
Markup-driven polymorphism
A little journey

(Work in Progress)

Antranig Basman
Raising the Floor - International

amb26@ponder.org.uk

Abstract
This paper describes a little journey through an interesting design space.

As the author sat as a humble contractor in Cambridge University’s “Centre for Applied Research in Educational
Technologies” in 2005, it struck him how useful it would be if people who had the capability to edit markup, but
who were not necessarily very technical, could use that capability as far as possible to edit entire applications.

This started a journey through many technologies and revisions of worldview, a whiteboard in Boulder in 2009,
a realisation that there was not in fact any useful number of people in the target audience, and on finally imple-
menting the capability (again) 16 years later, a realisation that everything had been designed wrongly and must be
rebuilt from the start.

1. Experiences of End-User Programming
Starting in 2005, I was employed for a few years at Cambridge University’s “Centre for Applied Re-
search in Educational Technologies” (CARET), where I came to have many instructive experiences
about how software, and the process of building it, manifests in the lives of people who do not have
very much money. Our job was to help staff around the University with the use of technology in their
teaching, but whose requirements were too diverse or poorly characterised to benefit from the off-the-
peg solutions available from the central computing services. Something came into greater focus for me,
that had already been a latent idea for many years, that the process of building software was utterly un-
sustainable, and was only made to appear affordable through the capitalistic processes which the already
dominant large corporations had accumulated around this mode of production.

CARET by this point had already accumulated an unreasonable amount of technical debt, both abstract
and concrete — the latter, for example, in the server room which at that point consisted of a room whose
floor was littered with various mismatched desktop-grade computers of different colours and vintages,
some plastered with post-it notes reading “DO NOT TURN OFF” and some, as I learned, whose purpose
had already been forgotten. But the abstract debt was far more worrying — applications whose function
had never been terribly well characterised written in forgotten frameworks and languages, as well as
essentially the same function being delivered in multiple incommensurable forms.

It was quite clear that if we had to meet the needs of our teaching staff by writing programming language
code, our mission was unsustainable — there would always be too few of us, and the results of our
work would always be too brittle and incomprehensible, even to ourselves. This kind of realisation, of
course, was already well established at CARET — before my arrival there had already been (failed)
experimentation with “declarative” programming techniques such as Apache’s Cocoon, based on XSLT
pipelines, and slightly more durable use of markup templating systems such as Java Server Pages (JSPs).
This realisation, indeed, has been solidly present in the industry before and since — leading to current
fashions such as the "no-code" movement [1] and its slightly more realistic successor, the “low-code”
movement.

But what is very clear is that no single idea or combination of ideas has made substantial inroads on this
problem in the decades it has been characterised, and we are arguably little closer to being able to build
sustainable and affordable systems than we were in 2005 or even in 1985. As I see it, the problems lie
at the heart of how we conceive of computational systems, describe their activities, and our relation to
them, and will not be solved without decades of sustained effort at conceiving and creating wholesale
alternatives.

PPIG 2021 www.ppig.org

During my time at CARET, several seeds of ideas started to germinate about how to make progress
on these issues, and this paper describes the evolution of one of them. As it turns out, my original
characterisation of this issue was partial, addressed an audience that largely did not exist, and was
ultimately solved by the industry in an unrelated way — but the core of the idea is still valid and
continues to be developed.

1.1. The FlowTalk System
Early in my time at CARET I was commissioned to write an application which in retrospect was absurdly
ambitious. Across many of the environments we supported, a common requirement had emerged which
was being met in unrelated and hard to support ways — attaching threads of commentary to different
resources or activities, which would allow the communities interested in the resource to keep in touch for
short-term or long-term conversations. The idea was to unify all of the different implementations under
a common system, which would expose different “personalities”, appearing as a native part of each
environment. The previous attempt at such a system, “LETSTalk”, based on Apache Cocoon XSLT
pipelines, had just been retired before I arrived. The planned new discussion engine would feature

• Integration with the user account and authorization system of the host platform in which it exposed
a “personality“

• Incoming and outgoing integration with email - as well as using the various in-place web UIs,
one could receive email notifications of replies and dispatch messages back into the system by
replying to the email without needing to revisit the web UI

• A fine-grained workflow and permissions system, allowing for per-site customisable moderation
workflows and various categories of message visibility

• A completely customisable “look and feel” so that the discussion engine appeared identical to a
native tool in each host platform

The 3rd requirement gave rise to the new engine’s name, “FlowTalk”, but it is the 4th requirement that
will be most interesting to us here.

Figure 1 shows the FlowTalk interface customised for two different environments. At the time, and still
today, the primary means available to non-developers of customising a user interface is via CSS, but
many of the customisations shown there go beyond what was possible with CSS then in 2007, and a few
are still out of reach of today’s much more powerful CSS. A defining moment was when my manager
showed that in one environment, the attribution should precede the message in the email style (“From:
John Norman”) whereas in another it should follow the message (“Posted by John Norman on 15 June
2002”)1. I thought — how can the power to adjust an interface in this way be given to those who just
have the tools to edit markup, rather than needing to consult a developer?

This kind of requirement can retrospectively be considered part of the movement towards ownable and
“malleable” software described in Basman and Tchernavskij (2018). At the time, it was hard to align
with any philosophic or technical tradition, but seemed sufficiently radical that it motivated the develop-
ment of a new programming framework, named RSF2 (“Reasonable Server Faces”, by extension from
Sun’s JSF, Java Server Faces). I worked on RSF between 2005 and 2008, at which point it became
clear that a server-side Java framework was the wrong vehicle to move forward the research programme
towards ownable software.

FlowTalk was successfully implemented and put into limited production in 2008, but fairly quickly with-
drawn as it became apparent that its configuration and maintenance costs were essentially unbearable.
13 years later, such a thing is still beyond the capabilities of our industry’s technology. The closest
approximations are systems like Disqus3 and IntenseDebate4 which provide some small subset of its
capabilities and are highly non-ownable and non-customisable. Users of Disqus who are happy to up-

1This design decision was later rescinded
2RSF’s wiki has been lovingly scraped and archived from its JSP original into GitHub pages at

https://rsf.github.io/wiki/Wikib2ab.html
3https://disqus.com/
4http://intensedebate.com/

2
PPIG 2021 www.ppig.org

https://disqus.com/
http://intensedebate.com/

Figure 1 – Two different “personalities” for the FlowTalk system, which simply take the form of
static HTML files, with an element for every possible user interface configuration

grade to their $105/month “Pro” plan gain access to very limited customisations (font size, disabling
branding, etc.5), and have to consent to their data being stored in a central silo by a company whose
data policies are frequently found in breach of the EU’s GDPR. There is nothing resembling FlowTalk’s
workflow and permissions system, and the discussion interface is still rendered in an iframe, the “poor
man’s transclusion” mechanism of HTML with its well-known accessibility limitations.

2. Reversing information flow
What is it about the way that a web interface (and more widely, all of our software) is constructed, and,
more widely, that makes the appropriation and reuse required by platforms like FlowTalk so incredibly
hard? A central problem is that all of our techniques appeal to a unidirectional, authoritarian dataflow.
Information flows into the system at the top in a highly structured form, is successively processed by
irreversible functions6, and finally ends up as markup which gets rendered on the user’s screen.

5https://help.disqus.com/en/articles/1717201-disqus-appearance-customizations
6I problematise more widely the use of such functions as our central programming structuring device in (Basman, 2017)

3
PPIG 2021 www.ppig.org

https://help.disqus.com/en/articles/1717201-disqus-appearance-customizations

Figure 2 – Interface showing an attempt to use the built-in editor on the PHP system WordPress to
edit a page that has been apparently reauthored by some other plugin — we have no idea how to
recover from this situation

We can study a microcosm of this issue by considering what it would take to reverse a small part of
the application’s workflow. What if we could take some effective control over an application by editing
something resembling its markup? This notion, in 2005-2008, was motivated by the still-lingering use
of pure markup tools such as DreamWeaver (since acquired by Adobe) and FrontPage (acquired by
Microsoft) which allowed moderately technical users to manage the content of their websites as directly
managed HTML. These tools were somewhat unfriendly and made excessive demands on the user’s
power of abstraction, but at least allowed the guarantee that the user’s content could not “get away
from under them”. An example of the kind of unrecoverable failure that’s possible with tools that work
on irreversibly abstracted representations can be seen in Figure 2, showing the editor view of a page
managed by the very popular PHP website builder, WordPress. The page, whilst it renders fine to the
user, appears in the editor as an unreadable jumble of some unfamiliar markup intermediate. As far as
we can tell, this site is now lost to us, and will have to be rebuilt from scratch by scraping the markup
from the front end and copying it back into some other editing system. If the system will not reverse
its workflow, the user will be obliged to do it themselves, following Lialina’s “Turing Complete User”
2012.

Reversibility of our computing constructs is already widely recognised in the industry as an important
and relevant problem. For example, (Mayer et al., 2018) presents a powerful algorithm, “Bidirectional
Evaluation”, capable of reversing the action of a small functional programming language in producing
markup. However, such systems treat the symptoms rather than the disease — if our dominant construc-
tion idiom is a functional one which effaces data provenance, there will never be sufficient context in the
design to safely and comprehensibly figure out how to interpret a particular user gesture trying to edit
the application’s interface. Trying to work with our existing technology stack in this way7 is going to
offer low returns, as situations like the ones shown in Figure 2 demonstrate — if our technology stack is
so tottering and fragile that it can’t even recognise its own output when operated via its ordinary work-
flow, how can we expect such an environment to remain stable if it is in addition being adjusted by an
automated algorithm reversing its logic? Reversing general functional programs is an endeavour similar
to “extracting the sunlight from cucumbers” (Swift, 1726, Part III, Chapter 5).

7as some following work of the authors of (Mayer et al., 2018) does, e.g. with startups such as https://tharzen.com/

4
PPIG 2021 www.ppig.org

https://tharzen.com/

Before moving on however, I should note that I think the notion of reversing the direction of evaluation of
what are textually written out as conventional functions is highly promising, assuming that the functions
are very short and restricted. For a function written as C => 9C/5+ 32 it is clear to all readers that
it is invertible and what the inverse is, and it is possible to characterise and invert such functions very
cheaply. Organising the framework around such “small, good functions”8 I expect to give rise to an
easy-to-parse extension of JSON (and subset of JavaScript), similar to JSON5, codenamed R-SON.

2.1. What might a solution look like?
A more reciprocal stack of technologies might enable more influences from other sides of the design
and from other kinds of participant. But such a “new stack” faces the problem of growing up amidst,
and competing with, very established solutions to the same problems. Figure 3 shows a visual metaphor
laying out the different levels of our current technology stack as barriers as if around a prison camp,
preventing influences travelling against the established flow (and in general, by their very complexity
and numerousness, preventing any kind of influence on the design by non-specialists). A common
response to frustration with part of the technology stack is to imagine a replacement that mitigates
some, usually technocratic, concern — the web itself most frequently comes in for criticism of this type,
despite its arguably representing the most malleable layer of the stack. I reproduce in Figure 4 a Twitter
conversation amongst some capable developers in which the web is imagined replaced by a “reliable UI
API”. These attempts don’t solve the problem that we have, which is to assist citizens to work with and
integrate our existing technologies, and in the unlikely event they were successful would only reproduce
the same authoritarian workflows in a new form. In fact, they would only intensify existing integration
problems since the current web represents one of the most malleable systems in widespread use — a fact
exploited by interesting systems such as Webstrates (Klokmose et al., 2015) which treat the browser’s
DOM as the primary representation of the application.

Figure 3 – Cartoon showing a schematic representation of the obstructive, nested nature
of our technology stack — I am indebted to Jonathan Edwards’ excellent blog at https://

alarmingdevelopment.org/

8in the sense of https://wiki.fluidproject.org/display/fluid/A+Good+Function

5
PPIG 2021 www.ppig.org

https://alarmingdevelopment.org/
https://alarmingdevelopment.org/
https://wiki.fluidproject.org/display/fluid/A+Good+Function

@rsms: Here’s what we need to do:
- take a browser code base
- add a reliable UI API alongside HTML
- when a http response says “content-type: app” load it with the

reliable UI API instead of HTML
This way HTML can be used for what it’s good for and app quality goes

up, cost goes down.

Figure 4 – Discussion on replacing HTML in favour of a “reliable UI” linked to from Twitter
conversation on Jan 14th 2021 at https://twitter.com/rsms/status/1349751077818695680

Instead, I see that the only route to success is to highlight an increasingly illuminated “blessed path”
threading through particular kinds of uses of the technologies that we have already. This will take
the form of not just particular libraries, but also explanations of ways of working and idioms. These
libraries and idioms, loosely integrated at first, but increasingly cooperating, address parts of the issues
of malleability that emerge at every layer of the stack simultaneously. Uses of technology that don’t
align with the idioms of these libraries will not be forbidden, but will be presented as an “uninterpreted”
part of the design together with a notation that they may constitute a risk to malleable development. In
the end, front-end tools will emerge that allow the entire application structure to be addressed, which
will necessarily have to be capable of representing the same artefact from multiple related points of
view. These tools can only be developed by working alongside communities of interest for an extended
period, and building pluralistic tooling which supports usage by those communities of their tools as
it actually emerges. Rather than an academic “smash and grab” raid which produces a dazzling and
powerful theoretical framework before moving on to some other problem, whilst leaving the existing
power structures and idioms in place, we need cycles of patient work where we repeatedly evaluate our
means of expression against the same designs and requirements.

As a metaphor for how this solution process may manifest, I reproduce a further Twitter exchange in
Figure 5 in which it’s imagined we will simply “come to see” our new technology stack latent in the old
one.

@jonathanoda: FFS if we never redesign old technology our stack will
continue to get ever more complex and creaky #FFSTechConf

@stephenrkell: Being a bit Devil’s advocate: how can we avoid
"redesign" leading to a new stack living within the old stack? People
often want old and new to coexist. There’s some sort of collapsing trick
we need to plan for; I believe usually *during* the new design. Tetris
is my metaphor....

@amb26ponder: Indeed the new stack must live within the old stack. But
the old stack will not collapse, it will merely cease to be salient ...
at least to those wearing the appropriate set of "2d goggles"

Figure 5 – Discussion on how a new technology stack may “emerge”, Twitter conversation on Jan
11th 2018 at https://twitter.com/jonathoda/status/1016420988488122368

3. Markup-driven polymorphism
It is clear that a good point to start our explorations of reversing power flows in design is at the markup
end, since under “naive realism” it is the representation we are most likely to mistake for the thing itself.

3.1. What could we do from markup
How far can we push the idea of giving users and designers power over application design, given just
tools which let them adjust markup? The templates shown in Figure 1 show some more and less ambi-
tious customisations. As well as rearranging the layout of UI elements, the designer can substitute any
static material with any other, as well as selecting from and suppressing any of the controls implemented
by the developer (that is, suppressing their implementation, not just their rendering). But how much
further can we go — in terms of actually letting the designer adjust application function?

6
PPIG 2021 www.ppig.org

https://twitter.com/rsms/status/1349751077818695680
https://twitter.com/jonathoda/status/1016420988488122368

3.2. Elementary polymorphism within HTML
A good starting point in exploring how designers can express policy about application function from
markup is considering what kind of “polymorphic” function already exists within HTML as written.
A straightforward example of this can be found in the controls which HTML provides to accept tex-
tual input. From their data binding and functional actions, one could consider controls implemented as
<input type="text"/> and <textarea></textarea> to be peers. RSF did indeed imple-
ment them as a single, polymorphic component named UIInput, and placed complete control over
the markup strategy used for it in the hands of the markup author. If it detected the former markup in
the template it was provided with, it applied data binding via the value attribute, whereas if it was the
latter, the binding would be applied via the DOM element’s textual value.

One could imagine taking such polymorphism much further — for example, substituting one of the
dizzying array of strategies for implementing and styling HTML buttons for another simply by swapping
out the markup.

3.3. Limitations of the model
During 2008-2009, it was becoming increasingly clear that there were fundamental problems with RSF’s
usage model. The most important of these was that its target audience, the “moderately technical de-
signer”, essentially did not exist. Whilst there were not zero people of this kind, and the few we did
have were enormously productive and valuable, they were far from typical. In fact, the social space
broke down almost completely into “technicians proper” who were happy slinging around code and
only slightly less happy slinging around markup, and “designers proper” who were primarily visual de-
signers, likely to produce an application sketch in Adobe Illustrator, Omnigraffle (or today, Figma), or
even a hand sketch on paper. In practice, it was assumed that by the time the design had been rendered
as markup, it had already been fully handed over into the space of developers.

An equally great problem was that RSF’s model of authority was still authoritarian — all I had managed
to do was flip the arrow in one area so that it always pointed backwards. This had further knock-
on effects — the integrator of the application had to lay their hands on a complete set of markup for
the application, or it couldn’t render, as well as any decision that integrator made being impossible to
override by a further integrator. This set in motion trains of thought that 7 years later would result
in the “Open Authorial Principle” (Basman et al., 2018), but in the meantime I had joined the Fluid
community9, working on our JavaScript framework Infusion10, seeking these open authorial ends, and
then moved to Boulder, Colorado for a 5-year visit with Clayton Lewis.

3.4. Arbitrated control
Close to the beginning of that visit, in November 2009, there was an important whiteboard conver-
sation11 in which a crucial idea emerged — what if the markup’s control of the application could be
arbitrated somehow?

On the whiteboard were sections of component tree and markup like those in section 3.2 — and
the crucial turn was a gesture towards it with a phrase like, “If the user has written a <input
type="text"/> there, then it uses that, otherwise it uses what it has”. In practice this was still a
bit naive since it was still imagined that there could be a model where every choice could be ultimately
sourced to the markup, but in practice the seed of the idea of there being multiple routes for influence
over the application’s structure, through multiple representations, had been planted.

12 years then passed, during which the implications of this idea started to be worked out in the design
of Infusion. Ironically so much time passed that although at the back of my mind this was one of the
guiding targets of the work, some of the implications, and indeed the original impetus of the idea came
to be forgotten, especially given the realisation in section 3.3 that suggested that markup-based control

9https://fluidproject.org/
10https://github.com/fluid-project/infusion
11Sadly, given the technical culture of the time I did not have a smartphone capable of taking decent pictures, and had not

lugged my camera into the campus, so the contents of this whiteboard have not been preserved.

7
PPIG 2021 www.ppig.org

https://fluidproject.org/
https://github.com/fluid-project/infusion

was comparatively unimportant given the apparent absence of its market. In the end, the system that
was built by 2021 included assumptions that made delivering this idea almost impossible within the
framework, for reasons that will be worked out in the following sections.

4. Implications for system workflow
Part of the reason that so much time passed at this point12 was that numerous other issues in the design
of openly authorable systems needed to be worked out (also bearing in mind that the notion of open
authorship itself only came into the open late in this period in (Basman et al., 2018)). These issues
were somewhat orthogonal, but also somewhat intersecting, in that solutions to one issue would become
either source materials or obstructions to solutions to others. They can be summarised roughly under
three headings, corresponding to three periods during the development of Infusion —

1. Producing an coordinatised arena, or “substrate”13, in which the intentions of multiple authors
could be combined (Period I, “Demands blocks”, 2009-2011, Period II, “IoCSS”, 2011-2015)

2. Ensuring that the substrate properly separated the intentions of multiple authors in a transactional
way until it was appropriate to combine them (“Potentia II”, 2015-2019)

3. Becoming agnostic about whether an author’s materials were available immediately or required
I/O in order to resolve them, and ensuring that the workflow of fetching them and processing was
regular across the substrate (“Workflow/New Renderer”, 2019-2021)

In this section I will talk about the the third of these issues, since it exhibits how the issue of markup-
driven polymorphism (and other issues) forced the examination of how a system’s workflow is organised,
and represents a definite split between Infusion’s design and the traditional functional pattern which is
now dominant in the industry.

4.1. The dominant functional pattern
Figure 6 shows a schematic representation of the dominant industrial pattern for constructing the user
interface of an application, which is summarised by the slogan “The view is a function of the model”14.
This representation is a gross simplification of many of the details which appear in many descriptions
of this pattern (which appears, for example, as “The Elm Architecture” described at https://guide.

elm-lang.org/architecture/ or “The Reactor Pattern“ described at https://read.reduxbook.com/), but
it covers the two essential points common to all these designs, being that i) going from left to right is
a synchronous activity described by a pure (mathematical) function, and ii) going from right to left via
the dashed arrow is an essentially uninterpreted, asynchronous activity. Key to the functional paradigm
is that the view function is opaque, like all functions — it consumes its arguments, and by means
of some arbitrary computation replaces them with its result. Whilst in practice there is a lot of rich
internal structure in this function (e.g. it will be composed of a cascade of similar functions), this internal
structure is not intended to be of interest to anyone other than developers.

Now, we can comprise section 3.4’s demand for arbitrated markup-driven polymorphism as a subcase
of Infusion’s general mission towards open authoriality — it should be possible for an arbitrarily late
interaction with the system to change its structure. But this kind of interaction makes the problem
with Figure 6 particularly clear — in this case, the interaction is from the domain that we have already
designated to be our output. We can’t afford a system with a functional arrow that points in one direction.
Instead, we need a system which will mirror the structure of its output with a tree of “components”, each
of which is put into a bidirectional15 relationship with the generated interface.

12As well as, unavoidably, that I “had a number of other things to do” — Infusion was only a funded project during 2008
13This term is not being used in a very precise way, but is derived in our tradition from (Beaudouin-Lafon, 2017) — more

on this issue at https://twitter.com/jonathoda/status/1185888711210389504
14The currently fashionable incarnation of this representation has emerged from a long period of taxonomising whose

“angels dancing on the head of a pin” character has led it to be described as the “Model-View-Whatever” paradigm
(https://stackoverflow.com/questions/13329485/what-does-mvw-stand-for)

15Jonathan Edwards’ Twitter feed produces the goods once more. Whilst there was a phase of experimentation with bidi-
rectional data binding frameworks, the industry long ago standardised on unidirectional data binding, as https://twitter.
com/jonathoda/status/1311018137085595648 of September 29th 2020 reports, on principally anecdotal and aesthetic
grounds and largely without a satisfactory exploration of the arguments.

8
PPIG 2021 www.ppig.org

https://guide.elm-lang.org/architecture/
https://guide.elm-lang.org/architecture/
https://read.reduxbook.com/
https://twitter.com/jonathoda/status/1185888711210389504
https://stackoverflow.com/questions/13329485/what-does-mvw-stand-for
https://twitter.com/jonathoda/status/1311018137085595648
https://twitter.com/jonathoda/status/1311018137085595648

Figure 6 – Diagram showing the dominant industrial idiom for building a UI — “The view is a
(pure) function of the model”

4.2. How does the running system build itself?
But we face a problem describing how this system is meant to instantiate itself, if we look to previous
models in computer science. If it were composed of “objects”, each of these is meant to fully construct,
before it returns its object reference to its parent. This is clearly impossible, since until we begin to
construct such an object we can’t know whether its markup is there, or whether instead it requires
an asynchronous fetch of some piece of markup available elsewhere. And circularly, we can’t know
whether we need to do such a fetch until the object has got to a sufficient point in its construction as
we can resolve all the other intentions in the system influencing what markup it should be bound to —
another author may have decided to arbitrate away its markup-driven nature after all.

4.3. Avoiding premature commitment
Infusion’s design (indeed, the design of any sufficiently authorially open system) instead calls for a si-
multaneous wave of instantiation across the entire tree. A heuristic that appeared essential from an early
phase could be derived by punning on one of the central cognitive dimensions of notation from (Green
and Blackwell, 1998), Premature Commitment, or perhaps more relevantly since we are designing a
system rather than necessarily a notation, a principle from AI planning known as the Principle of Least
Commitment (POLC, (Weld, 1994)). Under this principle, given a number of potentially equivalent
choices available, one picks the one which restricts one’s future choices as little as possible.

It’s still not entirely clear, other than heuristically, why this principle is so important, but it was pretty
clear that “letting one component run ahead of the others” led to system behaviour that was undesirable.
Markup again provides a helpful microcosm of this — given how expensive it is for the browser’s ren-
dering process to traverse the DOM converting changes into visual effects, it is much more performant
to batch one’s updates to the DOM into a single operation. In practice, this means that one should not
touch the document’s markup until the point one is ready to make all updates to it at once. This implies
that a component that runs ahead of its siblings in entering the phase of its workflow where it makes
markup updates would be a serious performance hazard.

But in “old Infusion” (versions to date) there was a far more crucial reason to avoid premature commit-
ment, which was that, in a nod to industrial virtues, the parts of a component’s structure which were
not explicitly part of its (mutable) model were evaluated immutably. This implied that the effects of
any prematurely evaluated component option would be stuck for the lifetime of the component at an
unrevised value not reflecting as many authorial intentions as possible.

As we will see, this is a design blunder in Infusion which must be corrected in the upcoming rewrite, but

9
PPIG 2021 www.ppig.org

it still seems likely that some form of POLC will always be necessary even if its importance will be less
sharp. In general, all frameworks that permit bidirectional influence need to be rich in heuristics in order
to make them stable and somewhat predictable, and perhaps one day it will be possible to do adequate
research into the ergonomics of this.

4.4. Infusion’s workflow
Figure 7 shows Infusion 4’s workflow for an individual component. As we outlined in the previous
two sections, one transaction’s worth of instantiating components go through the phases to the left of
the dashed line as a unit, following the principle of least commitment. The complication is that any
workflow stage for one component might trigger the discovery of a further component, which enters the
transaction at the start of its own workflow. Once they have all reached the stage of the dashed line,
“orthochronous time” re-establishes itself and each component then separately, in reverse order, goes
through an initialisation phase similar to that of a traditional object-oriented component — primarily to
retain compatibility with code written against previous versions of Infusion.

Figure 7 – The workflow stages for instantiating a single Infusion component which is participating
in a markup transaction, as of Infusion 4

This workflow system gave rise to a “napkin diagram” as reproduced in Figure 816 in which workflow as
seen in Figure 7 is now plotted vertically, and on the horizontal axis are plotted components in order of
discovery. In this scenario it is imagined that the system at first discovers two components, brings them
to workflow level 3 by stabilising their models, then issues some I/O which then triggers the discovery
of 5 more components which must be brought to the same level before markup rendering begins. Note
that the arrows above the dark line run backwards, as per standard object-oriented semantics whereby
the most deeply nested component finishes its construction first.

4.5. A Hiatus
Throughout the 2010s, pursuit of markup–driven polymorphism was a back-burner issue, since we had
seemed to determine that

• The target audience for it (the “fairly technical designer”) was very limited

16Sketched in October 2019 – this kind of diagram in which workflow progress is plotted vertically against component
allocation horizontally has been named a “prokoptogram” following the Greek προκόπτειν representing “progress”, although
it could more accurately be named a “exelixigram” following εξέλιξη for “evolution”.

10
PPIG 2021 www.ppig.org

Figure 8 – A “prokoptogram” showing the collective progress through workflow of a group of components
each individually passing through workflow stages of the kind diagrammed in Figure 7. In this diagram, Fig-
ure 7’s horizontal workflow direction is plotted vertically, and our horizontal direction represents discovery
of components

• The vast majority of markup-oriented customisations, as those shown in section 1.1, could be
achieved by modern CSS features, particularly those from the “flexbox” layout system widely
available from 2014

• The use of markup-oriented tools was generally waning
and the workflow system shown in section 4.4 was developed without directly considering it. However,
a few months ago an interesting incident occurred when Philip Tchernavskij was attempting to bind an
Infusion component against markup produced from the Webstrates system (first mentioned in section
2.1). Despite my focus in the 2010s on the Infusion renderer unilaterally rewriting markup it found in
the document (in line with the dominant industrial paradigm of React et al.), Philip found that he was
still able to bind existing markup managed by Webstrates to new Infusion components. This was as
a result of the backwards compatibility17 of the rest of the Infusion system with the API which still
supported the “progressive enhancement” idiom of many of our 2008-2009 era components.

At this point it dawned on me that markup-driven polymorphism, whilst having few urgent practical uses,
was essential to Infusion’s open authorial mission, and as well as directly supporting cooperation with
untypical citizens such as Webstrates, would also indirectly support cooperation with the increasingly
fashionable static publishing systems18 which once more put “progressive enhancement” uses back into
scope.

4.6. Workflow Problem
I set about implementing this in the version of Infusion 4.x which had just completed a rewrite away from
the “virtual DOM” (another React-idiom construct which I had realised was unnecessary) and quickly
found that it was impossible under the workflow ordering which had been established in Figure 7. The
problem is as follows — we only encounter the markup which we will render against at the workflow

17Despite the great upheaval of the rewrites described at the head of section 4, code up to Infusion 4.x remained almost
perfectly compatible with code back to the Infusion 0.x system of late 2008 — this will not be possible to maintain in the next
rewrite.

18Hugo, Jekyll, Eleventy, etc. broadly comprised under the movement named JAMStack https://jamstack.org/

11
PPIG 2021 www.ppig.org

https://jamstack.org/

stage marked with an “o” (Resolve incoming markup or templates), but our goals of open authoriality
require that we honour this by an adaptation which is indistinguishable from one that could have been
enacted by any other author, and so we must return to the very first workflow stage marked with a
“*” (Resolve types), fetch the adaptation, undergo type evolution, apply the new model constraints,
etc. working through the remaining parts of the workflow.

Any attempt to finesse this can’t get around the fact that the component may have issued two or more
pieces of I/O (e.g. one to fetch its model holding a language localisation preference, and another to fetch
particular localised markup template based on the language choice) — putting it definitely beyond the
moment in time when the component’s “type” should ordinarily be completely settled19. At this point
for a while I gave up the task as impossible, before deciding that it was so essential to the framework’s
mission that it had to be attempted somehow.

In the framework’s defence, I eventually managed to cobble together a sequence of manual adjustments
to its bookkeeping structures that achieved most of the desired effect without having to change the in-
ternal framework code, but this incident represented the final piece of a sequence of evidence which had
been growing over several years that Infusion couldn’t meet its open authorship goals without a complete
rewrite (see section 6). Ironically, the unidirectional pipeline shown in Figure 7 is extremely reminiscent
of a similar sequential pipeline within Sun Microsystems’ JSF, RSF’s predecessor from 2004, which I
had derided at the time. At least Infusion’s pipeline is freely interceptible from outside the framework,
but not routinely so. In practice it was put in as a stopgap to allow some asynchronous activities during
instantiation without having to rewrite the entire framework to asynchronise every primitive in it.

4.7. What progress?
So what progress did we in fact make between 2005 and 2021? As the section 7 discussion estab-
lishes, markup-driven polymorphism is just one strand amongst many in the general effort towards open
authorship, and it interacts in a not entirely orthogonal way with the other strands.

Figure 9 shows side-by-side the 2005 RSF Java implementation and the 2021 Infusion JavaScript im-
plementation of markup-driven polymorphism. Whereas the RSF implementation is expressed in code,
deeply buried in a method body hundreds of lines long holding numerous conditions, the Infusion im-
plementation consists entirely of JSON configuration in a few short snippets with global names. The
process of determining how to bind the markup is organised by a sequence of pattern-matching rules in
the block markupChecks which test the incoming markup at a particular selector path for matching
a selector. This kind of pattern-matching is familiar from the functional programming world, and it is
easy to imagine how it could be democratised by being exposed in some form of structure-editing tool.

2005 RSF Implementation 2021 Infusion Implementation
Unidirectional markup polymorphism - control over ren-
dering and binding strategy always lies with markup

Arbitrated polymorphism - markup or component tree
may drive strategy

Implementation is closed within a large unit of program-
ming language source code

Implementation is open in a globally named block of con-
figuration

Repertoire of basic components and binding strategies
may not be extended

Repertoire of components may be freely extended and re-
configured

Polymorphism may only be configured on the server Polymorphism may be configured on server or client, and
client may take further control following decisions made
on the server

Table 1 – Tabulation of relative merits of 2005 and 2021 markup polymorphism systems

19Note that problems of this kind can’t arise in the Figure 6 industrial pattern because of its insistence that all I/O and the
“model” or reactor state must be completely resolved at the moment rendering begins. Note that in a functional paradigm,
issuing I/O represents a side-effect which must be prohibited, or at least “pushed to the periphery of the system”. This is
incompatible with an open authorship model whereby we can’t expect to know what adaptations the system needs to perform
until it has started to instantiate.

12
PPIG 2021 www.ppig.org

1 public class BasicHTMLComponentRenderer implements ComponentRenderer {
2 ...
3 // 15 lines of setup
4 ...
5 public void renderComponent(UIComponent torendero, View view,
6 TagRenderContext trc) {
7 ...
8 // 60 lines of conditionals
9 ...

10 else {
11 String value = ((UIBoundString) torender).getValue();
12 if ("textarea".equals(tagname)) {
13 if (UITypes.isPlaceholder(value) && torender.willinput) {
14 // FORCE a blank value for input components if nothing from
15 // model, if input was intended.
16 value = "";
17 }
18 trc.rewriteLeaf(value);
19 }
20 else if ("input".equals(tagname)) {
21 if (torender.willinput || !UITypes.isPlaceholder(value)) {
22 attrcopy.put("value", value);
23 }
24 trc.rewriteLeaf(null);
25 }
26 ...
27 // 150 lines of further conditionals
28 ...
29 }
30 }

1 fluid.defaults("fluid.uiTextBinding", {
2 modelRelay: {
3 value: {
4 target: "dom.container.text",
5 source: "{that}.model.value"
6 }
7 }
8 });
9

10 fluid.defaults("fluid.uiValueBinding", {
11 modelRelay: {
12 value: {
13 target: "dom.container.value",
14 source: "{that}.model.value"
15 }
16 }
17 });
18
19 fluid.defaults("fluid.uiInput", {
20 gradeNames: "fluid.polyMarkupComponent",
21 resources: {
22 template: {
23 resourceText: "<input type=\"text\"/>"
24 }
25 },
26 markupChecks: {
27 "fluid.uiValueBinding": {
28 selector: "",
29 tagName: "input"
30 },
31 "fluid.uiTextBinding": {}
32 },
33 parentMarkup: true
34 });

Figure 9 – 2005’s and 2021’s implementations of markup-driven polymorphism.
Left: Excerpt from RSF’s BasicHTMLComponentRenderer.java,
Right: Except from Infusion’s fluidRendererComponents.js

The merits of the different approaches are tabulated in Table 1. It’s clear that almost all these merits
and demerits can be squarely positioned in the framing of the open authorship values established by
(Basman et al., 2018) — they relate to what kinds of authors can take control of how an expression is
interpreted, and in what circumstances. This correlates with the fact that the vast bulk of the work done
over this period was in the supporting infrastructure to enable open authorship in general, and virtually
none of it in the actual implementation of the markup polymorphism mechanism specifically. Each of
the implementations in Figure 1 was in itself the work of at most an hour or so, in contrast to the 16
years which elapsed between it being possible to express and implement one rather than the other.

Figure 10 – Word Perfect for DOS interface with split screen showing two different representations
of the same document in a split screen on the left, and a further representation on the right which is
close to its final printed form

5. Authorship from Multiple Representations
This discussion has brought us full circle to my first PPIG paper of (Basman et al., 2015) which set out
the desirability of authorship from multiple representations . In retrospect, just as with the special topic
of this paper, multiple representation authorship can be situated within the frame of open authorship
in general. It is desirable to apply multiple representations to the same artefact to widen the space of
authors who can engage with the artefact, or complementarily, to widen the space of faculties which a

13
PPIG 2021 www.ppig.org

single author can bring to bear on the artefact. Multiple representation authorship in itself is nothing new,
as Figure 10 shows. In this figure, we see the same word processor document from three different views,
as rendered in the remarkable 1989 product, WordPerfect 5.1 for DOS — this shows at top left “flat”
document representation suitable for rapid editing, at bottom left, a symbolic representation showing the
system’s representation suitable for fine-tuned adjustments of otherwise invisible formatting directives,
and on the right a “print preview” representation suitable for previewing the final appearance of the
document prior to printing.

This topic is highly relevant to our current discussion based on our realisation from the outset that
markup-driven polymorphism could only be effective as part of a spectrum of strategies addressed at
different representations. The early RSF days tried to push this angle as far as possible based on the
availability of apparently relevant off-the-shelf tools addressing this representation, and the infeasibility
of developing multi-representation authoring tools in a reasonable period of time.

Figure 11 – Interface from the “Concrete Utopia” project showing a React application being de-
veloped live from three representations

Such implementations as those shown in Figure 10 are the exception rather than the rule. WordPerfect
was eliminated from the market by Microsoft Word which has no comparable feature. However, the
idea remains alive and well — a very recently previewing product, Utopia (https://utopia.app/), as

14
PPIG 2021 www.ppig.org

https://utopia.app/

shown in Figure 11 shows a highly impressive interface showing an industry-standard React app being
developed from three points of view — the literal React JavaScript code in the left pane, an structural
view in the middle pane, and the live running app in the right. This brings a kind of malleability to
this very stiff domain — but naturally only within the confines of this heavyweight editing environment.
The actually running app once it is deployed is as remote from influence and authorial intervention as
ever. Some of the rhetoric surrounding the development shows an encouraging similarity with that of
section 2.1 — “And most importantly, we made it safe: whatever Utopia doesn’t (yet) understand, it
leaves as-is.”. An interface like this combined with an actually malleable substrate could be marvellous.

6. The Future
As the previous discussion has established, Infusion has accumulated enough design flaws impeding
open authorship that soon it will need to be rewritten entirely. This rewrite will focus, as well as on
the workflow constraints that we mention in Section 4, on an extremely important issue not touched on
in this paper, that of preserving the lineage and provenance of the expressions of different authors as
they are entered into the system. This needs to be combined with massive improvements in performance
through “memoisation” of the effects of previously visited configurations. Eliminating the spurious
immutability notion that plagued Infusion development to date will produce a system which smoothly
enacts any required adaptations in-place with minimal upheaval in memory. The upcoming version of
Infusion will more aptly appear as a “Fluid” framework.

7. Acknowledgements
This paper is dedicated to Clayton Lewis, in thanks for his boundless generosity and attention in years
of Sunday morning hikes and chats during which early versions of many of these ideas emerged.

References
A. Basman. If What We Made Were Real. In Proceedings of the Psychology of Programming Interest Group,

2017.

A. Basman and P. Tchernavskij. What Lies in the Path of the Revolution. In Proceedings of the Psychology of
Programming Interest Group, 2018.

A. Basman, C. Clark, and C. Lewis. Harmonious authorship from different representations. In Proceedings of the
Psychology of Programming Interest Group, 2015.

A. Basman, C. Lewis, and C. Clark. The Open Authorial Principle. In Proceedings of the ACM Splash’18 Onward,
2018.

M. Beaudouin-Lafon. Towards unified principles of interaction. In Proceedings of the 12th Biannual Conference
on Italian SIGCHI Chapter, CHItaly ’17, pages 1:1–1:2. ACM, 2017.

T. Green and A. Blackwell. Cognitive dimensions of information artefacts: a tutorial. BCS HCI Conference,
1998. URL https://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf.

C. N. Klokmose, J. R. Eagan, S. Baader, W. Mackay, and M. Beaudouin-Lafon. Webstrates: Shareable dynamic
media. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, UIST
’15, pages 280–290. Association for Computing Machinery, 2015.

O. Lialina. Turing complete user. Contemporary Home Computing, 14, 2012.

M. Mayer, V. Kuncak, and R. Chugh. Bidirectional evaluation with direct manipulation. (OOPSLA), 2018.

J. Swift. Gulliver’s Travels. Motte, 1726.

D. S. Weld. An introduction to least commitment planning. AI Magazine, 15(4):27, Dec. 1994.

15
PPIG 2021 www.ppig.org

https://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf

	Experiences of End-User Programming
	The FlowTalk System

	Reversing information flow
	What might a solution look like?

	Markup-driven polymorphism
	What could we do from markup
	Elementary polymorphism within HTML
	Limitations of the model
	Arbitrated control

	Implications for system workflow
	The dominant functional pattern
	How does the running system build itself?
	Avoiding premature commitment
	Infusion's workflow
	A Hiatus
	Workflow Problem
	What progress?

	Authorship from Multiple Representations
	The Future
	Acknowledgements

