
Understanding Comprehension of Iterative and Recursive Programs
with Remote Eye Tracking

Arooba, Aqeel
Chemnitz University

of Technology

Norman Peitek
Leibniz Institute
for Neurobiology

Sven Apel
Saarland University

Saarland Informatics Campus

Jonas Mucke
Chemnitz University

of Technology

Janet Siegmund
Chemnitz University

of Technology

Abstract
Background: There have been many studies on the teaching and learning of programming styles, in-
cluding recursion and iteration. Programming styles have been studied from the point of view of mental
and conceptual models, program comprehension, common misconceptions, and how to teach them ef-
fectively. Recent studies suggest that students tend to understand iterative programs more efficiently
than recursive programs. However, there is little empirical evidence as to why this might be the case.

Objective: To create better teaching practices for students, we first have to understand how students
understand recursion and iteration. We aim to investigate this phenomenon and identify factors that
might drive the understanding of iterative and recursive programs by students.

Method: We conducted a remote eye-tracking study to record students’ visual attention as they were
comprehending simple iterative and recursive programs. A total of 117 students participated in the study,
and we collected behavioral and visual-attention data.

Results: We found no clear indication that programming style affects how well and fast students un-
derstand iterative and recursive programs. Regarding visual attention, we observed that students follow
a comparable reading behavior for both iterative and recursive programs. However, we found different
reading behaviors when comparing students who correctly understood programs with students who did
not.

Conclusion: It can be said that for students, there is no difference in efficiency in understanding iterative
and recursive algorithms. The visual attention of that same group is equally indistinguishable between
top-down and bottom-up comprehension. But it seems that the different programming styles have a
different approach to understanding the source code, so other beacons in the code become more relevant
and these are visited more often in the course of the comprehension process.

Future Work: To derive more general conclusions, further studies are necessary, for example, with
more advanced code (e.g., with mutual recursion) or letting students write code themselves. Measuring
the cognitive load (e.g., with pupil dilation) could also provide more rigorous insights into the underlying
cognitive process of program comprehension.

1. Introduction
There are many ways to teach programming.Some say it is important to teach computational think-
ing (Lye & Koh, 2014), others say making a connection to real-life examples is critical (Barjaktarovic,
2012). For example, to teach recursion, the Russian Matryoshka doll can be used, where each hol-
low wooden doll contains a similar but smaller version of itself (Wu, Dale, & Bethel, 1998). Another
approach to introduce recursion is by a variety of applied examples of mathematical functions, such
as computing the factorial, the Fibonacci sequence, or Euclids algorithm (Benander, Benander, & Pu,
1996). Connecting to mathematical skills that students have acquired in high school builds on already
developed problem-solving skills, which may be translated intuitively into source code (Winslow, 1996).

Iteration and recursion are core problem-solving techniques and an important component in computer
science. The underlying concept of both is to execute a set of instructions repeatedly. The difference

PPIG 2021 www.ppig.org



(a) (b)

Figure 1 – Java snippets to compute the Fibonacci number in an (a) iterative implementation and
(b) recursive implementation.

between them is that recursion is simply a function call, in which the function being called is the same
as the one making the call, whereas iteration is when a set of statements inside a loop is repeatedly
executed until a certain termination condition is met.

Iteration and recursion require different ways of thinking, which may make one or the other approach
more intuitive to start with. Specifically, iteration requires forward reasoning, and recursion requires
backward reasoning. In forward reasoning, one starts with the data for an initial state and works toward
a goal. For example, to compute the Fibonacci number of 4 (cf. Figure 1(a)), a forward-reasoning
approach could be:

1. Get the first number (i.e., 0)
2. Get the second number (i.e., 1)
3. Calculate the third number by adding the first and second (i.e., 0+1 = 1)
4. Calculate the fourth number using second and third (i.e., 1+1 = 2)

In backward reasoning, the data for an initial state need to be found to solve a problem. Here, problems
are divided into sub-problems; if the solution for the sub-problem is not already calculated, we need to
calculate it on the way. For example, computing the Fibonacci number of 4 with a backward-reasoning
approach (cf. Figure 1(b)) would work as follows:

1. Fibonacci(4)→ go and compute Fibonacci(3) and Fibonacci(2).
2. Fibonacci(3)→ go and compute Fibonacci(2) and Fibonacci(1).
3. Fibonacci(2)→ go and compute Fibonacci(1) and Fibonacci(0).
4. Fibonacci(1) will return 1 and Fibonacci(0) will return 0.

Ginat suggested students find recursion difficult, because it requires backward reasoning, which is un-
intuitive for students (Ginat, 2005). He assumes most of the problems students have solved before
encountering recursion require forward reasoning working from the initial state to the goal state and
thus recursion requires a new way of thinking. Since students have not been taught to use backward
reasoning, they struggle with recursion.

There is empirical evidence for both, that students either prefer iteration or recursion. For example,
Gal-Ezer and Harel suggest recursion is “one of the most universally difficult concepts to teach” (Gal-
Ezer & Harel, 1998). Similarly, Roberts states that students perceive recursion as “obscure, difficult and
mystical” when they are first introduced to it (Roberts, 1986). Benander and others found that recursive
search and copy routines were no more difficult to comprehend than iterative routines (Benander et
al., 1996). Turbak has observed an improvement of students performance in exams after changing the
course structure and introducing recursion first as a problem-solving strategy. Iteration is then presented
as a particular pattern of recursion (i.e., tail recursion). Finally, loop constructs are presented as concise

PPIG 2021 www.ppig.org



idioms for iterative patterns (Turbak, Royden, Stephan, & Herbst, 2001).

A common viewpoint is that iteration is easier to comprehend for students. Kessler and Anderson investi-
gated the relationship between writing recursive code and writing iterative code. The participants in their
study were undergraduate students with little or no programming experience. The study was conducted
over two sessions in two days, using a language designed specifically for the study. They found positive
transfer from writing iterative functions to writing recursive functions, but not vice versa (Kessler &
Anderson, 1986).

McCauley and others (Mccauley, Grissom, Fitzgerald, & Murphy, 2015) replicated the study of Benan-
der and others (Benander et al., 1996). McCauley and others observed that students found it significantly
more challenging to comprehend recursive code than iterative code.

In a study on how middle-school students learn recursion, Anzai and Uesato found that learning iteration
first facilitated the learning of recursion. The participants in the study did no programming and did not
read code, but instead saw a specification on how to compute a solution (iteratively or recursively) for
some instance of a problem and should calculate the solution to a larger instance (Anzai & Uesato,
1982).

Iteration (or looping) is a common phenomenon in our everyday lives. The availability of real-world
analogs, therefore, facilitates the development of a mental model of control flow in iteration. A good
example of this scenario would be a music player, which keeps playing music unless the user presses
“stop” or it is the end of the playlist. By contrast, for recursion, often artificial examples with unclear
real-world analogies are used. Popular examples are computing Fibonacci numbers and Euclid’s al-
gorithm, which can concisely illustrate recursive computations. However, as they may not succeed in
motivating the need for recursion in a broader setting, students may perceive that recursion is only used
for these mathematical functions (Michaelson, 2015; Shriram, 2020).

To teach recursion to students, Felleisen and others suggest doing it naturally (Felleisen, Findler, Flatt,
& Krishnamurthi, 2018). Specifically, they argue that recursion arises from self-references in data, so re-
cursive data suggests recursive solutions. Felleisen and others teach a design “recipe”, in which students
describe their programs (or functions) data structures, and identify self-references in these data. Next,
they design a "template" that explains how the structure of data explains the structure of the solution.
This function is structurally recursive, that is, a function that consumes structured data, typically decom-
pose their arguments into their immediate structural components and then process these components. If
one of the immediate components belongs to the same class of data as the input, the function is recursive.
For this reason, these functions are called structurally recursive functions (Felleisen et al., 2018). While
structurally-designed functions make up the vast majority of code in the world, some problems cannot
be solved with a structural approach to design. To solve such complicated problems, programmers use
generative recursion, a form of recursive algorithms that generate an entirely new piece of data from the
given data and recur on it (Felleisen et al., 2018). We focus on structural recursion in this study, because
it occurs most frequently.

Despite numerous studies on the dichotomy of recursion and iteration, there is still a lack of understand-
ing in the students’ underlying ways of thinking (Rinderknecht, 2014; Mccauley et al., 2015). Due to
this gap in understanding, it is unsettled how to ideally teach recursion and iteration.

One important aspect of program comprehension is observing the way programmers read source code.
Eye tracking has proved useful to observe programmers reading source code and answer such funda-
mental research questions on program comprehension (e.g., (Busjahn et al., 2015), (Peitek, Siegmund,
& Apel, 2020)). Eye-tracking usually requires direct measurement taken from the eye in one of sev-
eral ways, but principally there are three categories: (a) measurement of the movement of an object
(i.e., special contact lens) attached to the eye, (b) optical tracking without direct contact to the eye (i.e.,
video-based eye trackers), or (c) measurement of electric potentials using electrodes placed around the
eyes (i.e., electrooculography (EOG)). However, conducting a study with one of these techniques was

PPIG 2021 www.ppig.org



especially challenging in the current pandemic. To allow for safe and parallel observation, we used an
inferential technique, using a tool called REYEKER. The original image is blurred to distort text regions
and disable legibility, requiring participants to click on areas of interest to deblur them to make them
readable. REYEKER collects each mouse click in terms of (x, y) coordinates. These serve as approx-
imation of participants visual attention. While REYEKER naturally can only track visual attention to
a limited degree as information from peripheral vision is greatly reduced, it allows researchers to get
a basic understanding of developers’ reading behavior as we believe that the results obtained are valid
indications of the focus of attention. We hope to repeat these studies in the future using more direct
techniques.

To gain more insights into how students understand iterative and recursive programs, we conducted a
remote eye-tracking study. Specifically, we observed how 117 students of two introductory programming
courses read 8 algorithms in iterative and recursive style.

In a nutshell, we found that students’ behavior and visual attention is not affected by the programming
style. In summary, we make the following contributions:

• We describe an experiment design that investigates the underlying ways of thinking when students
understand iterative and recursive programs.

• We provide empirical evidence that, for early students, there is no significant difference between
iterative and recursive style.

• We share a complete replication package, which includes all snippets, acquired data, and analysis
scripts on the project’s website.1

2. Experiment Design
2.1. Objective
With our study, we aim at shedding more light on how students approach understanding iterative and
recursive algorithms. Specifically, we evaluate whether the implementation style affects students’ be-
havior and visual attention. Furthermore, to be able to entangle the effect of implementation style from
comprehension strategy, we evaluate whether meaningful vs. meaningless identifier names also affect
students’ behavior and visual attention. We state two research questions to clarify our objective:

RQ1: Do implementation style and comprehension strategy affect students’ response times and
correctness when understanding source code?

RQ2: Do implementation style and comprehension strategy affect students’ visual attention when
understanding source code?

As prior studies point in both directions (in favor of recursion or iteration), we formulate questions and
not hypotheses. Note that we include the comprehension strategy as an independent variable, because
our pilot studies, which we have conducted to select suitable snippets and tasks, suggested that it may
affect how students understand iterative and recursive snippets. With comprehension strategy, we refer
to the classic dichotomy of top-down and bottom-up comprehension, each having a different cogni-
tive approach to comprehend a snippet. Top-down comprehension describes that programmers quickly
form a hypothesis about a program’s purpose and step by step refine this hypothesis by looking into
the source code in more detail (Brooks, 1983). Bottom-up comprehension describes that programmers
start comprehending source code by looking at individual statements and step by step integrate these
statements to semantic chunks until having reached a high-level understanding of source code (Penning-
ton, 1987). Just like recursion and iteration require backward and forward reasoning, top-down and
bottom-up comprehension require different reasoning strategies. Thus, an interaction between the two
(backward/forward reasoning and top-down/bottom-up comprehension) may very well exist, which we
might be able to detect when including both as factors. This might also shed some light on why either
recursion or iteration may be more accessible.

1https://github.com/brains-on-code/IterationVsRecursion

PPIG 2021 www.ppig.org



2.2. Independent Variables
Our study design contains two independent variables:

• Programming style (i.e., iterative vs. recursive programs).

Iteration is a set of statements that are repeatedly executed a specified number of times or until a
condition is met. The classic mechanism of expressing iterations in programming code is through
loops. Loops can be categorized as counter controlled loops (i.e., for loops) or condition con-
trolled loops (i.e., while and do while loops) (Tsaramirsis, Al-Jammoor, & Buhari, 2014). In
this study, we explore both counter and conditioned-controlled loops.

On the other hand, recursion is a technique of solving a problem where the solution depends
on solutions to smaller instances of the same problem. This can be done by functions, subrou-
tines procedures, subroutines, functions, or algorithms that call themselves from within their own
code (Sulov, 2016). Apart from classifying the recursive functions based on the input data and
how they process it, recursion is categorized according to the number and type of the recursive
function calls. A common classification distinguishes the types linear (of which tail recursion
is a special case), multiple, nested, and mutual recursion (Rubio-Sánchez, Urquiza-Fuentes, &
Pareja-Flores, 2008). In this study, we explore structural and generative recursion by examples
from different categories, including linear recursion, tail recursion, and multiple recursion. The
examples for nested and mutual recursions were not included in the study, as they did not meet
the snippet selection criteria discussed in Section 2.4.

• Comprehension strategy (i.e., top-down vs. bottom-up comprehension).

We operationalized the comprehension strategy by using meaningful versus meaningless identi-
fier names in the source code snippets, which has been shown to elicit top-down or bottom-up
comprehension strategy (Siegmund et al., 2017).

For bottom-up comprehension, we need to ensure that participants go through the source code
statement by statement. To this end, we use the same methodology used by Siegmund and oth-
ers (Siegmund, Kastner, et al., 2014): We obscured identifier names, such that they did not convey
the meaning of a variable and method, but only its usage.

For top-down comprehension, we used meaningful identifiers that provide semantic cues to hint a
programs purpose and set corresponding expectations (Siegmund et al., 2017).

2.3. Dependent Variables
As dependent variables, we analyze response time, correctness, and visual attention. We define response
time as the time when participants first start viewing a snippet until the time they submit their answer.
Correctness refers to whether students submit a correct answer to the task of what a source code would
return (e.g., a sorted array after executing bubble sort).

To operationalize visual attention, we used the tool REYEKER to present source code to participants
and to remotely track where participants are looking at in the source code (Mucke, Schwarzkopf, &
Siegmund, 2021). To this end, REYEKER blurs a previously specified image of source code by applying
a filter; only the part on which a participant clicks is readable. REYEKER collects each mouse click
in terms of (x, y) coordinates. These serve as approximation of participants’ visual attention. It logs
the analysis of click data that displays points of focus for all source code snippets, this data will reveal
if there is a difference in reading behavior when students encounter recursive or iterative programs. In
Figure 2, we show an example of how participants view source code. The deblurred area in Figure 2 (a)
almost entails one entire line of source code, which approximates where the participant is looking at. By
clicking on another area, the current area will be blurred, and the clicked area will be deblurred. Figure 2
(b) shows a heatmap of the same code snippet. It illustrates the weighted average of all participants’ data.

PPIG 2021 www.ppig.org



(a) (b)

Figure 2 – Figure (a) visualizes the user view of the ongoing evaluation study, using the following
parameters: The selected shape is a rectangle with a width of 200 pixels and a height of 1 pixel. The
transition range amounts to 30 pixels. The filter was set to 8 pixels in the x and y-axis. Figure (b)
shows a heatmap of the same code snippet. It illustrates the weighted average of all participants’
data.

2.4. Material
As material, we selected eight source code snippets. We summarize the snippets in Table 1. These
snippets proved the best choice based on a number of pilot studies. In these pilot studies, we evaluated
how long participants needed and how many snippets we could ask them to understand. We also asked
the participants to estimate the difficulty of the snippets Notably, we found that meaningful identifiers
affected how they worked with iterative and recursive styles, such that participants may take advan-
tage of previous knowledge or experience when comprehending algorithms. For example, feedback on
algorithms, such as finding the factorial of a number or reversing a string, suggested meaningful iden-
tifiers helped the participants to identify the purpose of the algorithm. Thus, we decided to include the
comprehension strategy as a factor. For each algorithm, we created four versions for each snippet:

• Recursive Top-Down (R_TD)
• Recursive Bottom-Up (R_BU)
• Iterative Top-Down (I_TD)
• Iterative Bottom-Up (I_BU)

Snippet Iterative Recursive
LOC Response Time [s] LOC Response Time [s]

BubbleSort 20 514 ± 54 19 826 ± 145
Factorial 15 504 ± 379 13 329 ± 71
Fibonacci 19 397 ± 218 13 526 ± 144
Reverse String 22 216 ± 89 14 208 ± 22
Integer to Binary 18 272 ± 86 14 219 ± 82
Binary Search 25 225 ± 65 25 331 ± 89
Prime Factors 24 420 ± 98 19 468 ± 323
Multiply Matrix 33 262 ± 42 25 381 ± 26

Table 1 – All snippets used in the study and the lines of code they contain and the mean response
time during pilot studies.

2.5. Task
We asked participants to enter the result of the final print statement for all presented snippets. For
example, for the Fibonacci snippets of Figure 1, the correct output is "2". The rationale of fixing the task
to computing the output is that we aimed to eliminate the chance that the kind of task affects participants

PPIG 2021 www.ppig.org



Demographic Data

Male 78
Female 25
Age 22.4 ± 5

Learning Programming (in years) 2.2 ± 1.9
Java Programming (in years) 0.5 ± 1.9
Professional Programming (in years) 0.4 ± 2.8

Recursion Understanding 2.9 ± 0.8
Iteration Understanding 3.2 ± 0.9
Skills in Comparison to Peers 2.8 ± 0.7

Table 2 – Demographic data of our participants. To measure experience, we used a validated
questionnaire Siegmund, Kästner, et al. (2014). Participants estimate that they have a better under-
standing of iterative programs.

comprehension strategy (Dunsmore & Roper, 2000).

2.6. Participants
We recruited participants from Chemnitz University of Technology who were enrolled in undergraduate
and graduate programs. Participants were compensated with a bonus point for their assignments they
needed to complete to be admitted to the final exam. All participants had a fundamental understanding
of Java and object-oriented programming (i.e., passed, at least, an introductory programming class). In
Table 2, we provide an overview of our participants’ demographics and programming experience.

2.7. Experiment Procedure
We used a randomized within-subjects design, which we visualized in Figure 3: Each participant un-
derstood snippets in all four versions. The order of conditions was randomized, and no participant saw
the same algorithm twice. After the four snippets, participants could optionally work with four more
snippets, again in all four versions in a randomized order with no repeating algorithms (57 participants
used that option).

Optional Second Round

Experiment 
Explanation

Experience +
Demographics
Questionnaire

Top-Down 
Recursive

Bottom-Up 
Iterative

Bottom-Up 
Recursive

Top-Down
Iterative

Figure 3 – Visualization of our experiment design. The order of the comprehension conditions was
randomized.

Before the actual experiment, participants watched a video to explain the experiment procedure. Then,
participants completed the demographic/experience questionnaire, followed by the actual experimental
tasks that was to comprehend the source-code snippets.

To implement the study, we used SOSCI survey2, in which we integrated REYEKER (Mucke et al.,
2021). Due to the pandemic, this was the best option within the regulations of our university to conduct
the experiment, and in future studies, we intend to replicate this study with an on-site eye tracker to
increase the temporal resolution and spatial accuracy of the visual-attention data, and to personally
discuss subjective views on recursion and iteration with our participants.

PPIG 2021 www.ppig.org



Snippet Variant Recursive Iterative

Total
Responses

Response
Correctness
in %

Mean Response
Time [s]
of corrects

Mean number
of fixations
per participant

Total
Responses

Response
Correctness
in %

Mean Response
Time [s]
of corrects

Mean number
of fixations
per participant

Binary Search Bottom-up 7 85,71% 441 98 12 16,67% 283 193
Top-down 13 23,08% 202 49 15 53,33% 322 72

Bubble Sort Bottom-up 25 52,00% 260 38 23 30,43% 261 42
Top-down 26 65,38% 27 85 29 51,72% 401 78

Factorial Bottom-up 25 88,00% 132 27 29 89,66% 139 22
Top-down 25 96,00% 77 22 24 75,00% 109 24

Fibonacci Bottom-up 24 50,00% 180 32 24 70,83% 240 53
Top-down 28 53,57% 200 37 25 88,00% 180 74

Integer to Binary Bottom-up 13 46,15% 420 38 8 75,00% 399 81
Top-down 14 78,57% 130 13 13 92,31% 210 15

Multiply Matrix Bottom-up 11 36,36% 550 48 10 70,00% 464 50
Top-down 9 44,44% 596 187 12 25,00% 256 136

Prime Factors Bottom-up 15 20,00% 142 27 14 21,43% 510 57
Top-down 13 30,77% 315 62 11 45,45% 166 135

Reverse String Bottom-up 26 53,85% 217 59 26 80,77% 224 53
Top-down 23 52,17% 250 27 25 88,00% 160 47

Bottom-up 146 54,79% 241±256 46 146 60,96% 250±241 69
Top-down 151 59,60% 161±207 60 154 68,18% 212±238 73
Total 297 57,24% 199±235 53 300 64,67% 230±239 71

Table 3 – All snippets used in the study, their corresponding correctness in % and response time
and mean number of fixations per participants for iterative and recursive programs.

3. Results
In this section, we present the results separately for each research question.

3.1. RQ1: Behavioral Data
Preparation and Pre-Processing At the beginning of the pre-processing of the behavioral data, we
evaluated the correctness of the responses. We considered responses with only formatting inaccura-
cies as correct (e.g., in the matrix multiplication algorithm, some participants responded with ’6 6
6 \n 12 12 12 \n 18 18 18’ and others responded with ’{{6 6 6}{12 12 12}{18 18 18}}’). We
used regular expressions for this purpose. For example, the regex for the matrix multiplication is
’.*6.*6.*6.*12.*12.*12.*18.*18.*18.*’. Based on this procedure, we evaluated 389 out of 597 answers
as correct. The next step was outlier removal, in which we removed all wrong responses. The reason is
that we intended to filter out participants who quickly went through the experiment to gain extra points
for the course. This way, we ensured to only analyze high-quality data. Since we used a within-subject
design, the deletion of outliers would lead to fractional data for some conditions. To mitigate this prob-
lem, we applied the following procedure, depending on the number of deleted cases per participant:

• One or two outliers per participant: If we only needed to delete one or two data points per partici-
pant, we filled in the mean of the according condition(s) for that participant. Say, for Participant X,
we have a response time of 29 seconds and a wrong answer for the iterative top-down condition.
In this case, we replace the value with the mean (i.e., 241). This happened for one participant.

• Three or more outliers per participant: With values missing for 3 or 4 conditions, we removed the
according participant’s data from the analysis (7 participants’ data).

Descriptive Statistics Table 3 summarizes the behavioral data, separated by implementation style,
comprehension strategy, and algorithm. The number of responses differs, as not all participants saw all
algorithms (but all conditions).

We discuss RQ1 in two parts: response correctness followed by response time. We visualize the correct-
ness ratios in Figure 4 for all the algorithms and the total of the conditions to provide an overview of
the data. The response correctness ratio is the highest in iterative top-down versions. However, all cor-
rectness ratios are roughly in the same magnitude. Interestingly, the data show enormous differences in

2(Leiner, 2014), available at https://www.soscisurvey.de/

PPIG 2021 www.ppig.org



the response correctness ratios across algorithms. For example, binary search shows a difference in the
two styles that is the top-down recursive has a lower correctness (23.08%) than the top-down iterative
variant (53.33%). In contrast, matrix multiplication has a higher correctness in the iterative bottom-up
implementation (70%) than the recursive counterpart (36.36%). Likewise, for the comprehension strate-
gies, some algorithms have a higher correctness in top-down comprehension, for example, bubble sort,
while the algorithm integer to binary has a higher correctness in overall bottom-up comprehension.

BinarySearch

BubbleSort

Factorial

Fibonacci

IntegerBinary
MultiplyMatrix

Prim
eFactors

ReverseString

Total

Algorithm

0

20

40

60

80

100
BU_R
BU_I
TD_R
TD_I

Figure 4 – Participants’ correctness ratio in % for iterative and recursive programs, categorized by
top-down and bottom-up comprehension.

BinarySearch

BubbleSort

Factorial

Fibonacci

IntegerBinary
MultiplyMatrix

Prim
eFactors

ReverseString

Total

Algorithm

0

100

200

300

400

500

600 BU_R
BU_I
TD_R
TD_I

Figure 5 – Participants’ response time for iterative and recursive programs, categorized by top-
down and bottom-up comprehension.

There are some differences in all four conditions. The one that stands out is the top-down recursive
variant, in which the mean response time is lowest, illustrated in Figure 6. Beside having the lowest
mean, the top-down recursive variant also has the smallest variance. On the other side of the range is the
bottom-up iterative condition, which has the highest mean of all the conditions. This is not consistent
across all algorithms. For example, the bottom-up recursive prime factors (mean of 142) implementation
was understood faster than the recursive top-down (mean of 315), which is illustrated in Figure 4.

Inferential Statistics To evaluate whether there is a significant difference in the correctness ratio,
we performed a chi-squared test. We found no statistically significant difference in the correctness of
iterative and recursive styles of programs with different comprehension strategies (χ2 = 5.3402, df = 3,
p-value = 0.1485).

We analyzed the statistical significance of the response-time data with a two-way ANOVA with repeated
measures. We present the results in Table 4. We conduct the ANOVA for completeness, but instead of

PPIG 2021 www.ppig.org



BU_R BU_I TD_R TD_I
ProgrammingStyle x Comprehension

0

100

200

300

400

500

600

Re
sp

on
se

Ti
m

e

Figure 6 – Participants’ response time in seconds for iterative and recursive programs, categorized
by top-down and bottom-up comprehension.

Main Effect F value Pr(>F) η2

ProgrammingStyle 1.5631 0.21197 4.04e-03
ComprehensionStrategy 5.9104 0.01551 0.02
ProgrammingStyle:ComprehensionStrategy 0.7740 0.37953 2.01e-03

Table 4 – Results for two-way ANOVA and η2 test with repeated measures.

looking at significance, we assess the effect size, that is η2. Even though we find a significant effect of
comprehension strategy, we are reluctant to treat it as a true effect, because the effect size is close to 0.

Answer to RQ1: Overall, we found no indication that programming style or comprehension strategy
affect students’ performance.

3.2. RQ2: Visual Attention
Preparation and Pre-Processing REYEKER data do not require any further pre-processing. For vi-
sualization, we use only data of correct responses.

Descriptive Statistics We analyzed the visual-attention data that REYEKER had generated. REYEKER

can produce several visualizations, including heat maps, chronological sequences of click data, and tran-
sitions between areas-of-interest (AOIs). For this experiment, we focused on heat maps and transitions
between AOIs.

In particular, we have generated average heat maps for all 32 code snippets that were comprehended
by participants. In Figure 8, we provide an overview of all heat maps based on programming style and
comprehension type.

For data analysis, we defined the following AOIs, which depend on the semantics of the code snippets:

1. ’main’ - Code in the main method.
2. ’Declaration’ - Declaration of the non-main method in the snippet.
3. ’Initialization’ - Initialization done before any recursive or iterative specific pattern.
4. ’Programming Style Condition’ - Condition for a loop in case of iteration or the termination

condition in case of recursion.
5. ’Programming Style Step’ - Calculations in the loop for iterative algorithm or calculations done

with the recursive function.
6. ’Return Result’ - The source code for returning the result, either as return or side effect via console

output.

For an explicit categorization of the heat maps, we first defined what the focus points are with respect

PPIG 2021 www.ppig.org



to the measured “heat”. We set a threshold of 70 %, meaning everything below 70 % max heat is not a
focus point. For example, Figure 7 displays a comparison of heat maps for the PrimeFactors (R_TD’)
snippet generated before and after we set the threshold of 70 %. To agree on a threshold, parts of the
author team annotated each heat map to decide what a hot spot is, and the 70 % was the interpersonal
consensus. We document all threshold-applied heat maps on the project website.

(a) (b)

Figure 7 – Example of the differences between heat maps generated before 70% threshold applied
(a) vs after 70% threshold applied (b)

Based on the predefined AOIs, we visualize how the visual attention of the participants transitioned
between AOIs. All measures of visual attention were assigned to an AOI, and two consecutive measures
of click data became a transition.

In Figure 9, the width of the sections in a diagram represents how often an area of interest was clicked
on, the lines and their width between the areas show which transitions were used how often. In between
the comprehension strategies of the algorithms, there is just a small difference regarding the transitions.
As shown in the iterative top-down and iterative bottom-up diagram, the circle arcs have approximately
the same size. This also holds true for top-down recursive and bottom-up recursive. However, iterative
vs. recursive diagrams reflect that the declaration of the method was visited more often in recursive
programs than the iterative ones. Similarly, programming style condition has more visits in iterative
conditions. For the transitions in the recursive diagrams, a strongly connected line between declaration
of the method (area 2) and the recursive step (area 5) is visible. This transition is not pronounced in the
iterative variant.

We found no evident differences in the heat maps between the two comprehension strategies.The main
cluster of visual attention appears to be the computing method, unless it is complex input data that is
being manipulated (e.g., bubble sort with an array of 7 numbers, binary search with 5 numbers, or matrix
multiplication). Algorithms with complex input show focus points in the main method, because students
may not be able to keep the total input in their working memory. Therefore, students must revisit the
input, which leads to the hot spot in the main method.

Based on the transition diagrams, there does not seem to be a difference between top-down and bottom-
up comprehension. This could be because our participants were relatively new to programming and have
not yet developed the necessary experience to elicit top-down comprehension. Another factor could be,
that the students were unfamiliar with the presented algorithms, and therefore top-down versus bottom-
up strategy had no influence on their comprehension behavior. But, for the recursive versus iterative
conditions some differences are noticeable, such as how often some AOIs were visited and how the stu-
dents transitioned between them. For example, the declaration was looked at way more often in recursive
programs, this could be, because the declaration of the recursive method is important for the function
itself, while in iterative programming setting up the loop is more important for the comprehension, one
could carve this out from the bigger influence of the "Programming Style Condition". Another promi-
nent part in the transition diagrams were the transition between those AOIs, in the recursive diagrams

PPIG 2021 www.ppig.org



Top-Down
Iterative

Top-Down
Recursive

Bottom-Up
Iterative

Bottom-Up
Recursive

Bubble Sort

Factorial

Fibonacci

Reverse String

Binary Search

Integer to Binary

Prime Factors

Matrix
Multiplication

Figure 8 – Heatmap for all programs of the four variations.

PPIG 2021 www.ppig.org



(a) Iterative
Top-Down

(b) Iterative
Bottom-Up

(c) Recursive
Top-Down

(d) Recursive
Bottom-Up

Figure 9 – Illustration of various areas of interest and the transition between these areas.In above
Figures Area 1 is ’main’. Area 2 is ’Declaration’. Area 3 is ’Initialization’. Area 4 is ’programming
Style Condition’. Area 5 is ’Programming Style Step’. Area 6 is ’Return Result’

one can see a big connection between the "Declaration" and the "Programming Style Step", which in-
dicates a strong connection between the method declaration to the recursive call of the function, which
follows the control flow of the code. This closeness also exists for the iterative programming where
the iterative condition (e.g., the loop) and the iterative step (e.g., the code in the loop) have a strong
connection in the transition diagrams.

Answer to RQ2: Overall, the visual attention was similar between top-down and bottom-up compre-
hension. Iterative and recursive programs differ in regard to their key areas of interest. Still iterative
and recursive programs seems to be scanned through to some degree equally, if one compares the visual
attention to the control flow of the source code.

4. Data Exploration
During data analysis, we made several interesting observations that we describe next. Since these are
not covered by our research questions, we clearly separate answering the research questions from data
exploration.

Based on the heat maps, we found no specific pattern that explains the classification of the several
algorithms with regard to patterns defined below. We found that most of the programs have a focus point
on main method and calculations, however, we also observed that programs with complex input drives
visual attention of the participants.

We extracted the following patterns based on the observed focus points of the heat maps:

• {1} main: Participants focus on the main method more than any other part of the snippet. We
observed this in multiple snippets, for example, BubbleSort R_TD, I_BU and R_BU. This pattern
was also observed in BinarySearch R_TD and I_BU.

• {1, 4, 5} main + condition + calculation: The main areas of focus for participants were the main
method along with the condition statements and calculations. Participants followed this pattern
in the matrix multiplication algorithm I_TD, R_TD, and R_BU. We also observe this pattern in
Binary Search R_TD.

• {1, 5} main + calculation: Participants’ focused on the main method and calculations in the loop
for iteration or calculations done with the recursive function. In I_TD BubbleSort, we observe
almost the same pattern as in other conditions for BubbleSort algorithm, however, there was an
additional focus point on the calculations.

• {3, 4, 5} initialization + condition + calculation: Participants focused on the initialization of the
method, the condition and the calculation itself. This is done for the I_TD and I_BU Fibonacci,
the I_TD and I_BU Integer to Binary and for the R_TD and R_BU Prime Factors algorithm.

• {4, 5} condition + calculation: Participants focused mostly on the condition of the programming
style and the calculation itself. This happened for I_TD, I_BU Factorial, I_TD, I_BU Reverse

PPIG 2021 www.ppig.org



(a) (b)

Figure 10 – Example of the differences between heat maps generated from correct (a) vs incorrect
(b) responses.

String, R_BU Binary Search, I_TD, I_BU Prime Factors and for the I_BU Matrix Multiplication.
• {5} calculation: Participants’ focused mostly on the calculation of the algorithm itself. This was

the case for R_TD, R_BU Fibonacci and the R_TD, R_BU Integer to Binary.

Furthermore, we noticed a difference between correct and incorrect responses, which we illustrate ex-
emplary in Figure 10. When comparing heat maps of correct to heat maps of incorrect responses,
many of the focus points shifted to the computing method for the incorrect responses. This seems to
be independent of programming style and comprehension strategy. This indicates that participants with
incorrect answers require more effort in the computing method to comprehend the snippet, or that they
used bottom-up comprehension and failed to fully understand a snippet.

These observations can serve as hypotheses that shall be investigated with dedicated experiments. A
future study shall aim to identify what helps students to understand unknown programs, and how to
improve the correctness of bottom-up comprehension.

5. Interpretation
The collected data suggest that our group of students, who have little experience with programming,
understand recursion and iteration equally well. This could be because students were already familiar
with both recursion and iteration. Neither recursion, which one might think would be difficult to under-
stand because students have to use backward reasoning to breakdown problems into sub problems until
a solution is found, nor iteration, which is perhaps closer to forward reasoning where students start the
solution from an initial state leading towards a goal state, appeared to make a difference in how students’
understand source code. Instead, participants had equal understanding of both styles (cf. Table 2) and
thus have not yet built up a preference through a programmer’s everyday life. We observe that iterative
programs were no more difficult to comprehend than recursive programs. We also observe that familiar-
ity with the mathematical functions and common algorithms yields higher correctness percentage (e.g.,
factorial, Fibonacci).

Likewise, it does not seem to make any difference whether top-down or bottom-up comprehension
strategy was used, which could again point to a lack of experience. As shown by Soloway and
Ehrlich (Soloway & Ehrlich, 1984), even experienced programmers become as slow as beginners when
programming conventions are broken. It could be argued that this knowledge of conventions is not yet
ingrained in novice programmers, which is why comprehension strategies did not cause a significant
difference in the overall comprehension process.

Nevertheless, it is noteworthy that distinct algorithms are comprehended quite differently across the
conditions of our study. This may indicate that these algorithms were already known to the beginners
in the iterative or recursive variant, or even that these algorithms are generally easier to understand
in one of the different programming styles. There are also differences between the comprehension

PPIG 2021 www.ppig.org



strategies. Since bottom-up algorithms were generally answered correctly more often, albeit statistically
insignificantly, this could indicate that familiar mathematical formulas, such as the Fibonacci numbers,
were taken too easy by students, by not considering the starting condition of the respective algorithm.
In order to exclude these factors or to look at them more closely, further studies are needed that focus on
analyzing these individual factors.

6. Threats to Validity
6.1. Internal Validity
There are several threats to validity arising from our study. We selected programs from previous studies
that were of comparable complexity to exclude an influence of the programs themselves. Additionally,
we randomized the order of the programs. However, as evident in the presented heat maps, it clearly
still has a major influence. This might have overshadowed possible effects of programming style and
comprehension strategy.

Our operationalization of visual attention with REYEKER is only an approximation of the natural read-
ing behavior during program comprehension, since the necessary mouse clicks are slower than normal
fixations. However, similar to widely accepted think-aloud protocols, we do not expect a substantial bias
in favor of only one experiment factor leading to false results, as REYEKER was build on BUBBLEVIEW,
which showed a good approximation of visual attention (Kim et al., 2017).

6.2. External Validity
In the presented study, we used a restricted set of iterative and recursive programs that were of fairly
basic nature, and we recruited only rather novice programmers. Our results apply only to similar circum-
stances and cannot easily be generalized to other circumstances, such as complex types of recursion or
experienced programmers. Nevertheless, our setting is an important representation, as especially novice
programmers start with basic programs.

7. Conclusion
For novice academic programmers, there is no difference in efficiency in understanding fairly low-
complexity iterative and recursive algorithms. This includes both the correctness and the response time
of the comprehension. Also, there is no significant difference between top-down and bottom-up com-
prehension with novice programmers.

The visual attention of that same group is equally indistinguishable between top-down and bottom-
up implementations. But it seems that the different programming styles have a different approach to
understanding the source code, so other beacons in the code become more relevant and these are visited
more often in the course of the comprehension process. But to investigate this further, it would be
necessary to design the code snippets differently to achieve a better separation between the individual
areas-of-interest.

Our results demonstrate the programming style does not have any significant effect on how students
understand programs. Furthermore, we identify a need for further studies. Our setting was very limited
so that we could not assess cognitive load (e.g., with pupil dilation), follow the students’ process when
understanding snippets (e.g., by using think-aloud protocol), or use more advanced snippets (e.g., with
mutual recursion). We intend to extend our setting once the pandemic situation allows us.

8. References
Anzai, Y., & Uesato, Y. (1982). Learning recursive procedures by middleschool children. In Proceedings

of the fourth annual conference of the cognitive science society (pp. 100–102).

Barjaktarovic, M. (2012). Teaching mathematics and programming foundations early in curriculum
using real-life multicultural examples. In Proceedings of the international conference on frontiers
in education: Computer science and computer engineering (fecs) (p. 1).

Benander, A. C., Benander, B. A., & Pu, H. (1996). Recursion vs. iteration: An empirical study of
comprehension. Journal of Systems and Software, 32(1), 73-82.

PPIG 2021 www.ppig.org



Brooks, R. (1983). Towards a theory of the comprehension of computer programs. International Journal
of Man-Machine Studies, 18(6), 543-554.

Busjahn, T., Bednarik, R., Begel, A., Crosby, M., Paterson, J. H., Schulte, C., . . . Tamm, S. (2015,
May). Eye movements in code reading: Relaxing the linear order. In Proc. int’l conf. program
comprehension (icpc) (p. 255-265). IEEE.

Dunsmore, A., & Roper, M. (2000). A Comparative Evaluation of Program Comprehension Measures
(Tech. Rep. No. EFoCS 35-2000). Department of Computer Science, University of Strathclyde.

Felleisen, M., Findler, R. B., Flatt, M., & Krishnamurthi, S. (2018). How to design programs: An
introduction to programming and computing. The MIT Press.

Gal-Ezer, J., & Harel, D. (1998, 09). What (else) should cs educators know? Commun. ACM, 41, 77-84.
doi: 10.1145/285070.285085

Ginat, D. (2005). The suitable way is backwards, but they work forward. Journal of Computers in
Mathematics and Science Teaching, 24(1), 73–88.

Kessler, C. M., & Anderson, J. R. (1986, June). Learning flow of control: Recursive and iterative
procedures. Hum.-Comput. Interact., 2(2), 135166.

Kim, N. W., Bylinskii, Z., Borkin, M. A., Gajos, K. Z., Oliva, A., Durand, F., & Pfister, H. (2017). Bub-
bleView: An Interface for Crowdsourcing Image Importance Maps and Tracking Visual Attention.
ACM Transactions on Computer-Human Interaction (TOCHI), 36.

Leiner, D. (2014). Sosci survey (version 3.2.27)[computer software].
Lye, S., & Koh, J. (2014, 12). Review on teaching and learning of computational thinking through

programming: What is next for k-12? Computers in Human Behavior, 41, 5161. doi: 10.1016/
j.chb.2014.09.012

Mccauley, R., Grissom, S., Fitzgerald, S., & Murphy, L. (2015, 01). Teaching and learning recursive
programming: a review of the research literature. Computer Science Education, 25, 37-66.

Michaelson, G. (2015). Teaching recursion with counting songs. ACM SIGCHI, June.
Mucke, J., Schwarzkopf, M., & Siegmund, J. (2021). REyeker: Remote Eye Tracker. In Proc. Workshop

on Eye Movements in Programming (EMIP). ACM.
Peitek, N., Siegmund, J., & Apel, S. (2020). What drives the reading order of programmers? an eye

tracking study. In (p. 342353). New York, NY, USA: Association for Computing Machinery. doi:
10.1145/3387904.3389279

Pennington, N. (1987). Stimulus Structures and Mental Representations in Expert Comprehension of
Computer Programs. Cognitive Psychology, 19(3), 295–341.

Rinderknecht, C. (2014, 04). A survey on the teaching and learning of recursive programming. Infor-
matics in Education, 13, 87-119.

Roberts, E. S. (Ed.). (1986). Thinking recursively. USA: John Wiley & Sons, Inc.
Rubio-Sánchez, M., Urquiza-Fuentes, J., & Pareja-Flores, C. (2008, June). A gentle introduction to

mutual recursion. , 40(3), 235239.
Shriram, K. (2020). How Not to Teach Recursion. Retrieved 2021-01-30, from https://

parentheticallyspeaking.org/articles/how-not-to-teach-recursion/

Siegmund, J., Kastner, C., Apel, S., Parnin, C., Bethmann, A., Leich, T., . . . Brechmann, A. (2014).
Understanding understanding source code with functional magnetic resonance imaging. In Pro-
ceedings of the 36th international conference on software engineering (p. 378389). New York,
NY, USA: Association for Computing Machinery.

Siegmund, J., Kästner, C., Liebig, J., Apel, S., & Hanenberg, S. (2014). Measuring and modeling
programming experience. Empirical Softw. Eng., 19(5), 1299–1334.

Siegmund, J., Peitek, N., Parnin, C., Apel, S., Hofmeister, J., Kästner, C., . . . Brechmann, A. (2017).
Measuring Neural Efficiency of Program Comprehension. In Proc. Europ. Software Engineering
Conf./Foundations of Software Engineering (ESEC/FSE) (pp. 140–150). ACM.

Soloway, E., & Ehrlich, K. (1984). Empirical Studies of Programming Knowledge. IEEE Trans. Softw.
Eng., 10(5), 595–609.

PPIG 2021 www.ppig.org



Sulov, V. (2016, December). Iteration vs recursion in introduction to programming classes. Cybern. Inf.
Technol., 16(4), 6372. Retrieved from https://doi.org/10.1515/cait-2016-0068
doi: 10.1515/cait-2016-0068

Tsaramirsis, G., Al-Jammoor, S., & Buhari, S. (2014, 01). Proposing a new hybrid controlled loop.
International Journal of Software Engineering and its Applications, 88318, 203-210. doi: 10
.14257/ijseia.2014.8.3.18

Turbak, F., Royden, C., Stephan, J., & Herbst, J. (2001, 09). Teaching recursion before loops in cs1.
Winslow, L. E. (1996, September). Programming pedagogya psychological overview. SIGCSE Bull.,

28(3), 1722.
Wu, C.-C., Dale, N. B., & Bethel, L. J. (1998, March). Conceptual models and cognitive learning styles

in teaching recursion. SIGCSE Bull., 30(1), 292296.

PPIG 2021 www.ppig.org




