Consists of two parts, five questions each. For the first five questions, the students are provided with a
simple algorithm. Their task is to trace the code for a given input and enter the output. The students
get immediate feedback from Code Detective and a live-count of failed attempts while entering their
answers. For the last five questions, they need to perform white-box testing of a given Scratch program
and provide a list of failed test cases specifying the input, expected output, and actual output.

PPIG 2020 67 www.ppig.org



2.5. Lab 4: Tracing and debugging
Consists of two parts, five questions each. For the first five questions, the students are provided with
more complex code than the previous module as loops are introduced. Their task is to trace the code
for a given input and enter the output. The students get immediate feedback from Code Detective and
a live-count of failed attempts while entering their answers. For the last five questions, the students are
given a broken program and their task is to debug and fix the code.

2.6. Lab 5: Refactoring and implementation
Consists of two parts, five questions in total. For the first three questions, the students get a working
program that is not well designed. Their task is to refactor it by creating smaller, better designed modules
without breaking the code. For the last two questions, the students get an incomplete program with
missing code segments (missing blocks in Scratch). Their task is to implement the missing components
to get the code working.

2.7. Lab 6: Efficiency, and implementation
Consists of two parts, five questions in total. For the first three questions, the students get a working pro-
gram implemented inefficiently. Their task is to refactor the program without changing its functionality.
For the last two questions, the students get the definition of a program with a set of specifications that
they are required to implement.

2.8. Lab 7: Scratch-Python translation
Consists of five questions. Each question has five different Scratch working programs. The students
need to translate the Scratch code into Python code. The students are required to test their translated
code using an IDE and demonstrate their testing plan. This module is specifically designed for courses
that cover more than one language in order to help students learn to work with a new language, but can
also be used to help students understand how much of their learning is transferable to other languages.

2.9. Lab 8: Design and implementation
The students are provided with a partially completed Python code. They are required to read and under-
stand the code, as well as to implement the missing documented functions.

Following the completion of the Code Detective modules, the students are required to work on a project
of their choice where they had to implement a program either using Scratch or Python. Some of the most
common projects were arcade games in Scratch and simple data management programs in Python.

3. Evaluations
Based on the anonymous course evaluations, some students shared that they enjoyed this course design
because they did not have any prior coding experience and they were gradually exposed to the course
content. Moreover, one student stated that "this was good because it prevented me from getting scared off
from programming forever". A couple of students shared that the structure of the course helped reduce
intimidation as it helped them "let go of the mindset that computer science is intimidating and instead
makes us see that computer science can be for everybody", and that we created "a learning atmosphere
that was not intimidating as a person with no experience at coding!".

Many students stated that the course was still challenging and required time and effort to develop a
deeper understanding of programming concepts. They agreed that Code Detective helped reinforce the
lecture material and encouraged them to get more practice. On the other hand, students who had prior
coding experience reported that they felt the class progress slow and they wished they were exposed to
harder concepts.

To measure the success of Code Detective compared to previous deliveries of the same course, we looked
at the drop rates from previous years. We found that the year in question had a 7% drop rate, around
23% lower than the previous years: 29% and 30% in the two years prior, even though the class size of
450 students was the same across the three years. While we cannot attribute this substantial reduction in
drop rates to Code Detective directly, as other factors such as teaching staff and structure were not held

PPIG 2020 68 www.ppig.org



constant, the teaching team commented on the absence of the phenomenon, observed in previous course
offerings, of students dropping after being unable to complete the first lab sessions.

4. Conclusion
Code detective played a key role in reducing students’ sense of intimidation, and fostered a sense of
accomplishment without resorting to paternalistic methodologies or games that may alienate some stu-
dents. Introducing computer science as a deductive, logical, problem solving system first before intro-
ducing the technicalities of code writing made students feel that they were able to use the logic and
reasoning skills they already possessed to solve problems, and gave them a gentler and less intimidating
introduction to programming.

5. References
Bennedsen, J., & Caspersen, M. E. (2007, June). Failure rates in introductory programming. SIGCSE

Bull., 39(2), 32–36. doi: 10.1145/1272848.1272879
Lee, M. J., Ko, A. J., & Kwan, I. (2013). In-game assessments increase novice programmers’ engage-

ment and level completion speed. In Proceedings of the ninth annual international acm conference
on international computing education research (pp. 153–160).

Marrero, W., & Settle, A. (2005). Testing first: emphasizing testing in early programming courses.
In Proceedings of the 10th annual sigcse conference on innovation and technology in computer
science education (pp. 4–8).

McFall, R. L., & DeJongh, M. (2011). Increasing engagement and enrollment in breadth-first in-
troductory courses using authentic computing tasks. In Proceedings of the 42nd acm technical
symposium on computer science education (pp. 429–434).

O’Donnell, C., Buckley, J., Mahdi, A., Nelson, J., & English, M. (2015). Evaluating pair-programming
for non-computer science major students. New York, NY, USA: Association for Computing Ma-
chinery.

Rybarczyk, R. (2020). Non-major peer mentoring for cs1. In Proceedings of the 51st acm technical
symposium on computer science education (p. 1068–1074). New York, NY, USA: Association for
Computing Machinery. doi: 10.1145/3328778.3366901

6. Appendix: Code Detective Interface

Figure 1 – Code Detective Main Menu

PPIG 2020 69 www.ppig.org



Figure 2 – Lab 0 Menu

Figure 3 – Lab 0 Sample Question

Figure 4 – Lab 1 Sample Question 1

Figure 5 – Lab 1 Sample Question 2

PPIG 2020 70 www.ppig.org



Figure 6 – Lab 2 Sample Question 1

Figure 7 – Lab 2 Sample Question 2

Figure 8 – Lab 3 Sample Question 1A

PPIG 2020 71 www.ppig.org



Figure 9 – Lab 3 Sample Question 1B

Figure 10 – Lab 3 Sample Question 2

Figure 11 – Lab 4 Sample Question

PPIG 2020 72 www.ppig.org



Figure 12 – Lab 5 Sample Question

Figure 13 – Lab 6 Sample Question

Figure 14 – Lab 7 Sample Question

PPIG 2020 73 www.ppig.org



Figure 15 – Lab 8 Sample Question

PPIG 2020 74 www.ppig.org




