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Abstract
Background: The socio-technical characteristic of software engineering is acknowledged by many,
while the technical side still dominates research. As software engineering is a human-intensive activity,
the cognitive side of software engineering needs more exploration when trying to improve its efficiency.

Aim: The aim of this study is to increase the understanding of the impact of cognitive load in software
engineering. Our ultimate goal is to theorize the knowledge and thereby reveal opportunities to make
software engineering more efficient for companies and compelling for the developers to engage in.

Method: We synthesize knowledge, using a grounded theory approach, from our empirical observations
and literature on cognitive load in software engineering, using cognitive load theory as a stepping stone
and theoretical filter.

Results: We present a grounded theory of cognitive load in software engineering, emerging from the
analysis, which classifies cognitive load drivers into eight perspectives – task, environment, information,
tool, communication, interruption, structure and temporal – each of which is further detailed.

Conclusion: We intend to use this theory as a starting point for further generation of theory to be used
in the design of software engineering tools, methods and organizational structures to improve efficiency
and developer satisfaction by reducing the cognitive load.

1. Introduction
Software engineering is a socio-technical endeavour (Bertelsen, 1997), where the technical side of the
phenomena seems to be more studied than the social side (Lenberg, Feldt, & Wallgren, 2015). There
has been a thread of research with a social focus (Storey, Ernst, Williams, & Kalliamvakou, 2020),
and software engineering is acknowledged as an interdisciplinary field (Méndez Fernández & Passoth,
2019) although the mainstream research still seems to be technology focused, with the social and human
aspects considered as the context, at best. Program comprehension research is an exception, integrat-
ing cognitive and technical aspects on equal terms (Siegmund, 2016). However, we propose cognitive
aspects to be addressed in the broader scope of software engineering as well.

Software engineering always has been (Naur & Randell, 1969), and still is, concerned with efficiency
and productivity. However, the constantly growing size and complexity of software systems and de-
velopment projects, puts increasing pressure on organizations to be efficient in their development and
maintenance of software products and services. Research on productivity is typically devoted to spe-
cific SE activities, as observed by Duarte’s recent literature review (2019). However, the human and
cognitive aspects begin to appear more broadly, for example, in Sadowski and Zimmermann’s collection
on ’Rethinking Productivity in Software Engineering’ (2019). Cognitive aspects discussed are primar-
ily related to interruptions in the work environment, although cognitive load and psychological distress
are presented as types of waste by Sedano, Ralph, and Péraire (2017, 2019). In addition to negatively
impacting productivity, these aspects also influence the working conditions for software engineers, im-
pacting on their cognitive sustainability.

We studied cognitive load drivers (i.e. causes or sources of cognitive load) in an industrial case
study (Helgesson, Engström, Runeson, & Bjarnason, 2019), rendering an initial taxonomy consisting
of tools, information, and work & process type of factors, inducing cognitive load in software engineer-
ing. Secondly, we studied cognitive load drivers from novices’ point of view, using grounded theory
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ethnography, pointing us to version control, branching and merge operations adding to the cognitive
load of developers (Helgesson, Appelquist, & Runeson, 2021). To advance this line of research, we
here survey software engineering literature and use a grounded theory approach to synthesize existing
knowledge into a generated theory of cognitive load in software engineering. We use cognitive load
theory (CLT) by Sweller et al. (1994; 1998) as a stepping stone into the analysis, and also survey its
impact in software engineering research. The outcome is a grounded theory, Perspectives, which pro-
vides abstractions for reasoning on cognitive load drivers in software engineering on which we will base
further theory generation and design work for solutions.

The remainder of this paper is structured as follows: Section 2 presents CLT, critique on CLT and use of
cognitive load theory in software engineering research. Section 3 presents methodology and describes
grounded theory, research goals, data collection, analysis and literature review. Section 4 presents the
findings from literature review. Section 5 presents a discussion of the constructs of CLT and synthesis
of our findings. Section 6 presents emerging sensitizing concepts and future research, while Section 7
presents a reflection on validity and generalisation issues. Section 8 concludes the paper.

2. Background
It has since Miller’s seminal paper ’The magic number seven plus/minus two’ (1956) been generally
accepted that the human working memory is finite and limited. As the human bandwidth for information
processing is limited, it is a trivial argument that reducing unnecessary cognitive load in knowledge
based activities (in all likelihood) will free up cognitive resources.

Being a knowledge (and cognitively) intensive activity, cognitive load is a phenomenon that is present
in most, if not all, software engineering dimensions (Sedano et al., 2017). In an initial explorative
case study (Helgesson et al., 2019) we set out to explore cognitive load from a practitioner point of
view, while charting relevant theory from the scientific field of cognition usable for further exploration
and description of cognitive load and chart what dimensions of cognition have been have historically
been used in the context of software engineering. The study provided us with a first classification of
the cognitive load drivers (Helgesson et al., 2019) experienced by the practitioners we interviewed.
This initial classification of cognitive load drivers gravitated around three main clusters, namely tools,
information and organisation.

We noted that program comprehension (Siegmund, 2016) is one dimension of software engineering
where cognition has been thoroughly used. Further we noted that cognitive load is a phenomenon
that, to some extent, have been explored in other software engineering contexts, but commonly from
the perspective of attempting to measure cognitive load (Gonçales, Farias, da Silva, & Fessler, 2019).
Further, the exploration of cognition pointed us towards two cognitive directions to further investigate
and describe cognitive load, distributed cognition (Hutchins, 1995) (Hollan, Hutchins, & Kirsh, 2000)
and cognitive load theory (Sweller & Chandler, 1994) (Sweller et al., 1998).

Following our first explorative case study, we conducted a larger comparative case study (Helgesson et
al., 2021) studying cognitive load drivers from the novice point of view by means of grounded theory
ethnography (Charmaz, 2014) (Charmaz & Mitchell, 2001), using distributed cognition as theoretical
filter. The observed phenomenon we chose to pursue and explain was version control and merge opera-
tions which, to our surprise, (systematically) was the largest cause of concern for all of the ten–person
teams we observed.

2.1. Cognitive load theory
In cognitive load theory (CLT), Sweller et al. have explored cognitive load from a learning perspec-
tive (Sweller & Chandler, 1994) (Sweller et al., 1998), when learning complex tasks. Paas, Renkl,
and Sweller (2004) state that: “It is generally accepted that performance degrades at the cognitive load
extremes of either excessively low load (under-load) or excessively high load (overload)” and that “learn-
ing situations with an extremely high load will benefit from practice conditions that reduce load to more
manageable levels”.
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In CLT cognitive load components are classified as intrinsic (i.e. related to the cognitive task), extrane-
ous (i.e. the way information is presented to the subject) or germane (i.e. the cognitive cost of learning
from the observation/problem solving) (Sweller & Chandler, 1994) (Hollender, Hofmann, Deneke, &
Schmitz, 2010) (Sedano et al., 2017). CLT is based on the model of working memory provided by
Baddeley (1976, 1992), assuming that information processing and storing are two separate, yet inter-
dependent processes. A central tenet in CLT is the assumption, analogously to Miller (1956), that the
capacity of the human working memory is not only finite but also limited and further, that information
processing, storage and retrieval will use parts of these finite resource (Debue & van de Leemput, 2014).

While CLT serves as a stepping stone in the process of understanding the fundamental traits of cognitive
load, it should be noted that it developed in a learning context rather than problem solving-, or task
solving perspectives in general. A SLR (Snyder, 2019) (n=65) describing the similarities and differences
between CLT and Human Computer Interaction (HCI) was executed by Hollender et al. (2010), and it
provides a thorough description and explanation of the fundamental phenomena associated to CLT (e.g.
germane load, intrinsic load, extraneous load, worked example effect, split-attention effect, modality
effect and redundancy effect) as well as a comparison between CLT and HCI.

2.2. Critique on CLT
Hollender et al. (2010) further highlight relevant criticism of CLT, namely that the principal components
of cognitive load intrinsic, extraneous and germane cognitive load to some extent “belong to different
ontologies” and simply are not additive (intrinsic load refers to the complexity of the task and germane
load to the process of creating knowledge per se) as pointed out by de Jong (2010). The critique has
been elaborated by Moreno (2010). Debue and van de Leemput (2014) provide a further discussion on
the critique of cognitive load theory.

From our vantage point the critique by de Jong and Moreno, respectively, appears quite valid. Germane
load differs considerably from task intrinsic and extraneous load (it does however present an important
perspective on cognitive load in software engineering). Further, the different principal components of
cognitive load are possibly (or probably) not additive – but we argue that they are closely enough related
and that they arguably drain cognitive resources regardless of their relation.

This is the very reason why we propose our theory of cognitive load in software engineering. We argue
that our current direction, and key assumption, is valid, since it is possible to identify cognitive load
drivers regardless of their nature in terms of being additive, they are for all points and purposes commu-
nicating vessels drawing from the same finite and limited resource (the human working mind/memory).

2.3. Use of CLT in Software Engineering Research
Cognitive load, as phenomenon, has to some extent been studied in software engineering contexts.
Gonçales et al. (2019) list 33 studies in a systematic mapping study and conclude that the phenomenon
appears mostly to be studied from a measurement perspective, i.e., measuring cognitive load using eye-
tracking and other biometric/psychophysiological sensors (e.g. Fritz and Müller (2016)). Program com-
prehension is one dimension of software engineering where cognitive load has been studied (Siegmund,
2016).

In their paper on software development waste, Sedano et al. (2017) describe a constructivist grounded
theory study at a case company over two years, resulting in a taxonomy of software waste. While not
specifically looking at cognitive load, one of the entities in the resulting taxonomy is derived from CLT,
namely extraneous cognitive load, consisting of overcomplicated stories, ineffective tooling, technical
debt and multitasking. Further they added psychological distress, waiting/multitasking and ineffective
communication as entities in their taxonomy of waste.

Section 4 presents the findings from our literature review on use of CLT in Software Engineering, indi-
cating that the impact of CLT in SE has thus far been small.
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3. Method
3.1. Grounded theory
In this study we conduct a qualitative synthesis of two grounded theory studies and extant literature
towards theory generation. While the use of qualitative synthesis is not mainstream in the Software
Engineering research community, the use of qualitative syntheisis in SE has been studied by Cruzes and
Dybå (2011b) on research synthesis, and the same authors have since published guidelines for synthetical
research activities (Cruzes & Dybå, 2011a). The authors list 13 different methods including grounded
theory (Stol, Ralph, & Fitzgerald, 2016).

Grounded theory (GT) (Glaser & Strauss, 1967) originated in the mid sixties as a qualitative reaction to
the positivistic and quantitative research paradigms at the time dominant in the social sciences (Charmaz,
2014). It has since gained considerable traction in many fields outside of social sciences, and diverged
into three main currents (Charmaz, 2014) (Stol et al., 2016).

Inherently inductive (Charmaz, 2014), or abductive (Martin, 2019), and iterative (Charmaz, 2014), the
main purpose of GT is to allow for generation of ’theory’. While we have not yet reached a fully mature,
substansive, theory we still see our contribution as more than a conceptual model, i.e. a theory (Abend,
2008).

One aspect of grounded theory that has been thoroughly discussed is that of the role of literature. It
its original form the the GT manifesto (Glaser & Strauss, 1967) has been interpreted as no literature
should be consulted prior to the analysis (Charmaz, 2014) (Martin, 2019). Yet Glaser himself states
that: “...reading and use of literature is not forsaken in the beginning of a grounded theory project. It is
vital to be reading and studying from the outset of the research, but in unrelated fields” (Glaser, 1992, p.
35).

In the last few years numerous texts on the use of literature and abductive reasoning in the grounded
theory studies has been published (e.g. (Thornberg & Dunne, 2019) (Martin, 2019) (Bryant & Charmaz,
2019) (Tavory & Timmermans, 2019) (Gorra, 2019)) indicating that while there is a will within the
grounded theory research community to further extend the role of literature in grounded theory research.
Reflecting on the above and the original GT dictum stating that “all is data” (Stol et al., 2016) (and that
“the word data seems to mean whatever Glaser or Strauss arbitrarily choose it to mean” (Alvesson &
Sköldberg, 2018)) we do not really see an issue with fusing empirical data with literature. Further (Dey,
1993) stresses: “In short, there is a difference between an open mind and an empty head. To analyse
data we need to use accumulated data, not dispense with it. The issue is not whether to use existing
knowledge, but how.”

We take a pragmatic postpositivist (Robson, 2002) epistemological position in this paper. Our aim is
to provide a grounded theory for reasoning on cognitive load in software engineering, using abductive
reasoning on literature and data, and our ambition is to provide knowledge for software engineering
research community and practitioners. We use grounded theory as a method, not an epistemological
position – our take is that the epistemological position should reflect the nature of phenomenon under
study, not the other way around.

3.2. Research goals
Central to Glasers as well as Charmaz grounded theory versions is that the final research questions are
not defined up front at the beginning of the research project. In the first case, Glaser suggests that the
researcher should start with area of interest (Glaser, 1992) (Stol et al., 2016), while Charmaz suggests
that the researcher should start with initial research questions that evolve through the study (Charmaz,
2014) (Stol et al., 2016).

In this study our research goal is to fuse the observations made in two previous case studies by means of
abductive reasoning on data and extant literature. Our research goal is twofold:

PPIG 2021 www.ppig.org



A) To generate and present a grounded theory for reasoning on cognitive load in a software engineer-
ing context from abductive synthesis of empirical data and literature using cognitive load theory
as a theoretical lens; and secondly

B) To explore cognitive load theory, and its use in the software engineering research community.

3.3. Data collection
Study I (SI) – In the first case study (Helgesson et al., 2019), we set out to document the experience
and consequence of cognitive load of professional software developers at a large (1000+ developers),
international software development organisation in the telecom and mobile device sector. The study
consisted of 5 semistructured interviews, that was analysed using thematic analysis (Braun & Clarke,
2006).

The design of this study was not formulated as GT, but as an explorative case study (Runeson, Höst,
Rainer, & Regnell, 2012). While not positioned as GT it did contain a considerable degree of GT
practices: it was explorative, it used initial research goals rather than preformulated research questions,
it featured iterative data collection and analysis, as well as open coding and we returned to the field for
additional data after the first round of analysis in order to achieve some triangulation.

The result of the first study was an initial classification of the cognitive load drivers we encountered dur-
ing the analysis. From a grounded theory perspective this initial classification would, largely, correspond
to sensitizing concepts (Charmaz, 2014).

Study II (SII) – In the second case study (Helgesson et al., 2021), we set out to chart cognitive
load drivers from a novice point of view using grounded theory ethnography (Charmaz & Mitchell,
2001) (Charmaz, 2014). The case we investigated by observation, was four different ten–person teams
of sophomore computer engineering students, working together for a semester (one full day each week)
as an agile development team developing a software system. The data we collected consisted of weekly
individual reports written by the students, a weekly questionnaire to each student, field notes, focus
groups, field experiments and three short follow up interviews to allow for an increase in saturation
following the first round of open coding.

This study was specifically designed as grounded theory ethnography, and largely adhered to the guide-
lines provided by Charmaz (Charmaz, 2014), in terms of data collection and analysis. The study used
Distributed Cognition as theoretical lens, compared four different teams and we went through stages of
open, focused and theoretical coding (Charmaz, 2014), using memos/memoing (Glaser, 1978) as main
means of analysis.

The result of the second study was a theoretical explanation of the largest cognitive load driver, or
phenomenon, that we observed; namely that version control and merge operations was the largest cause
of concern for all the teams studied. However, the rich data we collected contained more observations
and findings than what we could use in the following theory generation.

3.4. Analysis
This paper originated as a memo describing sensitizing concepts (Charmaz, 2014) in regards to cognitive
load in software engineering and CLT. Open, focused and theoretical coding of the result of the previous
two studies (SI, SII) and the findings of Sedano et al. (2017) was done by the first author alternating
between post-it stickers on whiteboards and memos.

Following the thoughts on abductive reasoning, presented by Martin (2019) the findings were processed
in memo form. It could be described as memo-iterative and memo-exploratory, firstly using open and
later focused and theoretical coding.
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4. Literature review on Cognitive Load Theory in a general Software Engineering con-
text

In order to chart the impact of cognitive load theory in software engineering research community we
performed a limited literature study.

We based our literature search strategy on that of Hollender et al. (2010), as used to chart CLT in
HCI. They limited their search to querying ACM only and let the results serve as a proxy, rather than
completing an exhaustive search. We queried the ACM Fulltext library and IEEE respectively with the
queries:

ACM "Cognitive Load Theory" AND Sweller AND (Software AND
(Development OR Engineering))

IEEE "Full Text & Metadata":"cognitive load theory" AND ("Full
Text & Metadata":"Software Development" OR "Full Text &
Metadata":"Software Engineering")

We had to omit ‘Sweller’ from the search string for IEEE on account of issues with indexing of reference
section (e.g. Sedano et al. (2017) does not show up when ’Sweller’ is included as part of the query, as it
only references Sweller, the name is not mentioned in the actual article), and later filter out and remove
papers that contain no reference of Sweller.

We decided to use the past five years (i.e. 2015–2020) as a timeframe. Book sections excluded, we found
22 papers in ACM and another 65 papers in IEEE matching the queries. We further manually excluded
papers regarding teaching or education, short papers, posters and papers related to general HCI, and
ended up with an aggregated result of 11 relevant papers. The first author initially defined the first set of
papers for exclusion, and marginal papers were reexamined by the first and second author collectively.

We only found one relevant study of cognitive load in a general software engineering context using
cognitive load theory, namely Sedano et al. who conducted a long term grounded theory study at a case
company (Sedano et al., 2017), resulting in a taxonomy of software waste. One of the clusters found
was extraneous cognitive load. Their findings are in line with what we have found in previous studies
(SI), (SII).

Further, Krancher and Dibbern (2015) present a multiple case study investigating the importance of
knowledge in software maintenance outsourcing.

4.1. Measuring cognitive load
The largest cluster of papers we found gravitated around measurements of cognitive load.

Gonçales et al. (2019) conducted a systematic mapping study specifically addressing measuring the
cognitive load of software developers. The authors found 33 papers, and provide a classification of the
articles found. We note a certain overlap with the papers we found, e.g. Müller and Fritz (2016) and
Crk, Kluthe, and Stefik (2016). This mapping study has since we executed the literature review been
extensively extended (Gonçales, Farias, & da Silva, 2021). Fritz & Müller present two papers; on the
use of sensor driven ’biometrics’ to boost software developer productivity (Fritz & Müller, 2016) and a
case study aimed at predicting code quality online using various sensors (Müller & Fritz, 2016). Karras,
Risch, and Schneider (2018) used eye-tracking to study the impact of different linking variants of use
cases and associated requirements on reading behaviour. Crk et al. (2016) present an empirical study in
which programming expertise is explored using brain wave changes (EEG).

4.2. Improving software development
We found two papers related to improvement of software engineering activities. Henley and Fleming
(2016) present at tool for improving code change support in visual dataflow programming environments
while Moseler, Wolz, and Diehl (2020) present a prototype tool for visualising debugging scenarios.
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Table 1 – Cognitive load perspectives grouped by cognitive load theory components and association
to data set

CLT component Perspective SI SII Sedano
Intrinsic cognitive load Task x x x
Germane cognitive load Environmental x x x
Extraneous cognitive load Information x x x

Tool x x x
Communication x x x
Structural x x x
Interruption x x x
Temporal x x

4.3. Bordering on software engineering
Bordering on software engineering, Kelleher and Hnin (2019) describe an approach to predict the cog-
nitive load of code puzzles. In addition we found a proposed model for API learning by Kelleher
and Ichinco (2019), and an explorative analysis of the notational characteristics of decision models by
Dangarska, Figl, and Mendling (2016).

4.4. Summary of literature review
In summary we find the cognitive load, as such, is a known phenomenon in software engineering and
that it has been found to be explored and evaluated using metrics and sensors. We further find that CLT
has not had a thorough impact on the software engineering community, but that Sedano et al. (2017)
specifically use CLT and extraneous cognitive load in their classification of software waste.

5. Perspectives – Result
In this section we discuss the constructs of CLT and synthesise our findings from our previous work (SI,
SII) and that of Sedano et al. (2017) in order to generate a grounded theory for reasoning on cognitive
load in the work environment of software engineers.

We present eight (8) different Perspectives (i.e. Task, Environmental, Structural, Information, Tool,
Communication, Interruption and Temporal) on cognitive load in software engineering. These perspec-
tives consist of categories of cognitive load drivers (Helgesson et al., 2019) and our intention is to
raise the abstraction level when reasoning on cognitive load and cognitive load drivers. See Table 1 for
an overview of the perspectives and how they are derived from field studies and their relation to CLT
components.

We refer to them as perspectives, since they are not distinct aspects of cognitive load, but rather a
set of lenses through which we observe and analyse the phenomenon of cognitive load in software
engineering activities. From the analysis, six implications for design of software engineering tools and
practice, emerge as sensitizing concepts (Charmaz, 2014) (marked [SC1–6]). They are further described
in Section 6.

5.1. Reflection on cognitive load and cognitive load theory
As stated in Section 2, in CLT three different components of cognitive load are suggested – Intrin-
sic, Extraneous and Germane. The intrinsic load is defined as the load of the cognitive task to be
solved, the extraneous load as the cognitive load resulting from task presentation or environment, and
the germane load refers to the cognitive resources used for learning or internalising schemas for prob-
lem solving (Debue & van de Leemput, 2014) (Hollender et al., 2010). In their critique on CLT, de Jong
(2010) and Moreno (2010), respectively point out the principal components of CLT belong to “different
ontologies”. We would like to point out that in our observations the nature of cognitive load is often
overlapping, depending on what perspective the observer choses as a lens [SC1].
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5.2. Intrinsic cognitive load
Sedano et al. (2017) aptly highlight that many (if not most) software development activities are cogni-
tively intensive, i.e. that these activities consist of tasks that have a relatively high intrinsic cognitive task
load. They suggest overcomplicated stories as one of their identified sources, or drivers, of extraneous
cognitive load. We suggest analysing an overcomplicated story serves as one example of a task that
should be reduced in complexity in order to reduce the cognitive load of the individual developer.

In our empirical data we have in several instances observed that the cognitive task it self (or, the actual
design of the task can be a cognitive load driver of considerable magnitude. For instance in the absence
of automation we see engineers performing tedious manual tasks that, ideally, should be automated (SI).
We also noted that users had to fill out very intricate and detailed sheets of information when reporting
issues, supplying information that was no longer used by anyone (SI).

Further we observe that if a task is closely associated to the use of a tool, the distinction between the
task intrinsic cognitive load and the extraneous, external, cognitive load induced on the user by the tool
becomes difficult, if not impossible, to pinpoint (SII). From a software engineering perspective, which
refers more to solving problems and completing tasks rather than learning per se, it seems that the design
of the task it self is an essential perspective of cognitive load.

The rationale for allowing task as a cognitive load driver, or perspective is that tasks themselves can in-
duce cognitive load if they are designed wrong, overly complex or if they depend on engineers spending
mental effort on tedious chores that could/should be automated [SC2].

We thus continue our reflection on CLT by suggesting a:

5.2.1. Task perspective
A task centric perspective of cognitive load in software engineering is warranted by the cognitively
intensive nature of software engineering. We conlude that task/-s too complex as observed by Sedano et
al. (2017) present one important aspect of cognitive load in software engineering. Further we note that
some tool related tasks need additional user support (SI, SII), and claim that the higher the cognitive
load in the task the higher the reward in easening of the cognitive load situation of the engineer. We
conclude by observing that task needing automatization (SI) and unnecessary tasks – waste (SI), e.g.
filling out unnecessary forms or manually moving data from one tool to another, present one dimension
of cognitive load that we consider a distinct waste in software engineering.

5.3. Germane cognitive load
As described in Section 2 the germane cognitive load in CLT refers to the cognitive resources and
processes devoted to acquisition, retention and automation of schemata for the task at hand (Debue &
van de Leemput, 2014) – i.e. the cognitive cost of learning, and the distinction between intrinsic and
germane load is debated. While not drilling too far into the ontological issues of cognitive load theory,
we note that the discussions on the matters presents an additional possible perspective of cognitive
load drivers in software engineering – namely a general cognitive perspective. We know from seminal
schemata theory that novices and experts often display vastly different strategies while solving identical
problems (Chi, Glaser, & Rees, 1981) (Chi, Glaser, & Farr, 2014). Similarly novices and expert have
different needs in terms of cognitive support in digital tools (Moody, 2009) (Vessey, 1991) (Vessey &
Galletta, 1991), and we have analogously observed that novices have different needs in terms of support
from the software development environment compared to experienced developers (SII).

Further, we can observe that learning something does have a cognitive cost. While this can be trivially
observed, it has an interesting consequence. If the internalisation of a problem (or task) solving schema
comes at a cognitive cost, what happens when something has to be relearned (e.g. when a new tool,
IDE, operating system or programming language is introduced). Consider a schemata for solving a
specific task or problem that has been internalised to the point of automation. What happens when
a new similar, yet different, schemata must internalised? This activity in all likelihood comes with a
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cognitive cost. Further, in the situation where several competing schemata have been internalised this
will in all likelihood be even worse.

In our first case study (SI), we noted that one of the interview subjects described the migration from one
issue management system to another as troublesome, on account of the new system not matching his
mental model of how the system operated. In our second case study (SII) we found that a large portion
of the subject described the complexity and intricacies of GIT as a cause of negative stress. Analogously
Sedano et al. (2017) noted noted psychological distress as a specific type of software waste.

Further, in (SII) we noted that several students described their experience of working for an entire day in
a computer lab as draining on account of various reasons. We noted students stating themselves as being
introvert and found being in close proximity of other people (e.g. through pair programming) as very
draining, and we further noted students stating that they did not understand how it would be possible to
work under these conditions for a normal 40 hour work week, on account of noise, light, interruptions
and lack of oxygen.

These sources of cognitive load in a work setting are in line with the findings of a case study by Sykes
(2011) on interruptions in the work place. The author highlights the importance of the physical work-
place environment and sound levels in the working areas. Further Sykes note that the while the use of
headphones augments blocking out office noises, it is essentially a “band-aid solution to the root prob-
lem”. Further, Kirsh (2000) has described the consequences of cognitive overload in a general workplace
setting [SC3].

We do not really see that these dimensions of cognitive load as possible to map to either of the two main
constructs of CLT, intrinsic and extraneous. None the less, we find them too important not to mention in
this context. As a result we propose an environmental perspective of cognitive load drivers in Software
Engineering, analogous to germane cognitive load.

5.3.1. Environmental perspective
An environmental centric perspective of cognitive load in software engineering consists of cognitive
ergonomic factors, ergonomic factors and psychological factors. While these constructs, to some extent
are overlapping, we still note them as highly relevant when analysing the cognitive work environment
and the cognitive load situation of software engineers.

5.4. Extraneous cognitive load
In CLT the component of extraneous load refers to the cognitive load resulting from task presentation or
environment (Sedano et al., 2017). Given that the human bandwidth for cognitive load is limited (Miller,
1956), an increase in extraneous cognitive load will reduce the amount of cognitive bandwidth available
for task solving (intrinsic task load) and for the cognitive processes of learning (or problem solving).

In their report on a grounded theory case study on software development waste Sedano et al. (2017) state
that: a) since many software development activities have a high intrinsic cognitive load, and b) the mental
capacity of the individual developer is a limited resource, and that they, as a consequence, see extraneous
cognitive load as waste. They further use extraneous cognitive load as a catch all element in their waste
taxonomy, containing technical debt, inefficient tooling, waiting/multitasking, inefficient development
flow and poorly organised code. Further, Sedano et al. also identify inefficient communication and
psychological distress as two different types of waste in software development outside of Extraneous
Cognitive Load.

We are in complete agreement on the importance of reducing extraneous cognitive load on the individual
developer, and that developers spending mental effort on managing inefficient tools is definitely to be
considered waste. In our first explorative study (SI) of cognitive load in software engineering we noted
a structural perspective of cognitive load drivers associated to work, process & organisation. Further,
we found cognitive load drivers clustered around information and tools.
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5.4.1. Structural perspective
A structurally oriented perspective on cognitive load in software engineering, as we see it, consists
of organisational legacy, structure and processes. Sedano et al. (2017) present technical debt, poorly
organised code and inefficient development flow as examples of extraneous cognitive load. We have
observed similar findings from a developer point of view in large software organisation (SI, SII): ad hoc
implementation of process, ad hoc implementation of information structure, ad hoc implementation of
tooling and lack of understanding of organisation.

5.4.2. Information perspective
An information centric perspective on cognitive load in software engineering reflects on the nature of
Information and its consequences for the individual developer. Sedano et al. (2017) present ineffec-
tive communication as one specific type of software development waste, but we choose to distinguish
between information and communication in our theory – in an information centric perspective the phe-
nomena under study are associated to the nature of the construct ’information’; in a communication
centric perspective the phenomena under study are associated to ’communication and distribution’ of
information. In our first study (SI) we noted two different aspects of information relevant, integrity of
information (i.e. the reliability and completeness of information) and the organisation of information
(where to find information and knowing where to distribute information to). We have also noted that the
way information is structured and presented can be a cause of cognitive load (overview and details). The
observations in (SI) were largely validated by observation in SII.

We note that software engineering activities are information centric. The revolve around information
that can be classified into two groups: essential information and meta information. The former equates
source code, the latter information about source codes (e.g. bug reports, requirements, specifications,
use cases etc.). This can aslo be viewed as essential instructions (i.e. source code) and meta instructions
(i.e. instructions on how to create/transform/synthezise source code) [SC4].

5.4.3. Tool perspective
Since most, if not all, software development relies on tools and toolchains we consider a tool centric
perspective of Cognitive Load in software engineering as being merited. Outside of IDEs, source code
editors and compilers, developers also use version control tools, merge tools, test tools etc.. This is
fully inline with our observations in SII and as a consequence, we find the tool centric perspective quite
important.

Sedano et al. (2017) simply state that inefficient tools and problematic APIs, libraries and frameworks
are an observed cause of cognitive load. We have observed (SI, SII) that cognitive load is induced on
the developers by tools in several different ways. Lack of needed functionality forces the developer to
waste effort when forced to manually do something that the tool does not support, or as we noted in
our first study where missing search functionality prevented users to find older, closed, defect reports in
an issue management system. In that specific case our informant saved all notification emails from the
issue management system, and used that as his searchable system, using the email client. This overlap
with the temporal perspective serves as an example on how different the drivers of cognitive load can
appear depending on what perspective one takes.

We also noted that the stability, and reliability, of tools were important in terms of cognitive load. Being
able to revert user errors (e.g. Git) is important and so is understanding and trusting the result of an
automatic merge operation (SII). Further, we have noted that developers get frustrated when a tool
crashes and all work is lost (SI). Our main example draws on an issue management system in which the
developers were forced to fill out several forms that were quite complex, required considerable amounts
of irrelevant data and were somewhat unstable – leading the developers to lose all the data that they had
entered and forcing them to redo the entire operation. Stability and reliability also includes downtime,
that is a system that is unavailable; as well as lag where the tool freezes up momentarily resulting in a
loss of focus on the user.
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We further have noted interaction issues in relation to tools as a significant contributor to cognitive load
for software development. In our first study (SI) we noted that unintuitive and cumbersome interaction of
a tool and lack of integration of tools was a concern for developers. We further noted that inconsistencies
between different aspects of a tool or between two different tools were considerable load drivers. These
findings were largely validated by our second study (SII).

In conclusion, a tool centric perspective on cognitive load in software engineering gravitates around
tools lacking functionality; the fitness to purpose of the tool as well as unintuitive, cumbersome and
inconsistent user interaction. It further includes lack of integration between different tools and involves
the reliability as well as stability of the tools.

5.4.4. Communication perspective
A communication centric perspective of cognitive load in software engineering is derived equally from
(SII) and the findings of Sedano et al. The phenomena under study are associated to the process of
distributing information rather than to the nature of information itself. Sedano et al. (2017) propose
inefficient communication as one specific type of waste in software development, describing it as ’the
cost of incomplete, incorrect, misleading, inefficient or absent communication’.

While we did not specifically explore communication as a cognitive load driver in our first study (SI),
there were appearances of phenomena related to communication. We noted these issues as aspects
as related to information distribution. Our second study (SII) largely validated communication as a
significant cause of cognitive load of the developers.

We noted issues on the individual level, in knowing whom to communicate with, from an information
retrieval perspective (i.e. whom to ask/where to look) as well as from an information distribution per-
spective (i.e. whom to inform/where to store). We further observed issues on group level analogous
to the observations, e.g. absent communication leading to team members misunderstanding each other
or actual waste when multiple of developers are working on the same issue without knowing about it
because of absent stand/up meetings, or simply in inefficient meetings.

5.4.5. Interruption (& multitasking) perspective
An interruption (and multitasking) centric perspective of cognitive load in software engineering is mer-
ited on account of the social nature of the endavour. Interruptions and multitasking is an integral part of
modern software engineering (Brumby, Janssen, & Mark, 2019). Sedano et al. (2017) noted unnecessary
context switching as one aspect of extraneous cognitive load, while presenting waiting/multitasking as
another type of waste in software engineering, outside of extraneous cognitive load. We noted indica-
tions of interruptions as a cognitive load driver in our first study (SI), mostly attributed to tool stability.
In our second study (SII) we noted interruptions as a consequence of the developers shifting pairs, and
describing effect of the task switching as a loss of flow.

Sykes (2011) reports on interruptions in software engineering in a case study, presenting findings that
indicate interruptions to be a significant cognitive load driver: “Aggregated data extrapolated over a
typical 8-h work day translates into over 120 interruptions per day for Technical Lead/Senior Developers
and accounts for 5.7 h of time working on interruption tasks. This translates into over 71% of their daily
activity is spent on dealing with interruptions”.

Further, Sykes highlights that “there is a strong correlation between cognitive load and the cost of in-
terruption”, i.e. interruption of a task with high intrinsic cognitive task load will result in a longer
resumption lag. The obvious consequence of this is that people performing high cognitive activities,
such as software engineering/development tasks are likely to be significantly impacted by interruptions
and the overall productivity will decrease on account on the longer resumption lags. It is also highlighted
that interruptions drive stress, or “negative emotions, such as, irritation, or frustration”.

5.4.6. Temporal perspective
A time centric, or temporal, perspective of cognitive load in software engineering has, thus far, proven
quite elusive. While becoming a somewhat more tangible concept throughout the iterations of research

PPIG 2021 www.ppig.org



cycles a precise definition of what a temporal perspective of cognitive load is remains elusive [SC5].
However, revisiting the material from our first two studies we note a specific temporal perspective of
cognitive load. In our initial field study we noted temporal traceability as one aspect of cognitive load
associated to the Information cluster. We noted developers having issues with version control and trouble
finding closed error reports (i.e. events occurring in the past). Specifically, in one case the developer
utilised a folder in the email client to create a separate and searchable record of closed issues. Again we
note the overlap with previous perspectives.

In our second study we noted that version control and merge operations were the main source of cog-
nitive load in the four development teams we studied. Further we noted that the fundamental temporal
aspect of distributed cognition (Hollan et al., 2000), that cognitive processes can be distributed in time
so that earlier events “can transform the nature of later events” was clearly visible in the observations.
We further observed a number of cognitive load drivers associated to the temporal perspective, primarily
we observed the complexities presented by configuration management tools and branching strategies.
When looking at the reflection of Hollan et al. on history enriched objects it is hard not to see parallells
in version control and merge operations.

We also note that while most tasks in software engineering requires bridging of a cognitive gap (e.g.
the transformation of a requirement to a specification, or the transformation of a specification to source
code), the synthesis of a merge operation specifically bridges a temporal gap in the production of soft-
ware, in the sense that the components fo the merge operations (meta information and essential infor-
mation) was produced at an earlier stage, possibly by someone else [SC6].

We further noted a temporal aspect of understanding project situations in our observations. This is not
only about a momentary snapshot, but about cognitive processes distributed over time. The question
of project overview in a distributed agile project quickly becomes multidimensional, seeking to answer
who did what, when, where and why? – not unlike the concept of ba1, the heideggerian “space±time
nexus” described by Nonaka et al. (2000).

6. Sensitizing Concepts & Future Research
While working on memos for this manuscript we noted some sensitizing concepts (Charmaz, 2014)
from a design science perspective. Space limitations does not allow for an in depth reasoning, so they
are shortly described as senzitising concepts 1–6 below:

1. We observe that the concept of cognitive productivity represents the software development orga-
nization’s strive for productivity and efficiency, while cognitive sustainability addresses the devel-
opers’ wellbeing, which indirectly, of course, also affects the development organization. We wish
however not only to explore cognitive productivity, efficiency and amplification, we also want to
bring attention to cognitive sustainability.

2. We note that higher the intrinsic task load of a tool supported task, the more investment in user
support and training on the tool can be motivated.

3. Our observations of cognitive load induced by relearning leads to 1) considering design of con-
figurable tools to enable personal adaptation, and 2) questioning too frequent upgrading pace of
tools to reduce relearning load.

4. From the information centric perspective we note two kinds of information in software engineering
– essential information and meta information, while further observing a duality in the nature of
information – it can be described as either information or instructions.

1“Ba does not necessarily mean a physical space. The Japanese word ‘ba’ means not just a physical space, but a speciic
time and space. Ba is a time±space nexus, or as Heidegger expressed it, a locationality that simultaneously includes space and
time. It is a concept that unifies physical space such as an office space, virtual space such as e-mail, and mental space such as
shared ideals.”
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5. While we have only looked at the temporal perspective as the relation between the past and the
present thus far, it may also well extend into understanding, and predicting, the future, activities
that in all likelihood induce considerable cognitive load.

6. We noted that merge operations, a temporal synthesis of meta information (e.g. commit messages)
and multiple sources of essential information (i.e. two different versions of source code), seem to
to be harder than actual coding (production of essential information). Essentially we note that the a
task consisting of synthesis of essential information and meta information appears to have a higher
intrinsic cognitive task load than production of either meta- or essential information, provided
that the level of abstraction is comparable. To us this is an indication that, while the additional
cognitive user support should always be considered when designing software development tools,
it should definitely be further investigated specifically in relation to configuration management,
branching and merging.

Further exploration of these concepts will be part of future research in this research project, that will
also include:

• an in depth study of literature on cognitive perspective in regards to version control and merge
tools

• a study focused on benchmarking existing git integrations in a few a the existing IDEs

• design recommendations based on the consequences of cognitive load in software engineering

• in depth industrial case studies with the aim to further elicit cognitive load drivers in the industry

• further theory building towards a theoretical understanding of cognitive load as a software engi-
neering phenomenon

7. Validity & Generalisation issues
In this paper we present qualitative perspectives of cognitive load drivers in software engineering. These
perspectives are grounded in observations and literature. There are in all likelihood other factors affect-
ing the cognitive ergonomic situation of software engineers, but we focus on those we have observed.

GT studies are commonly evaluated based on the following criteria (Sedano et al., 2017) (Charmaz,
2014) (Stol et al., 2016):

Credibility: Is there enough data to merit claims of perspectives? This study relies on the data set from
two case studies and meta analysis of a third case study. The data set includes interviews, focus groups,
observations, written reflections and extant literature

Originality: Do the perspectives offer new insight? While cognitive load is not an unknown phe-
nomenon in software engineering, this is one of the first studies that utilise cognitive load theory for
analysis of cognitive load in software engineering. Consequently the result can offer novel observations
in regards to how to reason on cognitive load in software engineering.

Usefulness: Are the perspectives relevant for practitioners? This study identifies novel perspectives
on cognitive load in software engineering. If viewed as waste (Sedano et al., 2017), reduction of cog-
nitive load in software engineering can be seen as means to increase efficiency and productivity. If
viewed as cognitive work environment issues (Gulliksen, Lantz, Walldius, Sandblad, & Åborg, 2015),
their reduction would equal improving the cognitive sustainability and developer experience in software
engineering.

Resonance: Do the perspectives make sense to participants? This study identifies novel perspectives
on cognitive load in software engineering and they are peer reviewed in this paper. Further validation is
planned for in future work.
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In regards to our literature study – it is limited, and serves the purpose of acting as an indicator on the
magnitude of use of cognitive load theory in software engineering research.

In regards to external validity – grounded theory is a largely qualitative methodology, the findings are
not statistical, and can not be statically generalised. That being said, in study I we compared our findings
to a general taxonomy of cognitive ergonomics (Gulliksen et al., 2015); in this study we compare our
findings to those of Sedano et al. (2017) and we do not see our findings as very particular to the contexts
in which we have observed them.

8. Conclusion
As a response to the need for exploration of the social side of software engineering, we derived eight
cognitive load perspectives, based on grounded theory analysis of empirical observations of our own
in industry (SI), in complex novice settings (SII), and related literature (Sedano et al., 2017). The
perspectives are partially overlapping, but constitute still unique view on the cognitive load created in
software engineering. Further, we conclude that cognitive load is a known phenomenon in software
engineering literature, while cognitive load theory does not appear to have had any major impact.
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