
Neither Grasshopper nor Ant: learning from DIY coding and from
gaming [WIP]

Abstract

‘DIY’ coding for fun and gaming have more in common than seems to have been noticed, both
notationally (no abstractions, no juxtaposability, etc) and in the user experiences (challenge,
breakdowns, breakthroughs). We argue that some familiar claims about end-user programming, such
as a need for domain-specific languages, do not apply to DIY coding, and that lightweight optional
features such as ‘abstraction by accretion’ could help both DIY coders and gamers when the project
grew too big.

1. Introduction
You are baffled. You’ve tried all the obvious things and they didn’t work. What
about ... here’s another possibility ... Ah! Success! Suddenly you understand
how this bit works! – And now, on to the next challenge ...

Question: what were ’you’ doing? Surely that vignette could apply equally well to certain kinds of
gaming or to certain kinds of coding: games that present a series of obstacles to be surmounted, or to
‘design it yourself’ coding – small-scale end-user development. The user experiences of gaming –
challenges, breakdowns, mental absorption (‘flow’), and learning by breakthroughs – closely match
the authors’ experiences of using DIY tools. At present gaming and small-scale coding are regarded as
entirely different worlds analysed in very different ways, but if we are right, they are similar in many
ways. Which means that insights from one world should apply equally to the other world.

To code is to engage with an information artefact, and there has been a certain amount of exploration
of the properties of coding notations (such as programming languages and their relatives) and the
development environments. Playing a game where the player explores a world is also a form of
engagement with an information artefact, though less obviously so; the player has to discover the
choices, the pitfalls, the rewards etc, using a highly specialised interaction system. These can be
analysed using similar concepts, and we shall choose (surprise surprise) the cognitive dimensions
framework (Green 1989, Green and Church, in prep.).

Games are more conventionally approached via the user experience (UX), of course. Apart from the
anecdotal vignette above, Iacovides et al. (2014; 2015) have provided a detailed analysis of the
gaming experience that highlights how gameplay involves iterative cycles of breakdown and
breakthrough. The same analysis can be applied to coding. Thus, we can explore both coding and
gaming in terms of both notational analysis and UX analysis, our conjecture being that there will be a
substantial overlap, overlooked until now. In short, we wish to argue that the coder and the player
engage in very similar strategies, for similar reasons.

Ioanna Iacovides and T R G Green
Computer Science Dept

University of York
jo.iacovides@york.ac.uk : thosgreen@gmail.com

2. What kind of coding? What kind of games?
Of the many genres of coding, our focus is on small-scale, single person, coding by one person, not
necessarily as part of their job, small-scale, with little eye to the future, maybe doing it as much for
fun as for anything else: e.g. a frequent flyer might write some code for their smartphone to record
when the biggest shocks occurred during luggage transport on a long haul flight, not because they
really needed to know but for curiosity. Or someone might decide that although they could perfectly
well do <insert task here> by hand, it would be more entertaining to write a script, even though the
overall time might well be much longer. There is a spectrum between the person building a tool for no
other reason than because they need it, and the person who intrinsically enjoys the coding experience
and looks around for an excuse, like a home woodworker casting about for a suitable project. This is a
subgenre of ‘end-user programming’ or ‘end-user development’ that has received little attention in the
research literature. We shall refer to it [unless someone finds a better name] as ‘Develop It Yourself’
coding, or DIY, and especially ‘DIY for fun’.

There are also many different types of games. For the purposes of comparison, our focus is on single-
player digital games that individuals play for entertainment and leisure. These range from puzzle
games played on mobile phones, to larger open world PC games with multiple quests. From solving
the MC Esther inspired puzzles in Monument Valley, to exploring which potions will be most useful
to use when battling a specific monster in Witcher 3, these games include multiple challenges that
need to be overcome. In each case, the player is intrinsically motivated to play, and to learn how to do
better after they fail.

2. Notational aspects
Taking gaming first: in a typical role-playing game the player controls a ‘hero’ with some kind of
quest that has to be achieved by evading or fighting other characters, collecting some objects and
avoiding others, and finding a route through various locations to a goal. The control of a game is an
‘action language’, in the terminology of cognitive dimensions, since gaming uses a transient medium
rather than a persistent one like coding. In the cognitive dimensions framework we distinguish
between various broadbrush types of activity, and in this type of game the major type of activity might
be seen as searching (‘How do I get to the goal?’) or as exploratory understanding (‘How does this
game work?’): depending on whether the game-play feels more like mapping a space, or more like
trying to understand the internals of an obscure device like the Antikythera Mechanism (h"ps://
en.wikipedia.org/wiki/An3kythera_mechanism).

Now we turn to DIY-for-fun, three DIY systems in particular: the old Macintosh system ‘HyperCard’,
the very familiar spreadsheet, and Twine, an IDE for text adventure writers. These three are
sufficiently different to provide a representative sample, we hope, and all three have been very
successful in their own spheres. They have important features in common; some of those features one
might expect to be quite disadvantageous, so a rethinking is needed.

(1) The information (code instructions and data) is divided up among little cells. The contents of these
little cells can only be inspected by opening them, and only one can be opened at a time – which is
exactly like visiting one game location at a time to find out what’s there: no juxtaposition, in CDs
terms.

(2) The cells can only communicate via global variables (for HyperCard and Twine) or data-flow links
(in spreadsheets), and the IDEs do not offer any support to reveal which cells set or use what data.
This, too, parallels the game task, where one location might contain a squirrel and another might
contain the Famous Oak and the player has to have fed the squirrel before reaching where Famous
Oak grows, but there is nothing manifest to connect the two. In cognitive dimensions terms, these
systems generate hidden dependencies.

https://en.wikipedia.org/wiki/Antikythera_mechanism
https://en.wikipedia.org/wiki/Antikythera_mechanism

(3) Perhaps crucially, there are no abstractions. The three coding systems contain no arrays or lists or
other complex data structures, no parameters to functions, etc. There are therefore no aggregate
operations or definitions. For example, a simple calculator in HyperCard would include 10 buttons
labelled with the digits 0-9, and each individual button would have its own packet of code saying
something like this:

on mouseup
 get	the	short	name	of	me
 do something with that name
end mouseup

There is no way to declare that buttons 0-9 belong to a class of ‘digit buttons’, and that all digit
buttons have the same set of properties. Much the same was true of spreadsheets until recently –
certainly they achieved their grand success, in the days of VisiCalc and Lotus 1-2-3, without any such
abstractions: the contents of any cell, whether a value or a formula, had to be manipulated
individually rather than as a group of similar cells. It is also of true of Twine, in which the game world
is made up of locations (called ‘passages’), each containing its own individual bit of code, with no
class structure to group them by.

Exactly the same is true of the game-play. Each character, object and location is sui generis, of its own
kind and no other, and there is no way to interact with them in any way except individually; but one
could imagine games where the ‘hero’ could organise other characters into groups and locations into
suites, and recruit a group of elves to build a bridge over every river or search a suite of rooms. The
player would have to decide whether the cost of creating groupings was likely to pay off later in the
game; the cost would be a form of ‘attention investment’ (Blackwell 2002), and the need to make the
decision would be another example of premature commitment. Games and coding systems where the
player could create such groupings would be termed ‘abstraction-tolerant’ in the CDs framework, in
contrast to the existent abstraction-hating nature.

The lack of abstractions has many important consequences. Since the code must be repeated there are
opportunities for slips, and since the buttons, locations, cells etc are all individual, if the coder wishes
to change the code they have to make the same change many times rather than redefining a button
object. In the same way, if a player wishes to repeat the game-play (perhaps after have been ‘killed’
and needing to restart), each individual location and choice must be revisited. This is an error-prone
structure, and if the structure needs to be modified in the future it will require much work, ‘repetition
viscosity’ in CDs terms. But swings and roundabouts: the syntactic load for learners is markedly
reduced, and the start-up effort is minimal – the user can get straight on with the job in hand. With no
abstractions, premature commitment (being forced to make a choice before you’re ready to do so) is
non-existent, and any component can be added or edited at any time, perhaps put on one side to be
used later.

3. The user experience
As noted above, user experience of DIY coding is characterised by challenges, breakdowns, mental
absorption (‘flow’), and learning by breakthroughs. That is not how software engineers and
professional programmers proceed, but DIY coders are not software engineers and usually have no
relevant training – indeed, an interesting study by Blackwell and Morrison (2010) highlights many of
the differences, not just in training but in the work context of end-users and software engineers. For
the DIY coder, progress is far from smooth. Ko et al. (2004) identify barriers in “design, selection,
coordination, use, understanding, and information[of] any element of a programming system’s
language or accompanying libraries that can be used to achieve some behaviour.” These are the
barriers that lead to learning by breakthrough.

Nevertheless DIY coders appear to get intrinsic satisfaction from the process – or rather, some do:
Aghaee et al (2015) report evidence that identifiable and distinct motivational factors in end-user
programming are associated with particular psychometric personality traits.

Similarly, the game user experience can also be characterised by challenges, breakdowns, mental
absorption (‘flow’), and learning by breakthroughs. Building on the work of Sharples and colleagues
in evaluating mobile learning technologies (Sharples 2009; Vavoula & Sharples, 2009), Iacovides et al
(2015) illustrate how, players experience cycles of breakdown and breakthrough in an attempt to
overcome in-game challenges. Breakdowns and breakthroughs can occur in relation to action (e.g.
problems with the controls vs performing a new attack); understanding (e.g. not knowing what to do
next vs figuring out a solution a puzzle); and involvement (e.g. getting frustrated vs experiencing
satisfaction). Iacovides and colleagues (2015), in an in-depth analysis of a range of different games,
shows how minor breakdowns are a regular part of the gameplay experience, but when these are
overcome, via breakthroughs where the player has learnt how to improve, and particularly when
players feel responsible for their own progress, they lead to a sense of satisfaction that increases
overall enjoyment.

In related work, Iacovides et al (2014) also investigated the different strategies that players use to tray
and overcome breakdowns. These strategies include:

- Trial and error: where the player tries out an action to see what, if anything, may happen e.g.,
what happens if I jump on the moving platform?

- Experiment: here the player builds on previous knowledge to develop an informal hypothesis
and test it out in the game e.g., if I use this potion, it will increase charisma and make me
more likely to persuade an in-game character.

- Repetition: where the player tries the same action again e.g., practising an attack until you are
sure how it works.

- Take the hint: games often provide instructions or hints, in this case the player decides to do
what the game suggests e.g., pressing the action button to use the lift when a pop-up screen
tells you to do so.

- Stop & think: when a player decides to pause gameplay to consider what they are doing, or
even look up external resources for in-game help e.g., getting stuck and looking at a
walkthrough online to find out how to proceed.

Apart from perhaps repetition, these strategies seem remarkably similar to how users might engage in
DIY programming. In both cases an exploratory approach is adopted, trying out different actions to
see what works, adjusting actions based on the knowledge gained from doing and any in-system
guidance, even resorting to external help when more significant difficulties are encountered.

4. Reasons for success
Overlaps and correspondences between these two apparently dissimilar domains have now become
visible. The player of a typical game, seeking to understand the world and create a path to success, is
doing something akin to the activity of exploratory design that a DIY programmer engages in, despite
them interacting with rather different interfaces. In the process, they are able to overcome the
breakdowns they encounter and to learn via achieving breakthroughs in understanding. For both, the
satisfaction that results in being able to overcome breakdowns and feel responsible for that progress is
key to their continued engagement.

5. And so
Gaming is fun. DIY coding is fun. The notations and the activities are similar. What can we learn?

The conventional wisdom is that systems for use by end-users should be domain-specific (as already
noted), should avoid challenges and breakdowns, and should encourage a software-engineering work-
style, with an eye to the future use of the code. It would also be reasonable to argue that hidden
dependencies should be avoided. But as far as DIY-for-fun coding goes, we suggest that all of those
are mistaken. HyperCard was wildly successful despite not being domain-specific. We think part of
the fun in DIY-for-fun is the experience of challenge, breakdown, and breakthrough, just as in
gaming. As for ‘an eye to the future’, we believe that the DIY coder takes little stock of the future;
they are coding for now, partly because they enjoy it. Looking ahead and considering best practices,
proper testing, etc simply isn’t what they came for. (Who does unit testing for fun?) The DIY coder
can remember enough of the code to be able to cope; for example, a hidden dependency that might
prove troublesome in the future can be accepted for ‘just for today’ because they can remember the
linkage, at least for now. In practice, these features, especially the hidden dependencies, are likely to
lead to ‘mature disfluency’ (Green 1995) as projects grow – difficulties that increase exponentially
with the size of the code.

One is reminded of the ant and the grasshopper: the ant sedulously stores food, against the arrival of
winter, but gets no fun from doing it; the grasshopper gets lots of singing and dancing, but starves in
winter. DIY coders get their fun by assuming all those contingencies that software engineering guards
against will happen to others, not to them: a bit like betting that the sun will not rise tomorrow.

In a very different domain, Blackwell et al. (2003) found that of six professional administrative
workers interviewed, only one “ever created any directories on the computer hard disk, and this was a
computer enthusiast who had multiple computers at home. ... Others achieved impressive mnemonic
feats rather than experiment with unfamiliar facilities of the computer – one secretary kept 358
working files in a single directory, and was able immediately to find the file she needed, despite the
historical use of eight-character filenames.” (p. 537) Yet these workers created extensive paper-based
abstractions: desk drawers, shelves, baskets, paper spikes, diaries and address books, filing cabinet
drawers, and so on. “The problem is not one of abstraction capability, but of the unsuitability of
computer user interfaces for abstraction management,” they say. Rather than struggle with those
interfaces, they kept a lot of material in the head and hoped for the best, like the grasshopper.

If these ideas are right, then trying to encourage a software-engineering outlook in DIY coders is
pointless (and perhaps patronising). Yet they run the risk that sometimes the project will grow too big
for their head, and perhaps some of the effects could be mitigated. For example, it might be possible
to add juxtaposability, or audit trails (as in Excel), or to devise a form of ‘abstraction by accretion’
akin to the way that some popular systems, including WhatsApp, address books, Facebook, and most
vector-based drawing programs work, by selecting some items and declaring them to be a group. This
can be done at any time, so there is no enforced attention investment and no risk of premature
commitment, and there are usually no possibilities of subgroups, so the abstraction management is
trivial; yet some of the advantages of abstractions are gained – for messaging, one can decide it would
be useful to create an address group called “the people I do X with” and add names to that list as and
when convenient, after which a message can be sent to the entire group in a single action. This not
only brings the obvious advantage of aggregate actions on all the items at once, but also the useful
side-effect of identifying the items concerned as a group, to help a future reader to understand the
structure. Yet the grasshopper can go on singing happily, ignoring the option of forming any
abstractions, until the project has become too big and Something Has To Be Done. Just how
‘abstraction by accretion’ would work would need to be explored. The important thing is that
grasshoppers could go on having fun until things got too difficult, and at that point a nearly-effortless
move could be made, towards just as much antlikeness as was necessary and no more.

6. References

Aghaee, S., Blackwell, A.F., Kosinski, M. and Stillwell, D. (2015). Personality and intrinsic
motivational factors in end-user programming. Proceedings of IEEE Symposium on Visual
Languages and Human Centric Computing (VL/HCC 2015), pp. 29-36.

Blackwell, A.F. (2002). First steps in programming: A rationale for Attention Investment models. In
Proceedings of the IEEE Symposia on Human-Centric Computing Languages and
Environments, pp. 2-10.

Blackwell, A.F., Hewson, R.L. and Green, T.R.G. (2003) Product design to support user abstractions.
In E. Hollnagel (Ed.) Handbook of Cognitive Task Design. Lawrence Erlbaum Associates.
ISBN 0-8058-4003-6, pp. 525-545.

Blackwell, A. F. and Morrison, C. A logical mind, not a programming mind: Psychology of a
professional end-user. (2010) Proc. PPIG 2010

Friedhoff, J (2014) Untangling Twine . DiGRA '13 - Proceedings of the 2013 DiGRA International
Conference, vol 7: DeFragging Game Studies. August, 2014. ISBN / ISNN: ISSN 2342-9666

Green, T. R. G. (1995) Looking through HCI. In Kirby, M. A. R., Dix, A. J. and Finlay, J. E. (Eds.)
People and Computers X. Cambridge University Press

Green, T. R. G. (1989) Cognitive dimensions of notations. In R. Winder and A. Sutcliffe (Eds),
People and Computers V. Cambridge University Press

Green, T R G, and Church, L E Notations: Life and Times (title TBC). Unseen University Press, in
preparation.

Iacovides, I., Cox, A.L., McAndrew P., Aczel, J., & Scanlon, E. (2015). Game-play breakdowns and
breakthroughs: Exploring the relationship between action, understanding and involvement.
Human Computer Interaction, 30 (3-4), 202-231.

Iacovides, I., Cox A.L., Avakian A., & Knoll, T. (2014). Player strategies: Achieving breakthroughs
and progressing in single-player and cooperative games. In Proceedings of the first ACM
SIGCHI annual symposium on Computer-human interaction in play, CHI Play 2014, pp.
131-140. New York, NY, USA, ACM.

Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaffidi, C., Lawrance,
J., Lieberman, H., Myers, B., Rosson, M. B., Rothermel, G., Shaw, M., and Wiedenbeck, S.
(2011) The state of the art in end-user software engineering. ACM Computing Surveys 43, 3,
Article 21 (April 2011), 44 pages. DOI = 10.1145/1922649.1922658 http://doi.acm.org/
10.1145/1922649.1922658

Ko, A. J, Myers, B. A. and Aung, H H (2004) Six learning barriers in end-user programming systems.
IEEE Symposium on Visual Languages - Human Centric Computing, 2004, pp. 199-206, doi:
10.1109/VLHCC.2004.47.

Sharples, M. (2009). Methods for evaluating mobile learning. In G. Vavoula, N. Pachler, A. Kukulska-
Hulme (Eds.) Researching mobile learning: Frameworks, tools and research designs, (pp. 17–
39). Oxford: Peter Lang Verlag.

Vavoula, G. N., & Sharples, M. (2009). Meeting the challenges in evaluating mobile learning: A 3-
level evaluation framework. International Journal of Mobile and Blended Learning 1(2), 54–
75.

	Neither Grasshopper nor Ant: learning from DIY coding and from gaming [WIP]
	Abstract
	‘DIY’ coding for fun and gaming have more in common than seems to have been noticed, both notationally (no abstractions, no juxtaposability, etc) and in the user experiences (challenge, breakdowns, breakthroughs). We argue that some familiar claims about end-user programming, such as a need for domain-specific languages, do not apply to DIY coding, and that lightweight optional features such as ‘abstraction by accretion’ could help both DIY coders and gamers when the project grew too big.
	1. Introduction
	2. What kind of coding? What kind of games?
	2. Notational aspects
	3. The user experience
	4. Reasons for success
	5. And so

	6. References

