
Designing an Open Visual Workflow Environment

Charles Boisvert, Chris Roast, Elizabeth Uruchurtu
Dept. of Computing, Sheffield Hallam University

Sheffield, United Kingdom, S1 1WB
{c.boisvert | c.r.roast | e.uruchurtu}@shu.ac.uk

Abstract
This paper presents open piping, a box-and-wire programming environment, then uses Cognitive Di-
mensions of Notations to analyse its interaction design and identify its weaknesses. Physics of Notations
gives a complementary perspective to propose solutions which we present by example. We also discuss
the respective uses and benefits of Cognitive Dimensions and Physics of Notations in this work.

Keywords: Computer science education; Data Science; Functional Programming; End-User Program-
ming; Notational Design

1. Project background and motivations
Open Piping is an open-source visual functional programming environment, based on a box-and-wire
model, intended for data processing applications.

Our ambition is to propose a graphical tool for user-defined data processes1, with the transparency and
flexibility needed to ensure that users can easily define the processes they want to operate on data, while
also retaining control of these processes to use them in new environments.

Figure 1 – Open Piping interface with an example workflow

Fig. 1 shows the Open Piping interface and an example data flow. A more complete description of the
system is given in (Boisvert, Roast, & Uruchurtu, 2019).

Four elements motivate our work: the systematic improvement in access to programming brought by
the growing ease of use and learning of programming tools; the rise of data processing, underpinned
by functional programming and the growth of big data and data analytics; the possibility of modelling
functional computation visually; and finally the access barriers to this visual programming paradigm.

A systematic improvement in access to programming. Usability breakthroughs mark the progress of all
computer science, including programming. One remarkable advance is the wide range of programming
learning and novice developer environments, such as MIT Scratch, using a jigsaw puzzle metaphor to
represent the combination of individual statements (Resnick et al., 2009).

The rise of data processing. As simple applications have become more accessible, computation has
shifted to new domains, and to programming languages that support multiple paradigms, like R, Clo-

1http://boisvert.me.uk/openpiping

1
PPIG 2020 26 www.ppig.org

jure, or Python which add functional programming to imperative, object-oriented and event based de-
velopment. Yet, the jigsaw puzzle metaphor favours an imperative perspective on programming: the
programming paradigms computing education tools support best, are becoming less used in practice.

Modelling functional computation visually. Lambda calculus’ mapping to directed acyclic graphs pro-
vides a visual model, summarised table 1. The graph, or box-and-wire model, can read as a data flow.

Notation Represents Graphical equivalent
x Variable

λx. f Abstraction (function f has parameter x)
f x Application (function f is applied to variable x)

Table 1 – Basic elements of untyped λ -calculus and their representation as box-and-wire

Access limitations to visual functional programming Visual box-and-wire environments are common
(Le-Phuoc, Polleres, Tummarello, & Morbidoni, 2008; O’Reilly, n.d.), including some in commercial
(Instruments, accessed 2019) and scientific (Hull et al., 2006) use. But in many cases, the value of
the tools is limited by a lack of open, accessible implementations of the processes they define and
intermediate technologies. Take the case of the popular Yahoo pipes (O’Reilly, n.d.): when support
ended in 2015, users only option was a complex export process.

However, data analysis applications require mastery of complex systems to apply mathematical tech-
niques and represent information in non-trivial domains, and this needs to be supported by design.

2. Improving a Data Flow Visualisation
As prior research (Roast, Leitão, & Gunning, 2016; Blackwell, 2006, 2001) shows, visualisation is not
easy to represent in ways that end-users spontaneously understand. Users’, particularly novices, need
carefully designed presentation and interaction devices.

2.1. Cognitive Dimensions of Notations
Cognitive Dimensions of Notations is a framework of design heuristics (Green & Petre, 1996). The
common language it provides is frequently used to evaluate the usability of programming languages
and interfaces (Hadhrawi, Blackwell, & Church, 2017; Ennals & Gay, 2007; Morbidoni, Polleres, Tum-
marello, & Le Phuoc, 2007).

Evaluating the notations used in a complex information artefact, such as Open Piping, with this frame-
work requires a lot of judgement. As an example, let us can compare two evaluations of tools developed
on principles comparable to Open Piping.

(Morbidoni et al., 2007) propose Semantic Web Pipes, a functional language and pipe editor to prototype
semantic mash-ups; while (Green & Petre, 1996), introducing the framework in their analysis of visual
programming environments, consider two functional environments, Labview and in Prograph.

Evaluating the viscosity of their tool, the first estimate that the underlying functional paradigm guaran-
tees ’almost literally the principle of encapsulation and decoupling’. For the same dimension, Green and
Petre instead test the viscosity by attempting a minor change to test code in each of the two functional
environments, Labview and in Prograph. They choose to focus, not on the language, but on manipulating
the code at the interface, explaining that ’boxes had to be jiggled about’, and are not satisfied that the
language supports appropriate abstractions.

The list of dimensions has varied a little since the framework was proposed. Here, we use the dimensions
suggested by (Green & Petre, 1996), listed table 2 (next page).

Cognitive Dimensions provide a useful vocabulary to evaluate the usability of Open Piping, and supports
identifying its limits more precisely. Below, we propose an evaluation of Open Piping against each
cognitive dimensions.

PPIG 2020 27 www.ppig.org

Dimension Characteristic
Abstraction gradient What are the minimum and maximum levels of abstraction exposed by the

notation? Can details be encapsulated?
Closeness of Mapping Does the notation correspond to the problem world?
Consistency When some of the notation has been learnt, how much of the rest can be

inferred?
Diffuseness / terseness How many symbols (how much space) the notation requires to produce a

certain result
Error-proneness Does the notation induce user mistakes?
Hard mental operations How much do the notations impose hard mental processing?
Hidden dependencies Are dependencies visible or hidden?
Juxtaposability Is every part of the notation visible at the same time?
Premature commitment Are there strong constraints on the order in which the user must complete

the tasks to use the system?
Are there decisions that must be made before all the necessary information
is available? Can those decisions be reversed or corrected later?

Progressive evaluation How easy is it to evaluate and obtain feedback on an incomplete solution?
Role-expressiveness How obvious is the role of each component of the notation in the solution

as a whole?
Secondary notation Can the notation carry extra information by means not related to syntax

(e.g. layout, colour, or other cues?)
Viscosity How much effort is required to make a single change?
Visibility Can required parts of the notation be identified, accessed and made visi-

ble?

Table 2 – Cognitive Dimensions, after (Green & Petre, 1996).

Abstraction gradient Open Piping supports the re-use of code by creating new blocks, and of data by
setting variables. The management of these abstractions becomes difficult if the user doesn’t antici-
pate: that is, re-usable code identified late in a project needs to be redefined to set it as an (abstraction
supporting) block.

Closeness of Mapping and Consistency Consistency and Closeness of Mapping are the system’s
strongest point, as the functional model is represented faithfully by the visual objects.

Diffuseness / terseness A lot of blocks can be necessary to specify even simple computations, as each
function call and each operator is one block.

Error-proneness End-users can easily drag the wrong block, or the wrong link from output to input;
though these mistakes are easily undone.

Hard mental operations Constructs which use expressions as input (such as lambda expressions) are
very difficult to compute mentally. The number of blocks also create visual clutter and make mental
operations harder.

Hidden dependencies Blocks represent functions and operations: end-users need to be familiar with their
effect, including that of complex operations (e.g. lambda extraction).

Juxtaposability and Role-expressiveness How much of the computation is visible at the same time de-
pends on its complexity: how many blocks are in use and whether it uses any user-defined blocks.
Blocks are clearly annotated with the function they represent; the ’wires’ relating them are more easily
confused as they are not marked with information. Wires can also cross.

Premature commitment User-defined blocks are created within a separate window, and so the end-user

PPIG 2020 28 www.ppig.org

needs to plan ahead that their computation belongs in a new block.

Progressive evaluation Solutions can easily be tested throughout the development process.

Secondary notation User-defined blocks can be named by the user. Spatial positioning of blocks has no
incidence on the result and is also chosen by the end-user, although the blocks are presented with inputs
at the top-left and outputs on the right-hand side, so blocks’ disposition is intended for a top to bottom,
left to right reading order.

Viscosity Minor changes (e.g. adding a box) require a lot of adjustment; user blocks are also difficult to
redefine, as discussed above in premature commitment and abstraction gradient.

Visibility The notations are clear to end users, but the visualisation relies on a limited range of three
objects: boxes, lines, and discs marking input or output.

Cognitive Dimensions support a useful discussion to identify of the tools’ weaknesses. Following it
we propose to reduce the abstraction gradient and increase viscosity by allowing a user manipulation to
select a subtree in an expression, and make it into a custom block. But it is not always as clear how to
address the points identified through Cognitive Dimensions. To that end, we propose to turn to another
approach: Physics of Notations.

2.2. Physics of Notations
Physics of notations proposes a theory of design for notations based on maximising cognitive effective-
ness (Moody, 2009; Van Der Linden & Hadar, 2018). To that aim, it defines nine principles to analyse
and develop notations. Compared to Cognitive Dimensions, Physics of Notations ambitions to be a more
complete theory, which offers to explain why notations succeed, as well as simply describe them.

More prosaically, for this work it offers two clear advantage over cognitive notations: its principles
are focused on visual notations, and all of them offer actionable points to improve the effectiveness
of notations. Using these principles, we propose an alternative, fig. 2 which addresses many of the
weaknesses of the design identified 2.1 (next page).

Type Symbol and colour Note

Boolean Chosen to match the colour and shape of Scratch booleans

Number Match the colour and shape of Scratch numbers

String A large quotation mark

List Square brackets, as in JSON and arrays in many programming
languages

JSON data Curly brackets, as in JSON objects

Expression Expression, formed of related blocks, are needed as inputs to
some blocks, for instance lambda-extraction or conditionals

Block To allow blocks as output of and input to other blocks (in pro-
gramming terms, functions as data)

Any Used when any data type is allowable as input, for example, in
a type checking block

Table 3 – Data types used by open piping and their notational representation

Semiotic clarity recommends that all semantic constructs find a visual expression. Boxes and wires
represent input and output to functions, but data typing is an important semantic construct that should
also be made clear: identical wires give no information about the data transmitted. By associating each
main data type to a colour (for wires) and a symbol (for inputs and outputs), we express more of the

PPIG 2020 29 www.ppig.org

important semantic information within the notation. Each data type used, and the proposed colour and
shape to denote them is presented for reference in table 3 above.

Perceptual discriminability (ensuring symbols are easy to tell apart) can can be seen in table 3, where
a small number of colour and symbols are used, making them highly distinguishable. Blocks have an
identical shape, except for blocks processing expressions as discussed below, but input blocks and blocks
carrying out operations can be distinguished by colour.

Figure 2 – A workflow before (left) and after (right) revision for cognitive effectiveness

Visual expressiveness (using the fullest range of visual variables possible) point to fully exploiting visual
variables - for example, as above, with colour and shape. This can also be done by giving the blocks
that receive expressions as input, a special shape, to indicate their exceptional character - an "open jaw"
shape that can also visually include some of the expression.

Semantic transparency recommends that the appearance of notations suggests their meaning: this is done
by composing function boxes with icons for input and output parameters, and by positioning inputs at
the top or left and outputs at the bottom or right, following the common reading order.

Graphic economy is also respected as symbols remain few and easily recognised. We also propose to
allow the output symbol to glide freely around the right and bottom side of a block, and inputs around its
left and top sides - including not imposing an argument order, so that wires rarely cross over in complex
expressions, reducing visual clutter.

Complexity management is supported by encoding more information in pre-attentive ways - through
colour, size and shape. Allowing the argument inputs and output to "float" along the box’s border also
reduces complexity. The shape of blocks handling expressions as input may not reduce complexity, but
it signals it to the viewer.

Fig. 2 applies the principles of Physics of Notations to one workflow. The final three principles of
Physics of Notations are Cognitive Integration, Dual coding, and Cognitive fit, which address, respec-
tively, the coordination of documents, the use of written annotations, and the adaptation to diverse
audiences. Our proposed solution fig. 2 does not make use of these points.

3. Future work and reflection
A further evaluation will be needed to consider the effectiveness of the redesign proposed in section 2.2
above. But the two frameworks showed an interesting complementarity when using them simultane-
ously.

Cognitive Dimensions and Physics of Notations complemented each other usefully to carry out this
analysis and find design options. The Cognitive Dimensions heuristics provided insights in dynamic as-
pects of the visualisation with its dimensions of abstraction gradient and viscosity, pointing immediately
to both problem and solution. It then helped highlight many weaknesses of the design, but provided
fewer actionable points to improve it. By contrast Physics of Notations focused attention on identifiable
improvements to the visualisation. In particular, as (Roast & Uruchurtu, 2016) point out, Physics of No-

PPIG 2020 30 www.ppig.org

tations centrally asks the question: ’what constitutes and defines the semantic domain being visualised?’
(Roast & Uruchurtu, 2016). This semantic focus brought the insight that the visualised domain must
include typing, while other principles provided means to do so.

Cognitive dimensions also provides a validation of the redesign suggestions. The proposed redesign
goes some way to solving several of the most egregious problems identified with Cognitive Dimensions:
it is less error-prone, more tolerant of change, and gives important clues in support of hard mental
operations. This shows it is valuable to exploit both frameworks in combination: Cognitive Dimensions
helps consider notation abstractly and include dynamic aspects of use, while Physics of Notations focus
on visual ways of expressing meaning and on identifying that meaning to be expressed.

4. References
Blackwell, A. F. (2001). Pictorial representation and metaphor in visual language design. Jour-

nal of Visual Languages & Computing, 12(3), 223 - 252. Retrieved from http://www
.sciencedirect.com/science/article/pii/S1045926X01902071 doi: https://
doi.org/10.1006/jvlc.2001.0207

Blackwell, A. F. (2006, December). The reification of metaphor as a design tool. ACM
Trans. Comput.-Hum. Interact., 13(4), 490–530. Retrieved from http://doi.acm.org/
10.1145/1188816.1188820 doi: 10.1145/1188816.1188820

Boisvert, C., Roast, C., & Uruchurtu, E. (2019). Open piping: Towards an open visual workflow envi-
ronment. In Conference proceedings of 2019 international symposium on end-user development
(is-eud).

Ennals, R., & Gay, D. (2007). User-friendly functional programming for web mashups. In Acm sigplan
notices (Vol. 42, pp. 223–234).

Green, T. R. G., & Petre, M. (1996). Usability analysis of visual programming environments: a ‘cogni-
tive dimensions’ framework. Journal of Visual Languages & Computing, 7(2), 131–174.

Hadhrawi, M., Blackwell, A. F., & Church, L. (2017). A systematic literature review of cognitive
dimensions. In Ppig (p. 3).

Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M. R., Li, P., & Oinn, T. (2006). Taverna: a
tool for building and running workflows of services. Nucleic acids research, 34(suppl 2), W729–
W732.

Instruments, N. (accessed 2019). What is labview. http://www.ni.com/en-gb/shop/
labview.html. (Accessed: 2019-30-04)

Le-Phuoc, D., Polleres, A., Tummarello, G., & Morbidoni, C. (2008). Deri pipes: visual tool for wiring
web data sources.)ˆ(Eds.):‘Book DERI pipes: visual tool for wiring web data sources’(2008,
edn.).

Moody, D. (2009). The “physics” of notations: toward a scientific basis for constructing visual notations
in software engineering. IEEE Transactions on software engineering, 35(6), 756–779.

Morbidoni, C., Polleres, A., Tummarello, G., & Le Phuoc, D. (2007). Semantic web pipes. Rapport
technique, DERI, 71, 108–112.

O’Reilly, T. (n.d.). Pipes and filters for the internet. http://radar.oreilly.com/2007/
02/pipes-and-filters-for-the-inte.html. (Accessed: 2016-10-10)

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., . . . others
(2009). Scratch: programming for all. Communications of the ACM, 52(11), 60–67.

Roast, C., Leitão, R., & Gunning, M. (2016). Visualising formula structures to support exploratory mod-
elling. In Proceedings of the 8th international conference on computer supported education (pp.
383–390). Portugal: SCITEPRESS - Science and Technology Publications, Lda. Retrieved from
https://doi.org/10.5220/0005812303830390 doi: 10.5220/0005812303830390

Roast, C., & Uruchurtu, E. (2016). Reflecting on the physics of notations applied to a visualisation case
study. In Proceedings of the 6th mexican conference on human-computer interaction (pp. 24–31).

Van Der Linden, D., & Hadar, I. (2018). A systematic literature review of applications of the physics of
notations. IEEE Transactions on Software Engineering, 45(8), 736–759.

PPIG 2020 31 www.ppig.org

