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Abstract

This paper builds on work presented at PPIG 2021, “Visualising Bayesian Probability in the Kalahari”
(Blackwell et al., 2021). Here, we describe a proposed interface for visualising Bayesian probability
in a non-Western educational setting—in this case, a school in Nigeria. We evaluate the approach in a
school workshop combining didactic and discovery methods of learning. The results offer insights for
future curricula in high-school level probability, as well as an agenda for Computer Science education
research, exploring how a programming perspective (through model building) might improve reasoning
and intuition about probability.

1. Introduction

A paper at PPIG 2019 set out an agenda for the usability of probabilistic programming languages, in-
cluding a “furthest-first” agenda that would develop new languages for use in schools of Sub-Saharan
Africa (Blackwell et al., 2019). At PPIG 2021, a progress report on that programme of work described
an investigation toward visualising Bayesian probability in the Kalahari (Blackwell et al., 2021)

In this paper, we extend that programme of work with a report on visualising Bayesian models in Nige-
ria, with education and learning as primary considerations in the design process. This builds from related
work that have attempted to simplify and improve probabilistic reasoning using visualisations by em-
ploying storytelling structures (Erwig & Walkingshaw, 2013), including diagrams in live programming
environments (Gorinova, 2015), and incorporating causality in the language of probability and statistics
(Pearl, 1995). Pearl’s work in particular, provides the foundation of the visualisation presented in this

paper.

This work is motivated by previous work in computer science education research that has explored the
efficacy of diagrams and storyboards in learning (Waite et al., 2016) as well as the success of visual
languages such as Scratch (Resnick et al., 2009) and Sonic Pi (Aaron & Blackwell, 2013) as first pro-
gramming languages. Our work investigates the potential of diagrams and graphical objects to produce
equally successful outcomes in other areas such as probability education in non-Western contexts.

2. Background

2.1. Visualisations in Child Learning

Exploring external representations as a learning methodology for children goes back to education pi-
oneers such as Froebel in the 19th century (Manches et al., 2010). Piaget for example, highlights the
importance of the manipulation of concrete objects in learning via his constructivist theory (Von Glasers-
feld, 1982). Papert (1980), inspired by Piaget, developed a theory of constructionism where he argues
that these manipulable objects provide an effective learning tool as they are embedded in a child’s cul-
tural environment. Papert’s insights have been influential in later works including those concerned with
the development of digital interfaces and development environments for kids (Resnick et al., 2009;
Stead, 2016). Scratch (Resnick et al., 2009) for instance, uses graphical objects in the form of legos as
constructs to allow younger audiences explore programming and art creativity. This has been a success-
ful endeavour boasting a record of 42 million users in 2021. Manches et al. (2010) have posited that
the success of external representations is attributable to their ability to offload cognition by mapping
processes whilst providing conceptual metaphors that allow children to relate concepts to real world ex-
periences. This helps with knowledge transfer, an important design goal for building educational tools
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(Stead, 2016).

Despite the success of Scratch, the use of legos as the foundation of the graphical representation signifies
Western preferences. Thus, the transferability of the success of such visual representations to kids
that are not exposed to Western culture is unknown. This provides an avenue for exploring the effect
of external representations on children from varying backgrounds and the possibility of a “general”
visualisation that could be discovered from a non-Western culture.

2.2. Explaining Probabilistic Models

The ubiquity of intelligent tools raises questions relating to user interaction. User in this context is not
limited to the scope of the generic end-user but includes other stakeholders such as programmers and
system designers. A prominent design approach to this problem has been to improve the ‘explainability’
of these tools by helping users build accurate mental models of system behaviour. As the underlying
models of these intelligent tools are probabilistic in practice, some of the work done has sought to
explain the inference process in probabilistic programs.

Erwig & Walkingshaw (2013) for example, designed a visual metaphor based on the causal structure
of stories to breakdown the stages of a probabilistic modelling process. This representation serves as
an explanation that maps the discrete values of a distribution to the probability of their outcome. The
authors use the Monty Hall problem to buttress the intuitive nature of their representation and further
provide insights into how their work could improve certain programmer-based tasks such as debugging.
A related work has defined and discussed debugging principles that could guide the design of expla-
nations (Kulesza et al., 2015). Gorinova (2015) on the other hand focused on how visual explanations
could aid the probabilistic programming process. The author developed a live multiple representation
development environment (MRE) that shows the Bayesian network of variables based on an infer. NET
probabilistic model. Participants using the MRE were found to provide high-level descriptions of un-
derlying probabilistic dependencies compared to those using a conventional development environment.

This has led to a promising view of graphical visualisations as an effective means of improving proba-
bilistic reasoning. Blackwell et al. (2021) have especially discussed the potential of interactive visualisa-
tions for teaching probability in schools whilst looking at a furthest-first design outlook that is inclusive
of underserved communities.

2.3. Causal Inference

Causal thinking is a cognitive principle used by humans and its deductive nature plays a significant role
in scientific thought and discovery. The domain of statistics and probability, as exemplified by its pop-
ular mantra “Correlation does not imply Causation” discounts this principle, resulting in non-intuitive
language for communicating concepts and paradoxes. The science of Causal Inference propounded by
Pearl (1995) seeks to provide tools that mathematise the concept of causality by building on current
statistical methods. This approach is gaining support in the Al community as it provides a pathway to
solving learning problems using less data as well as tackling ethical problems in algorithmic design such
as fairness (Kusner et al., 2017).

Pearl asserts that a purely statistical approach to Al is inadequate as it neglects the causal assump-
tions and beliefs that are necessary for producing intelligent behaviour. This leads him to formulate
a hierarchical division of intelligence referred to as the Ladder of Causation. Each rung of the ladder
has additional expressiveness compared to the rung below it, which determines the type of questions it
can answer (Bareinboim et al., 2022). The rungs and their assessment of likelihood of outcomes are
presented below;

* Association: The likelihood of an outcome is assessed by observed evidence. Most of traditional
statistics and data-only machine learning solutions lie in this rung. An example of a question on
this rung is “What is the likelihood that a toddler will be vaccinated?”.

* Intervention: The likelihood of an outcome is assessed by introducing an intervention and mea-
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suring its effects. This is not the same as an assessment by conditioning on an observed value
of a variable but rather by a forced manipulation of the variable. This is particularly useful in
healthcare research where randomised trials may not be feasible or are ethically sensitive (Zhang
et al., 2021). An example of a question on this rung is “How many people will die if the vaccine
dose is doubled?”.

* Counterfactual: The likelihood of an outcome is assessed based on a hypothetical scenario. The
rung alludes to imagining and Pearl argues that imagining is responsible for human intelligence
and thus essential for achieving artificial general intelligence. Al research has employed coun-
terfactuals to proffer solutions in computational advertising (Bottou et al., 2013) and algorithmic
fairness (Kusner et al., 2017). An example of a question on this rung is “What will happen if a
person who took a vaccine decides not to take it?”.

Causal Inference as a technical discipline specifically deals with answering interventional and counter-
factual questions. To effectively do this, one has to be able to represent what they know (assumptions)
and what they want to know (queries). Causal inference provides tools for representing these knowledge.
Assumptions are expressed using two methods; mathematically using Structural Causal Models (SCMs)
and diagrammatically using Causal Diagrams. These representations are complementary. Queries are
expressed using Do-Calculus. This paper will be focused on providing a brief overview of SCMs and
Causal Diagrams. For an in-depth coverage of Do-Calculus, refer to Glymour et al. (2016).

2.3.1. Structural Causal Models

When defining SCMs, one has to be cognisant of the two variable types in causal modelling; exogenous
and endogenous variables. Exogenous variables are background variables whose causes are determined
by factors outside of the model. Endogenous variables are those variables whose causes or values are
known and defined within the model. Exogenous variables cannot be descendants of other variables as
their causes are unknown while endogenous variables can be descendants of exogenous or endogenous
or both types of variables. The relationship between child and parent variables are mapped by functions.
This in turn induces strong assumptions about the nature of the relationship but provides a convenient
syntax for how the distribution of these variables will change in response to external interventions (Pearl,
1995).

Definition 2.1 A causal model can be defined as a triple of sets (U, V, F), where V is a set of endoge-
nous (observed) variables, U is a set of exogenous (latent) variables, and F is a set of functions (each
one corresponding to a variable V; € V), such that

Vi= f(pai7 Upai)

where f € F, pa; CV are the parents of V;, and U,,,, C U are some independent noise variables and can
be identified as the “causes” of V;.

2.3.2. Causal Diagrams

These are directed acyclic graph visualisations of SCMs. Solid nodes in the graph structure represent
endogenous variables while hollow nodes represent exogenous variables. The functional relationship
between variables are represented using directed edges that connect variables. Causal diagrams aid
in answering causal queries and computing causal effects in the absence of empirical data (Forney &
Mueller, 2021). In addition, they provide an appropriate visual for structures that could result in statis-
tical paradoxes such as confounding, mediation and collision.

Causal diagrams bear a close resemblance to Bayesian networks and are indeed built from the same
foundation. By employing a causal structure in their construction, we propose that these diagrams could
provide an alternative visualisation for representing and explaining Bayesian probabilistic models that
is closer to human causal thinking. The abstract form of the graph provides a more universal visual
approach as opposed to established norms of dices and coins in probability explanations that could have
cultural connotations. In addition, the basic elements of causal diagrams - nodes and directed arrows
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Figure 1 — A simple model represented as a causal diagram

’ . NODE: {
' Identifier:
Values: []
Parents: []
isObservable
}
(a) Multiple NODE and CONNECTOR objects (b) A single NODE object and its attributes

Figure 2 — A visual notation for casuality

- provide basic building blocks that are similar to those available in graphics software such Adobe
Ilustrator. These can be converted to manipulable graphical objects that could transform the model
building process into an interactive experience.

3. Work

3.1. A Modified Visual of Causal Diagrams

Building on our decision to adopt causal diagrams to visualise Bayesian probability, we modify the
graph to accommodate this objective. In our modified visual formalisation (as shown in Figure 5), we
treat both endogenous and exogenous variables as a single graphical object, NODE. This represents any
random variable of a typed discrete finite probability distribution. The visualisation is in the form of a
pie chart, with sectors of the chart representing value-likelihood pairs. Functions are represented using
a CONNECTOR object, a directed arrow between nodes similar to Figure 1 (see Figure 2a).

A NODE is defined using four attributes (as shown in JSON in Figure 2b right) : an identifier, values,
parents, and a flag which marks whether it is observable. Below is a breakdown of what each of these
attributes represents:

* Identifier: The identifier holds a string name assigned to a random variable. In basic formulations,
the identifier could be prove to be risky for users as it places a variable naming burden. This could
be simplified by including predefined options in the naming interface or alternatively, by inferring
the variable name from the content of the values attribute as done in spreadsheets (Sarkar et al.,
2022).

* Values: The values attribute holds the different values that a random variable can take: it is an
array of tuples, each containing a name attribute (of the value) paired with a likelihood attribute.!
In the visualisation (Figure 2b), each value corresponds to a sector of the pie-chart. The likelihood
attribute specifies how likely the user assesses that an outcome is to occur and therefore holds their
prior belief about the random variable. This is represented using floating point numbers (rounded
to two decimal places).

In defining this attribute, a burden is placed on users by prompting them to identify possible out-

I'Since we are dealing with discrete probability distributions, these are countable.
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comes of a random variable and their likelihood. This induces a form of premature commitment
and could be classified as a hard cognitive task in instances where users don’t have a solid under-
standing of what a random variable constitutes.’

* Parents: This attribute holds the parent variables of a random variable: it is an array of tuples, each
containing a parent’s identifier and an array specifying the effect of the parent on the variable’s
distribution. This defines the relationship between child and parent variables, and is represented
visually using the CONNECTOR graphical object (a directed arrow, see Figure 2a).

* isObservable: This attribute specifies the latency of a random variable and is used to determine
which variables are exogenous and which are endogenous. This allows us to represent both vari-
able types using the NODE object. Setting this attribute to false places a restriction on adding
parent nodes, since exogenous variables’ causes are unknown (owing to the nature of the variable
or the modeller’s choice).

3.2. An Interface for Defining the Diagrams

To produce the visual formalisation presented in the previous section, we sketch out the design of in-
teractive interface components that can be used to create expressions of causal dependencies. This
interface induces the following interaction flow: declare variable, specify value distribution, and define
relationships between variables.

3.2.1. Declaring Variables

Figure 3a shows a variable declaration component used to create “pseudo” NODE objects (this only spec-
ifies the identifier and observability; values and parents are left to later components). The observability
of the variable is posed as a question “Can you observe it”. An earlier iteration considered the question
“Can you see it” as a more natural form, but this proved to be an oversimplified and narrow depiction of
observation. To accommodate for the more complex idea of observation, a tooltip is included to express
the different ways of observing.

In our discussion on the identifier and values attributes (§3.1), we mentioned the potential cognitive
strain imposed on the user during naming. While we referred to selecting from a predefined set of
variables (based on a particular domain of application such as health as per the presented design) and
inferring from the values attributes as mitigations, another alternative could be the use of the “Variable
Description” field to serve as prompt for the variable’s identifier (denoted as “Variable” in the presented
design). This serves as a guide and teaching aid whilst allowing users to retain a level of autonomy in
determining what variable they want to represent.

3.2.2. Specifying Value Distributions

Figure 3b presents the distribution builder component used specify the values of a variable while ensur-
ing that the sum of their likelihoods is equal to one. Distributions are defined from selecting between
binary and range options and value names can be edited based on the user’s preferences. The value names
in Figure 3b serve as placeholder text and a simple explanation of how value names can be defined. The
distribution of the values is represented using bar charts with draggable bars. The length of each bar
corresponds to a value’s likelihood. Likelihood is assigned by dragging the bar which provides both a
spatial visualisation and relative depiction (to other values). Additionally, likelihoods are presented in
percentages to provide an alternative representation for understanding the concept of likelihood.

Each bar is responsive to changing values in the other bars (dragging a bar results in a change of value
in other bars) as a means of enforcing the sum rule of discrete probability distributions. This provides
a convenient modal of interaction for binary outcomes but could be cumbersome for distributions with
three or more values. This can be bypassed by disabling the responsive dragging and performing valida-
tion checks before saving. Additionally, values can be added and removed. A constraint of the number
of values allowed per variable can be reinforced to allow for clarity in visualisation.

2This could once again be simplified using predefined options.
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Figure 3 — Prototypical Ul components

3.2.3. Defining Relationships

Defining relationships between parent and child variables in causal diagrams is a difficult task and re-
quires assumptions based on knowledge of probability distributions such as normal, poisson or binomial
distributions. As our objective is to employ a graphical approach suitable for younger users, we define
these relationships not as functions between distributions but rather by conditioning.

In the relationship builder component (Figure 3c), we combine two bar chart representations with dif-
ferent interaction constraints. Each horizontal bar (to the left) represents a parent variable’s values with
their width corresponding to their likelihood. These are bars are selectable and selecting a bar re-renders
the child variable’s values (denoted by the vertical bar chart). These values are vertical draggable bars
that can be used to specify the effect of a parent variable’s value on the child variable’s values. The text
with the following template - “How does [parent variable’s value] affect [child variable]” reinforces the
causal notion that the parent is a determinant factor in the values of the child.

The component’s construction on only defining the effect of a single parent results in the marginalisation
of other parent variables. When specifying prior distributions, this is adequate. However, when posterior
distributions are specified (in the form of edits), this could lead to an inference problem.

4. Workshop
To determine the efficacy of our modified visual of causal diagrams as a tool for explaining Bayesian
probabilistic models, we performed a short user study with secondary school students in Nigeria.

4.1. Study Design

A web application consisting of four separate modules, representing four tasks was used as the study
environment. Rather than tackle the question of the explainability of our modified causal diagrams
directly, we opted to answer the more concrete question of measuring the influence of the visualisation
on the participant’s decision making. This goal was broken down into the following research questions:

1. Are secondary school students in Nigeria using Bayesian reasoning in their decisions?
2. Can Bayesian reasoning be introduced through an interaction with the modified causal diagram?

With these questions, we designed the study as follows - the first and fourth tasks were decision-making
tests while the second and third tasks served as a short lesson and tool interaction session respectively. By
comparing the results from the decision-making tests, we can investigate the effect of the visualisation
on the answers provided by the participants.
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To determine what type of questions will feature in the tests, we considered domains of application that
will be culturally relevant to the participant group. For the questions in first decision-making test as well
as the content of short lesson, we chose the COVID-19 pandemic and further narrowed the scope to a
“COVID in the Market” scenario. The global impact of the pandemic and its depictions within public
discourse provides a familiar space where participants can reason about events and their causal structure.
For the second decision-making test, we opted for a more localised domain - tree climbing.

The inclusion of a short lesson as opposed to direct exposure (and exploration) of the visualisation is
intended to create a structure that is familiar to the participant group, who are conversant with learning
environments that have a didactic component in contrast to their Western counterparts. Sfard (1998) has
also asserted that a mixture of both didactic and discovery methods are essential in learning.

4.2. Participants

Eight participants were recruited from Government Secondary School Wuye in Abuja, Nigeria. Their
prior exposure to probability is based on rote method computation of mutually exclusive events as op-
posed to extensive understanding of concepts such as randomness and conditioning.

4.3. Procedure

We used a within-subjects experiment design for the study. The study lasted for approximately an
hour.Each participant was provided with a desktop computer to access the study environment online.
The participants were required to complete the four tasks in order. During the first and fourth tasks,
participants were not allowed to interact with each other in order to preserve the validity of the answers
they provide. The second and third tasks were in the form of an open engagement session. Below is a
breakdown of the details of each task;

Participants completed four tasks, detailed below. In the first and last tasks, students make decisions in
hypothetical scenarios. In the middle tasks, they are introduced to Bayesian reasoning. The aim is to
observe the influence of introducing the notions of randomisation and conditioning on the certainty of
the decisions made by the participants.

1. Task A: Participants were required to make decisions based on three hypothetical scenarios placed
within the “COVID in the Market” domain. The questions include:

(a) The market stall in your neighbourhood was just reopened since the COVID pandemic
started. Will you go to buy sweets or not?

(b) Your friend has eyes that can see COVID. She went to the stall at 10 in the morning and said
half the people she saw had COVID. Will you still go at 2 in the afternoon?

(c) It has been three (3) days since your friend went to the stall and she seems fine. Will you go
to the stall today?

2. Task B: Participants read through ten short explanations (including both textual and visual im-
agery) on Bayesian reasoning and causal diagrams.

3. Task C: Participants interact with a tool based on our modified causal diagram visualisation with
emphasis on the NODE object. This was achieved by presenting a predefined variable representa-
tion and allowing students to run sampling simulations. Interactive discussions during the session
prompted students to reason about changing distributions of random variables when placed in dif-
ferent contexts (for example when a background variable changes).The complete version of the
Figure 3 was not developed for this study.

4. Task D: Participants were required to make decisions based on three hypothetical scenarios in a
tree climbing scene. The questions include:

(a) You belong to a group of people who love to climb one particular tree. You have been doing
this for the past two years. How likely are you to break your leg from climbing a tree?
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Figure 4 — Study Environment Screenshots

(b) Your best friend recently broke both legs climbing this tree. Will you join the others to climb
the tree tomorrow?

(c) Fatima just moved into your neighbourhood. She can run very fast. How good will she be at
climbing trees?

4.4. Findings and Discussion

The responses to the two decision-making tasks were collected and analysed. For each question, partic-
ipants were required to give a response from five options. See Figure 5a for the map of a participant’s
decisions during the tasks. The table below provides a scheme for each option;

Option Content Scale Description
A Yes, I will definitely go to the market 5 Positive
B Yes, I will be scared 4 Semi-positive
C I am not sure 3 Uncertain
D No, but I want to go 2 Semi-skeptic
E No, I will absolutely not go 1 Skeptic

The standard deviation of both sets of responses was calculated to determine their distribution in order to
investigate the questions posed in the study’s design. The expectation is that the employment of Bayesian
reasoning will induce a normal distribution of responses with most responses in the uncertain region
(corresponding to 3 on the scale). This is because the hypothetical scenarios provide little evidence
to cause a decision shift towards the extreme ends of the range. We provide discussions to the study
research questions below:

Are secondary school students in Nigeria using Bayesian reasoning in their decisions? The data shows
that this is not the case. Responses to the first decision-making test were skewed to extreme ends of the
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Figure 5 — Analysing study findings

range across all questions. In the second question for instance, the uncertain (“I and skeptic choice were
not selected by any of the participants. However, this result is to not surprising. There is a wide range of
research that has been undertaken that shows that people find it difficult to think in terms of probabilistic
quantities.

Can Bayesian reasoning be introduced through an interaction with the modified causal diagram? The
data once again shows that this is not the case. Similar to the first decision-making test, the second test’s
responses are also skewed towards extreme ends. The distribution of the responses to the first questions
in both tests exhibit a striking resemblance as depicted by Figure 5b. This result could have arisen
due to size of the participant group, which represents a small (and perhaps biased) sample of the target
population. Furthermore, research in learning are in the format of studies that measure effects over a
longer period of time. The expectation that a short study could produce a similar effect is unrealistic.

These results raise new questions not the least of which are those surrounding the validity of the decision-
making tests. One worth noting is how the effect of different biases on different decision scenarios could
be taken into account when designing future user studies.

5. Conclusion and Future Work

n this paper, we argue that representations and demonstrations of Bayesian probability can be redesigned
to tackle problems related to inclusivity in education. We highlight previous work undertaken on the
use of visualisations in child learning and in representing probability models. This lead us to modify
Pearl’s causal diagrams to include additional handles for specifying Bayesian probability models with
interactivity as a key design consideration.

A study was conducted in Nigeria using a simplified form of the modification and the explainability
of the visualisation was assessed via its effect on the participant’s decisions. Findings from this study
were limited by a variety of factors including the scale of the software implementation, study length,
and participant sample size. Future work on this project will focus on expanding the functionality of
the software environment to allow for more dynamic model building, taking inspiration from graphics
editing software such as Adobe Illustrator. This will be accompanied by longitudinal user studies to
determine the efficacy of the visualisation and interaction environment as learning tools, as well as the
selection of adequate metrics for measures of interest such as retention and knowledge transfer.
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