
Breaking down and making up - a lens for conversing with compilers

Luke Church
Lund University / University of

Cambridge
luke@church.name

Emma Söderberg
Lund University

emma.soderberg@cs.lth.se

Alan T. McCabe
Lund University

alan.mccabe@cs.lth.se

Abstract
This paper proposes a ‘tool for thinking with’1: that we can describe the interaction between people
and computers, and especially people and developer tools, as a form of conversation. We outline this
perspective, construct a work in progress analytical frame, and use it to talk about a couple of different
examples and draw implications for future work.

Keywords
Conversations, Developer Tools, Usability, Communication breakdown, Conversational repair

1. Introduction
Most professional software engineering is currently done around a textual representation of a program
in one or more languages. This representation, the code itself, acts as the central focus of a number of
interactions. It’s typed into IDEs and text editors, reviewed in version management tools, copied and
pasted as snippets into collaboration tools and online forums, sworn at with colleagues, and applauded
when it works. It’s the focus of cultural events, legal disputes, and Hollywood fantasies.

In other words, code is significant, both in the professional practice of software engineers and more
generally. The social status of code, and its performative role has been the centre of increasing writing
in recent years (Cox & McLean, 2012), whilst our (Sadowski et al, 2018) and others’ previous work
(Bacchelli & Bird, 2013), looking at the role that conversations around code in review tools shows a
complex set of social processes, including education, status signalling, and cultural norm building.
But despite all of this, the interactions with typical contemporary developer tools in use are rather
limited (edit, compile, debug) and originate from tools (compiler, static analyser, virtual machine)
having fairly fixed and historic roles. Compared to other software where the interaction patterns have
evolved considerably these are starting to look increasingly anachronistic.

A developer might write some code, and when they press the compile button - as many build
infrastructures still make them do - they get back an error. If they don’t understand the error then all of
the burden of what to do now falls on them and their social network to fix. If they try again, they’ll
just get the same error again, a particularly stubborn interaction of which one side not only can’t
change its answer, but won’t even provide any more information. Previously, we used either the
metaphor of the friend who won’t read your book because of the missing full stop on page 237
(Church, 2018), or the computer that just says ‘no’ (or don’t know) (A. Blackwell et al., 2018), to
describe this kind of interaction.

What these show is a conversational dynamic, or rather a lack of one, between the developer and
the programming infrastructure they use. The strict, pedantic, and fixed nature of this interaction
contributes to a catalogue of problems, from usability issues with static analysis (Johnson et al.,
2013), to problems in CS Education (Becker et al., 2019), but it may also have a broader effect. It
localises all of the challenges of the interaction with the formal system of code, into the code itself.
This very much centers the interactions onto the terms of the computer, not the people doing the
development.

1 A phrase coined by Steven Clarke at the industry panel, PPIG 2016, Cambridge

PPIG 2021 www.ppig.org

This paper describes a work in progress at more closely describing this conversational dynamic,
starting off with a description of some of the existing work on the analysis of conversations, building
that into the beginnings of an analytical tool, applying the tool first to the description of interaction in
general, then to interaction with a compiler, and finally as a motivation for building an experimental
platform.

2. Aspects of Conversations
In this section, we list an initial selection of aspects of conversations which we later use as an
analytical perspective to describe the exploration of a conversational form of interaction with tools
like compilers2. Whilst the notion of considering interaction as a conversation has been considered
earlier by, for instance, (Dubberly & Pangaro, 2009) building on the work of (Pask, 1976), it has not
to our knowledge been further explored in the context of programming tools.

Our starting point for this exploration is an informal selection of previous work related to
conversations; conversation theory (Pask, 1976), conversation analysis (Sacks et al., 1978), interaction
design and conversations (Dubberly & Pangaro, 2009), conversational alignment (Henderson &
Harris, 2011), communication breakdown (Beneteau et al., 2019) and properties of good conversions
(Clark et al., 2019), we consider the following groups of aspects: (1) “Turns & Temporality”, (2)
“Intersubjectivity, Alignment & Active Listening”, (3) “Tolerance, Breakdown & Repair”, (4)
“Explicability”, and (5) “Side-channels & Deixis”. We will describe these aspects here in terms of
normal person-to-person conversations and connect them to the selected literature and other work
describing programming language tooling.

2.1 Turns & Temporality
Conversations have a cadence to them, often one person speaks and leaves pauses for the other person
to speak. If they want to, the other person then starts speaking and takes ‘their turn’. If people want to
interrupt they will often signal this implicitly, or start to speak if there is a gap and back off if the
other person isn’t done. In some cases (small children, large conferences) this logic is explicitly
supported. Sometimes by having a physical token (‘you can talk when you have the ball’), other times
by structured ‘question and answer’ times. In closer conversations between friends, the conversational
structure can become a little more informal with people taking over conversations midway through
sentences.

(Dubberly & Pangaro, 2009) describe the structure of a conversation as a process where
participants open a channel, commit to engage, construct meaning, evolve, converge on agreement,
then act or transact. A central aspect of this process is turn-taking, described in a model by (Sacks et
al., 1978). This turn-taking model includes turn-constructional components (how a speaker constructs
a turn), turn-allocation components (how to allocate who gets the next turn), and rules, such as if the
current speaker selects the next speaker, then the selected speaker is obliged to take the next turn to
speak.

The closest analogy to turn taking that we are aware of in the study of programming tools is the
descriptions of liveness and the temporal nature of interaction within the live programming
community. Tanimoto’s framework (Tanimoto, 1990), and the broader live programming communities
have studied the intertemporal nature of the interaction between developers and their tools about the

2 For convenience we’ll refer to this as ‘conversations with a compiler’, this is expanding the role of the
compiler to be the technology that handles all the underlying information structure behind an IDE offering
services such as code completion, and the build process - there wasn’t a particularly good name for all those
things, so we’ll use compiler in the broadest possible sense of programming language interaction, tooling and
infrastructure

PPIG 2021 www.ppig.org

code, and whether these are primarily episodic (traditional build compile cycles) in nature or more
continuous such as the example above, and whether these timing characteristics are for interaction
with the code, or with the running program.

While our reading of the models of Pask and Sacks et al. is at an early stage, we note that they have
different origins. The conversational model by Pask stems from cybernetics and is not directly bound
to human-to-human conversations, while the turn-taking model by Sacks et al. originates from studies
of human conversation. In relation to the intersection of these two models, a recent study by Clark et
al. presents a difference in expectations on a human-to-human conversation and human-to-agent
conversion, comparing the latter with that of a conversation with a stranger (Clark et al., 2019). How
these models overlap has interesting applications to the domain of interacting with compilers but at
this point represents future work that’s beyond the scope of this paper.

2.2 Meaning Making: Intersubjectivity, Alignment & Active Listening
The construction of meaning within a conversation is obviously a complicated topic of epistemology,
and we can only present a very preliminary and high-level way of thinking about it here, focussed on
the end of understanding conversations with computers.

Meaning is sometimes described as being constructed intersubjectively (Searle, 1996), that is
between the people in the conversation, and that a number of mechanisms are used to determine
conversational alignment (Henderson & Harris, 2011) - whether they are "on the same page”.
Utilization of conversations to create a shared understanding (“meaning making”) and to reach
agreement (Dubberly & Pangaro, 2009) is central in conversation theory (Pask, 1976), where
conversations are seen as interactions between cognitive processes and as key drivers for learning, as
different models of understanding are reduced to a shared model. In a recent empirical study by Clark
et al., mutual understanding was found to be one aspect of a good conversation, alongside
trustworthiness, active listening, and humour (Clark et al., 2019).

This implies that the conversation might not be meaningfully interpretable outside the context of
the conversation, for example, when reading what was written after a substantial period of time has
passed, or if others that weren’t part of the original conversation read it. For example a reference to
shared experiences such as ‘where did I put the thing that we brought back from that holiday in the
mountains?’ might make complete sense to your friend, but wouldn’t mean anything to someone else.
Some techniques for having conversations elevate these practices from instinctive to intentional
habits. For example, in active listening (Rogers & Farson, 2015) one of the techniques used to ensure
alignment between participants is for one of them to summarise the content of what is being said, or
repeat what they heard. This gives the other participants a chance to see whether they’re ‘getting it’.

2.3 Tolerance, Breakdown & Repair
As the meaning is intersubjective in the conversation between two people it’s inevitable that their
understanding won’t be exactly the same. To keep the conversation going, we suspend trying to build
a precise shared understanding until it really matters. We may, for instance, tolerate that we don’t have
a definition for some of the terms, or a precise description of what they do or don’t include.

Sometimes however, it becomes clear that the misunderstanding is significant enough that you’re
actually talking about completely different things, at which point the conversation ‘breaks down’. At a
point of this communication breakdown, the normal flow of the conversation stops and instead either
the conversation ends, somewhat acrimoniously, or, more commonly, the participants in the
conversation attempt to repair it (Sacks et al., 1978). In this repair, they enter what may be referred to
as a meta-conversation (Dubberly & Pangaro, 2009), where the participants attempt to establish what
the source of the misunderstanding is, clarify, and then go back and proceed with the conversation.

PPIG 2021 www.ppig.org

In a recent study by (Beneteau, et al., 2019), studying human-to-agent conversation by observing
how families interact with the conversational agent Alexa, they found that the burden of the repair
was primarily on the humans. Alexa could signal a breakdown (e.g., “did you mean X” or “sorry I’m
not sure”), but provides next to no assistance with repair (e.g., could indicate a need for assistance
with a definition). The participants in the study used several repair strategies, e.g., adjusting their
cadence to that of the agent, exaggerating sounds (hyperarticulation), adjusting sentence structure to
clarify (e.g. from “alexa, thank you, stop” to “alexa, stop”), and repeating the previous utterance
again.

In relation to programming tools and compilers, in a study by Johnston et al. on why software
developers don’t use static analysis tools (Johnson et al., 2013) they found usability issues connected
to false positives, workflow integration, overflow of results, and comprehensibility of results. In a
related study by Imtiaz et al. in analyzing questions about static analysis tools on the popular
StackOverflow platform (Imtiaz et al., 2019) found the most common question to be about how to
ignore results. With the lens of conversations, several of the found usability issues with static analysis
results can be considered as breakdowns. Again, the primary burden of the repair is on the human and
based on the common practice of ignoring results there is not much of a conversation. In (Basman et
al., 2016) we have discussed the various technical sources from which this breakdown will occur, but
primarily from the perspective of structurally avoiding them rather than building mechanisms through
which they can be repaired.

2.4 Explicability
The repair mechanism outlined above is a form of explicability - where one side (if possible) asks for
more details or more description on a phenomena that has occurred. This explicability may be guided,
where one party asks questions in order to shape the information they are seeking (or, in the case of a
Socratic dialogue, encouraging self-reflection about), or it may be a description that one of the
participants of the conversation leads. The explanation does not have to be a repeat of the information.
It might be achieved by trying to say the same thing in a different way, providing a different example
of the same thing, or analogy between the object being described and another item. This may then be
coupled with active listening techniques where they try and describe what they have just heard to see
if they have now understood.

As a form of repair (Sacks et al., 1978), explicability is closely related to the construction of a
shared understanding (Pask, 1976) and meaning making (Dubberly & Pangaro, 2009), where it helps
to bring about conversational alignment (Henderson & Harris, 2011).

Explicability has recently gained prominence in Software Engineering through the drive to create
‘explainable Artificial Intelligence’, that is statistical systems that are legible in the processes they
used to make decisions. (Nachtigall et al., 2019) apply a similar terminology for characterising
interaction with static analysis, listing a number of explainability challenges incorporating usability
challenges such as incomprehensible messages, workflow integration, and false positives, also
reported in, for instance, (Johnson et al., 2013).

2.5 Side-channels & Deixis
So far the description above has been focussed on the linguistic content of the channel. However this
is by no means sufficient as a description of the phenomena of a conversation. There are many other
things happening in the conversation; participants will be observing each others’ body language, facial
expressions, tone of voice, and cadence of speech. All of these are used to give cues as to whether the
conversation is making sense, whether it contains too much information or too little, whether it’s an
enjoyable discussion or whether it’s frustrating.

PPIG 2021 www.ppig.org

These side-channels vary in different conversational settings. In one-to-one conversation you might
notice your conversation partner glancing at the clock as an indication that the discussion might need
to wrap up soon, while in a conference setting this more likely is signalled by the participants reading
their email. As well as providing meta cues about the conversation, these channels can also be used to
directly provide information, such as deictic pointing at an object and saying ‘let’s put the book on the
shelf over there’, or to direct turn-taking in a conversation (Novick et al., 1996).

We aren’t aware of a significant literature applying communicative side channels within
programming tools, as we’ll see later, without a larger conversational frame it’s hard to know how the
information gained via a side channel would be used by the tool. There have been some experiments
introducing anaphora into existing programming languages (Lohmeier, 2016), however these remain
largely experimental.

3. Frame: Interaction as a Conversation
Having now outlined the overall view of the conversational approach we will take, we will now apply
this to describing a general interaction design problem before using it to describe the interaction with
a compiler. In the time honoured tradition of PPIG, we will describe a microwave oven. Following the
lessons of operationalising the Cognitive Dimensions using a questionnaire (Blackwell & Green,
2000) we performed this description by asking a series of questions about the context and each of the
properties. We list these questions in Appendix 1. As with other analytical perspectives that are used
to describe the interaction with programming such as Cognitive Dimensions (Green & Petre, 1996)
and The Patterns of User eXperience (Blackwell, 2015) , it is important to also describe the context in
which the interaction is occurring.

Context: In the case of the microwave interaction, the conversation is between a hungry person and a
microwave. The conversation is happening in the person’s kitchen at eye level where the microwave is
mounted on a wall. They are having the conversation because the first author would like some warm
soup. The language they are speaking in is wattage and time in minutes. Now we can consider the
interaction in terms of the properties we described earlier.

Temporality: The interaction is initiated by the person pressing the power button, at which point the
microwave responds by suggesting how long it’s going to cook for. It’s then the person’s turn to twirl
a dial and press start.

At which point the microwave will begin its cooking until it’s done, it will then signal that it’s turn
is over with a loud beeping noise. This will continue from time to time until the person acknowledges
it by opening the door and closing it again. Interruptions are a one way flow with this model of
microwave, if the person opens the door, cooking stops straight away. Resuming the ‘microwave’s
turn’ is an explicit action - closing the door and pressing the start button. On the other hand, whilst the
person can interrupt the microwave at any point, the microwave does not interrupt, it does the same
thing until it’s completed its turn and then waits - possibly forever.

Meaning Making: The interaction is held on pretty fixed terms, four separate power levels (60, 360,
600, 1000) and the time. Whilst the person using the microwave may not be able to assign meaning to
these beyond (a little amount of heating, not much heating, a fair amount of heating and a lot of
heating), there is no notational change occurring on the microwave side and no tolerance of any
variation from the set pattern of interaction. If it is not followed, nothing will happen. In this sense
whilst there is some intersubjectivity, the person does all the learning, and if a piece of metal is
introduced into the microwave there might be another opportunity for learning.

PPIG 2021 www.ppig.org

https://paperpile.com/c/TianGa/r2ce

Breakdown & Repair: As suggested above, there are various things that the person can do to
interrupt the normal usage of the microwave, for example opening the door. This will cause the
microwave to stop everything it is doing, and periodically make alarm noises until the door is closed
and the start button is pressed. This is the one and only way in which the conversation can be repaired,
and is explicitly signalled on the user interface of the microwave.

Explicability: The microwave is fairly inscrutable. Whilst there is a display that explains the state
(cooking, cooling, waiting for the door to be closed) there isn’t any way of requesting more
information, from the significant - “why did sparks come out when I cooked my fork?” to the more
mundane “how long have you been cooking for?”. The former might only be discoverable by reading
an encyclopedia, the latter is just a feature that isn’t implemented though it of course could be with
relative ease. The microwave also never requests more information from the person.

Side-channels: However whilst the conversation isn’t subject to any form of direct elaboration, it’s
rich in side channels. When the microwave is running it makes a deep rumbling noise, vibrates
slightly and illuminates the compartment. Over time you can see the food start to boil, and if ignored
long enough this will be coupled with an olfactory side-channel as well. There are no side channels by
which information can flow from the person to the microwave, it is ignorant of the world it sits in, and
just performs the same series of actions in response to the same series of input, independently of
happiness, hunger, or impatience waiting for the soup.

What is all this telling us? This description has shown what a conversation with a relatively fixed
appliance looks like, and how even with a very simple device the lens of interaction turn taking,
interruptions and repairs and the richness and characterisation of the side channels is an informative
description of the interaction and highlights possibilities for improving explicability. We will now
apply the same lens to describe interactions with a compiler.

4. Conversations with Compilers
Having now seen what it looks like to think of using a microwave as a conversation, we can now
move on to considering a compiler. Just as there is variation in the context of use of an oven (using a
domestic microwave to cook soup is different from using an industrial autoclave to cook a spacecraft
fuel tank), there is also variation in the nature of software being written. In order to consider the
conversation we need to be specific about the context of interaction, not just the technologies
involved.

Context: For the purpose of this conversation, we’ll try and describe a circumstance that is specific
but likely to be representative of a number of activities that software engineers in the wild do. The
conversation is between a software engineer and their tooling around an application written in Java.
The conversation is mainly happening in an IDE such as IntelliJ or Visual Studio. They are having this
conversation as the engineer has been tasked with adding another feature to the application, in a hurry
but not a desperate one. The conversation is happening in multiple languages, firstly and most
obviously in the Java programming language - but the story of the use of language in an IDE is
complicated. Even depicted simplistically as in Figure 1, there are a lot of languages involved.

PPIG 2021 www.ppig.org

Figure 1. A schematic outline on the number of different languages, both notational and interactional
that are involved in a notional commercial software development context (called CorpX).

Though we said that the program was ‘written in Java’, as might be a common statement in a
discussion on hiring, it’s really more complicated than that. Whereas Java imposes a standard syntax
and how it is interpreted3, organisations often decide to make use of only a subset of the possibilities
through using tools like corporate style guides, producing a dialect of Java. The IDE will have a
particular way of rendering the code with syntax highlight and font etc. For any software of any size
within that dialect, a specialist vocabulary or jargon for the purpose of the software is constructed. For
a furniture maker this might be the types of panels they are using to construct their pieces, for music
software it might be about the acoustics of various instruments. Whilst these are both written in the
grammar and syntax of Java, the libraries that express them rapidly form their own little language that
isn’t easily understood. Anecdotal evidence suggests that more of the work of onboarding a new
software engineer into an organisation is taken up learning these ‘little’ languages, than learning the
‘big’ language.

Apart from the ‘primary’ language , there are a whole host of peripheral languages involved. These
include configuration languages: both the package management and build system, which will be fairly
conventionalised between organisations and contexts, and the configuration, that will be application
specific, as well languages for documentation, automation and other process support. Aside from
these obviously linguistic artifacts, there are many other elements, including the language used on the
buttons and interactive elements of the IDE, the language used in organisation specific plugins and
tools like static analysers, and the language used to interact with other tools, such as unit testers (green
circles meaning good), and elements of the build process such as version control (the commands used
to make Git do things)

This complex linguistic environment has a number of effects, it can be fairly overwhelming for new
speakers. It also creates a very viscous (Green, 1990) ecosystem where any improvement has to be
supported across a number of different tools in order to achieve practical usability within an

3 Even this turns out not to be true often, as organisations and frameworks build code transformation tools that
mean that the code that appears in the editor is not the same as the code that is actually executed

PPIG 2021 www.ppig.org

organisation. This partially contributes to why the infrastructure for professional development so
significantly lags behind research prototypes for improved programmer experience.

As would be expected for such a complex environment, there are many aspects of temporality to
consider, with the different notations having different levels of liveness (Church et al., 2010). For the
purpose of this discussion and motivating our subsequent experiment, we will focus on the
conversation between the developer and their code in the primary code view, including syntax
highlighting and the presentation of any errors and warnings that occur.

Temporality: The cadence of the conversation is primarily led by the developer who makes a change
to the code. In some cases the editor responds pretty much in between keystrokes, for example
updating syntax highlighting. In other cases the compiler waits for a short pause where the developer
is no longer typing and does the more arduous work of computing errors etc. However once that
process has started they are just blurted as soon as they are ready, potentially interrupting the flow of a
further conversation that’s started. So the developer’s activity is partially used as a way of signalling
when it would be a good time for the compiler to do something.

It is not necessarily the case that systems that are more live are better, for example some editors
insert keystrokes on behalf of the developer, such as closing quotes for them. This results in the
developer needing to enter into a closed loop interaction, monitoring what the editor is doing for
potential incorrect interruptions that need to be fixed up, a known design flaw in adaptive text entry
systems (Oulasvirta et al., 2018)

The processes that take more time on the other hand are often explicitly signalled. The developer
presses a button that begins a compilation process. At which point the compiler infrastructure does its
work pretty much regardless of any further input, apart from an explicit instruction to cancel, and
returns the results to the developer when it’s done.

Meaning Making: Meaning making in programming systems is a topic of considerable historical
focus of the programming language community, and beyond. We suggest a part of the interaction that
has a strong conversational aspect is code completion. If the developer introduces a new method
successfully (‘here’s an idea - musical instruments can be played’), in subsequent interactions the
compiler will refer back to that ‘idea’ (‘if you're talking about an instrument, would you like to play
it?’). If on the other hand the compiler didn’t understand the method, for example if it had unbalanced
braces, then this suggestion won’t occur.

Likewise when new elements are added to the program, such as methods or classes, these often
appear in an adjacent area of the display. This can be thought of as another form of ‘active listening’
where the tool confirms that it has correctly understood some of the intention of the programmer by
showing where in the structure of the program they have entered the new element.

We suggest that one of the conversational properties that the useful awkwardness (Blackwell, 2000)
of strong type systems brings, is that it is easier to support the meaning-making properties of the
conversation by allowing the tooling to more completely model the program without executing it.

Tolerance, Breakdown & Repair: Different aspects of the conversation with a compiler have
different levels of tolerance to mistakes. As we suggested above, many aspects are highly intolerant to
the slight syntactic slips that occur frequently in day-to-day conversations between people, refusing to
do any significant work with code before it is in a grammatically perfect state.

However whilst this is the case for the conversations about compilation, the other conversations
that happen have wider variation in their degrees of tolerance. For example, syntax highlighting one
function typically wouldn’t be prevented by another function containing a mistake like a missing
semicolon, however such a mistake would stop compilation happening.

PPIG 2021 www.ppig.org

As would be expected in a situation where there are a number of different levels of tolerance, there
are also different ways of signalling that the conversation has broken down, and different ways of
repairing it. One example is listed above, where the divergence (Basman et al., 2016) between the
developers expectation as to the elements that are available to the program and the compiler’s model
is revealed by the code completion mechanism. Experienced developers use the change in behaviour
that code completion is no longer suggesting ‘the right things’ as an indication that there is a problem
in the code (Mărășoiu et al., 2015), and look to fix the issue determining whether it has been fixed by
whether code completion starts working properly again or not. This is an example where sensitivity to
their alignment with their compiler appears to be an indicator of expertise.

Another example of the implicit signalling of the breakdown of alignment between the developer
and the compiler occurs when the syntax highlighting goes awry. For example in the case where the
developer has forgotten to close a string literal quote, suddenly all the text in front of them changes
colour, which signals that the compiler is interpreting the code differently to the developer, and for an
experienced developer is often a quick fix.

In other cases however the breakdown is more explicitly communicated, for example by the
compiler indicating an error. This kind of breakdown is indicated by adding red squiggles underneath
the text where the compiler thinks there’s an error, displaying an error in the error list beneath the text,
and changing the colour of the file.

However, as with the repairing code
completion the burden is very much on one side.
The developer needs to find and fix the problems
with little assistance from the compiler. Some
compilers such as Dart in Visual Studio Code
have ‘suggested fixes’ that they can perform, but
these have to be explicitly requested, as shown in
Figure 2.

As well as the burden of fixing the problems
falling heavily on the developer, the tone of the
indication of the breakdown is often terse
compared to the way in which normal
conversations would be held, with error messages such as ‘variable cannot be used before declared’.
The nature of the interaction tends to be one sided with the compiler having no way of sensing
whether the developer’s understanding of the model of the compiler has broken down, and no way of
addressing it.

Explicability: Part of this lack of a way of addressing the potential breakdown between the compiler
and the developer is associated with a lack of the ability to finesse the description of an error. Most
compiler error messages are delivered complete to the user associated with the point in the code that
they occur at. This typically adds to both the terseness described above and a barrier to the amount of
conversational repair that is possible.

There is no way for a developer to ask the compiler basic questions like “why is that a problem?”,
or “what were you doing when you had this problem?”, or “can you show me another example of this
problem?”. These requests would be part of a normal conversation with an experienced developer in
understanding why something was going wrong and what could be done about it, however the
conversation with the compiler shows much more limited interactivity. It simply repeats its statement
about what the problem was with no variation. This means that if the original error message didn’t
help, the developer is reduced to performing trial and error to see if it changes the message that the

PPIG 2021 www.ppig.org

compiler gave rather than being asked to ask for any form of refinement. This lack of explicability is
the starting point for our experiment below.

Side-channels: Compared to the richness of the interaction with the microwave, the compiler has
very limited side channels. There isn’t much indication that the compiler is doing something other
than if it happens for a long time the fans start to make noise. There have been a number of attempts
to use physiological data rather from eye tracking to skin salinity to observe the state of the developer
but these techniques have broadly not been adopted.

5. Prototype: Mitigating Breakdowns in Compiler Interaction4

The analysis in Section 4 paints a picture of a rather limited conversational interaction within a very
complex environment. Many of the limitations in the conversational interaction occur due to the static
nature of the communication with the compiler, the developers provide code and the compiler is given
the opportunity to respond, but there is no possibility of further interaction with respect to the
information provided. This creates a number of problematic dynamics where the compiler stubbornly
replies with the same answer as before, and offers no help, as it has no memory of the history of the
conversation, or how the information that it has about the code could be used to support better
explicability. How would the interaction look if we explicitly designed for breakdowns in the
conversational alignment between the developer and the compiler?

In order to experiment with this
question, we built a prototype where
we explore how the “compiler
conversation” can continue beyond an
error and the breakdown it incurs. A
literal application of the conversational
metaphor would result in an interaction
that was similar to a conversational
agent, whilst interesting as a possibility
this would create a very significant
implementation challenge to avoid
uncanny valley effects (Mori et al.,
2012). Instead we aim to implicitly
support the conversational nature of
the interaction outlined in the
properties above.

Figure 3 illustrates an example where a breakdown in the “compiler conversation” may occur. In it,
a small method is used to return the sum of two variables, x and y, where y is declared as a field
within the class and the value of x is set depending on the value of y. Given a default value of zero
for y, we can see at a glance that the condition in the if statement would evaluate to true, and as a
consequence x would always be assigned. The compiler however, represented by the blue robot, sees
things differently - although it considers the declaration and assignment of x, it is unable to determine
the result of the conditional, and therefore throws an error that may come as a surprise to the

4 In order to help highlight the conversational nature of the interaction with a compiler we’re going to talk as if
the compiler is a person having the conversation with the developer. However this is not to imply that we think
that a compiler has agency beyond the engineers that created it.

PPIG 2021 www.ppig.org

developer. To solve this breakdown, we have built a prototype web application that attempts to act as
a visualisation of the behaviour represented in Figure 4.

This prototype, named “Programming by Errors”, or “Progger” for short, consists of an extension
of ExtendJ (Ekman & Hedin, 2007), a compiler built upon the JastAdd meta-compilation system
(Hedin & Magnusson, 2003). JastAdd is an implementation of the referenced attribute grammars
formalism, as described in (Hedin, 2000), which introduces declaratively defined objects called
attributes that may be attached to nodes in the abstract syntax tree and evaluated at an on-demand
basis. This gives the advantage of allowing access to the attribute evaluation stack, as opposed to just
the call stack, and allows us to track the evaluation of an error through different sections of the syntax
tree and their corresponding tokens in the source code. With this information in hand, we present a list
of errors generated by the compiler, which can be further expanded into a tree showing all of the
attribute dependencies which were needed to compute each error. These attribute nodes may be
hovered over to highlight the section of code that the attribute relates to in the abstract syntax tree.

Figure 4. Screenshot of the Progger prototype showing an expanded error view. The highlighted
variable (x) corresponds to the code location investigated while evaluating the attribute where the

cursor is hovering.

6. Discussion and Implications for Future Work

In this work we have sketched out an initial framework for describing conversational aspects of an
interaction, and applied that to characterising how conversations with compilers currently proceed.
Based on this analysis we briefly outline how an alternative might be constructed.

This alternative is not conversational in the sense of a conversational agent, but rather is
conversational in terms of structural properties of the interaction, such as turn taking and explicability.
Whilst it is a work in progress it shows a number of possibilities, and also highlights the technical and
interaction challenges.

PPIG 2021 www.ppig.org

The primary challenge in the conversation remains bridging the different models involved. That is,
between the informal models and learnt patterns of the developer and the formal representation that
the compiler uses in order to compute properties of the program that it needs to compile the code. The
success or failure of this bridge either allows conversational alignment mechanisms to take place, or
interferes with them. The purpose that the analytical lens provides is a tool for thinking about what
properties such an interaction needs and where the shortfall compared to a person-to-person
conversation will create a significant opportunity for novel interaction design.

Future Work One possibility for future work is to look for intermediary artefacts that are well
suited to tracking alignment and detecting breakdowns. This is part of the role we saw type systems
and code completion playing where they acted as a mechanism by which the developer could make
sure that the compiler’s representation was aligned to what they had expected. There may be other
properties that could be designed like this.

A second potential avenue of further research could be the one that Progger is outlining, of
progressive explication of the causes of errors, led by a discussion with the programmer rather than
the all-or-nothing logic to date. In building the prototype, we found the mapping of some of the
activities being performed to be challenging - work to clarify the activities of the compiler in terms of
the model that the developer holds of it will require further work.

In this work, we have focussed on errors, however there are many other areas of the compilers (in
the broadest sense) activity that might potentially benefit from further explication, these include
package and version resolution or runtime behavioural analysis.

A third potential avenue that could be pursued is to expand the richness of the communication
channels that are available between the developer and the compiler, including the addition of more
signals. From the compiler to the developer, this could include outlining the regions of code that have
been read or changed, or the current activity or phase of the compiler. From the developer to the
compiler, as our previous work on sensors and probes (Church and Söderberg 2019) suggests, it is
possible to systematically approach the collection of data that shows the utility, or lack thereof, of the
interactions that the compiler is providing and that opens the possibility for supporting adaptation in
the behaviour of the development environment.

Acknowledgements

This work is supported by the Swedish Foundation for Strategic Research under Grant No.
FFL18-0231 and the Swedish Research Council under Grant No. 2019- 05658.

References

Bacchelli, A. & Bird, C. (2013). Expectations, outcomes, and challenges of modern code review. In
proceedings of the 35th International Conference on Software Engineering (ICSE), pp. 712-721,
IEEE.

Basman, A., Church, L., Klokmose, C., & Clark, C. B. D. (2016). Software and How It Lives On -
Embedding Live Programs in the World Around Them. In proceedings of the 27th Annual Workshop
of the Psychology of Programming Interest Group (PPIG).

Becker, B. A., Denny, P., Pettit, R., Bouchard, D., Bouvier, D. J., Harrington, B., Kamil, A., Karkare,
A., McDonald, C., Osera, P., Pearce, J. L., & Prather, J. (2019). Compiler Error Messages Considered
Unhelpful: The Landscape of Text-Based Programming Error Message Research. In Proceedings of

PPIG 2021 www.ppig.org

https://paperpile.com/c/TianGa/Donv

the Working Group Reports on Innovation and Technology in Computer Science Education, pp.
177-210, ACM.

Beneteau, E., Richards, O., K., Zhang, M., Kientz, J. A., Yip, J., & Hiniker, A. (2019).
Communication Breakdowns Between Families and Alexa. In proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems, ACM.

Blackwell, A. (2015). Patterns of User Experience in Performance Programming. In proceedings of
the 1st International Conference on Live Coding (ICLC), pp. 12-22.

Blackwell, A., Church, L., Jones, M., Jones, R., Mahmoudi, M., Mărășoiu, M., Meakins, S., Nauck,
D., Prince K., Semrov, A., Simpson, A., Spott, M., Vuyksteke, A. & Wang, X. (2018). Computer Says
‘don’t Know’ - Interacting Visually with Incomplete AI Models. Talk at DTSHPS workshop,
Co-located with VLHCC.

Blackwell, A. F. (2000). Dealing with New Cognitive Dimensions. Position paper prepared for the
Workshop on Cognitive Dimensions, University of Hertfordshire, United Kingdom.

Blackwell, A. F. & Green, T. (2000). A Cognitive Dimensions Questionnaire Optimised for Users. In
proceedings of the 11th Annual Workshop of the Psychology of Programming Interest Group (PPIG).

Church, L. (2018). Critique of ‘Lector in Codigo or Role of the Reader’”. In the Conference
Companion of the 2nd International Conference on Art, Science, and Engineering of Programming,
ACM.

Church, L., Nash, C., & Blackwell, A. F. (2010). Liveness in Notation Use: From Music to
Programming. In proceedings of the 21th Annual Workshop of the Psychology of Programming
Interest Group (PPIG).

Church, L., & Söderberg, E. (2019). Probes and Sensors: The Design of Feedback Loops for Usability
Improvements. In proceedings of the 30th Annual Workshop of the Psychology of Programming
Interest Group (PPIG).

Cox, G., & McLean, A. (2012). Speaking Code. MIT Press.

Clark, L., Pantidi, N., Cooney, O., Doyle, P., Garaialde, D., Edwards, J., Spillane, B., Gilmartin, E.,
Murad, C., Munteanu, C., Wade, V., & Cowan, B. R. (2019). What Makes a Good Conversation?
Challenges in Designing Truly Conversational Agents. In proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems, ACM.

Dubberly H., & Pangaro, P. (2009). What is conversation? How can we design for effective
conversation? Interactions Magazine, XVI(4):22-28.

Ekman, T., & Hedin, E. (2007). The JastAdd Extensible Java Compiler. SIGPLAN Notices
42(10):1-18.

PPIG 2021 www.ppig.org

Fors, N., Söderberg, E., & Hedin, G. (2020). Principles and Patterns of JastAdd-style Reference
Attribute Grammars. In proceedings of the 13th International Conference on Software Language
Engineering, ACM.

Green, T. R., G. (1990). The Cognitive Dimensions of Viscosity: A Sticky Problem for HCI. In
proceedings of the IFIP TC13 Third International Conference on Human-Computer Interaction
(INTERACT), pp. 79-86, North-Holland Publishing Co..

Green, T. R. G., & Petre, M. (1996). Usability Analysis of Visual Programming Environments: A
‘Cognitive Dimensions’ Framework. Journal of Visual Languages & Computing, 7(2):131-174,
Elsevier.

Hedin, G. (2000). Reference Attributed Grammars. Informatica, 24(3):301–317.

Hedin, G., & Magnusson, E. (2003). JastAdd - an aspect-oriented compiler construction system.
Science of Computer Programming, 47(1):37-58.

Henderson A., & Harris, J. (2011). Conversational Alignment. Interactions Magazine, 18(3):75-79,
ACM.

Imtiaz, N., Rahman, A., Farhana, E., & Williams, L. (2013). Challenges with Responding to Static
Analysis Tool Alerts. In proceedings of the 16th International Conference on Mining Software
Repositories (MSR), IEEE/ACM.

Johnson, B., Song, Y., Murphy-Hill E., & Bowdidge R. (2013). Why don’t software developers use
static analysis tools to find bugs? In proceedings of the 35th International Conference on Software
Engineering (ICSE), pp. 672-681, IEEE.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingier, J., & Irwin, J. (1997).
Aspect-oriented programming. In proceedings of the European Conference on Object-Oriented
Programming (ECOOP), pp. 220-242, Springer.

Knuth, D. (1968). Semantics of context-free languages. Mathematical Systems Theory, 2(2):127-145.

Lohmeier, S. (2016). A Formal and a Cognitive Model of Anaphors in Java. In proceedings of the
27th Annual Workshop of the Psychology of Programming Interest Group (PPIG).

Magnusson, E., Ekman, T., & Hedin, G. (2009). Demand-driven evaluation of collection attributes.
Automated Software Engineering, 16(2):291-322.

Mărășoiu, M., Church, L., & Blackwell, A. (2015). An Empirical Investigation of Code Completion
Usage by Professional Software. 26th Annual Workshop of the Psychology of Programming Interest
Group (PPIG).

Mori, M., MacDorman, K. F., & Kageki, N. (2012). The Uncanny Valley [From the Field]. IEEE
Robotics & Automation Magazine, 19(2):98-100.

PPIG 2021 www.ppig.org

Nachtigall, M., Nguyen Quang Do, L., & Bodden, E. (2019). Explaining Static Analysis - A
Perspective. In proceedings of the 34th International Conference on Automated Software Engineering
Workshop (ASEW), IEEE/ACM.

Novick, D. G., Hansen, B., & Ward, K. (1996). Coordinating Turn-taking with Gaze. In proceedings
of the 4th International Conference on Spoken Language Processing (ICSLP), pp. 1888-1891.

Oulasvirta, A., Kristensson P. O., Bi X., & Howes A. (2018). Computational Interaction. Oxford
University Press.

Pask, G. (1976). Conversation Theory: Applications in Education and Epistemology. Amsterdam and
New York, Elsevier.

Rogers, Carl R., and Richard Evans Farson. 2015. Active Listening. Martino Publishing.

Sacks, H., Schegloff, E. A., & Jefferson, G. (1978). A Simplest Systematics for the Organization of
Turn-taking for Conversation. Studies in the Organization of Conversational Interaction, pp. 7-55,
Academic Press.

Sadowski, C., Söderberg, E., Church, L., Sipko, M., & Bacchelli, A. (2018). Modern Code Review: A
Case Study at Google. In proceedings of the 40th International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), pp. 181-190, ACM.

Searle, John. 1996. The Construction of Social Reality. Reprint edition. Penguin.

Söderberg, E., & Hedin, G. (2011). Automated Selective Caching for Reference Attribute Grammars.
In proceedings of the International Conference on Software Language Engineering, pp 2-21, Springer
Berlin Heidelberg.

Tanimoto, S. (1990). VIVA: A Visual Language for Image Processing. Journal of Visual Languages
and Computing, 1(2):127-139, Elsevier.

Öqvist, J. (2018). ExtendJ: Extensible Java Compiler. In the conference companion of the 2nd
International Conference on Art, Science, and Engineering of Programming, pp. 234–235, ACM.

PPIG 2021 www.ppig.org

http://paperpile.com/b/TianGa/MSWc
http://paperpile.com/b/TianGa/vbNo

Appendix A: Probe Questions

To help elaborate the conversational properties of an interaction we used the following questions,
following the strategy originally adopted by the Cognitive Dimensions questionnaire (A. F. Blackwell
and Green 2000). We list them here not as a canonical set, but to support discussion about what other
questions would be helpful to ask.

Context
Who is having the conversation?
Where are they having it?
Why are they having it?
What language are they speaking?

Turns and temporality
How is speaking sequenced?

Do speakers take turns, or say things that come into their head?
How do the speakers know when it’s their turn to talk?
How do speakers signal to others that now would be a good time for them to join in?
Can speakers interrupt each other? If speakers end up talking on top of each other, what

happens?

How is the pace controlled?
How do speakers and listeners negotiate the speed of the conversation? What signals are there

for speed up / slow down?
Who waits for whom in the conversations?

Meaning-making
Which parties of the conversation understand what aspects of the conversation?
How do they come to have that understanding?
Which words do they share a common understanding of?

Tolerance, breakdown & repair
How precise does the description of the elements need to be for the conversation to continue?
How much ambiguity can be absorbed and the conversation continue?
How do breakdowns and divergences in the understanding of the participants become apparent?
When these breakdowns do occur, what happens next?
What happens when conversations can’t be repaired?

Explicability
Who in the conversation can ask for more information? How do they do it?
Who in the conversation can provide more information? What kind of information can they provide?

Side-channels & deixis
What other channels of information transfer exist outside the words being said?
How much are people aware of their communication in these channels? How much can they control
them (e.g. intentional actions such as nodding, vs physiological ones such as pupil dilation)
Is this information used primarily for substance or for meta-properties of the conversation?
Is there any way outside the conversation of directing the focus of attention within the conversation?

PPIG 2021 www.ppig.org

https://paperpile.com/c/TianGa/nVvg
https://paperpile.com/c/TianGa/nVvg

