
Architecture about Dancing: Creating a Cross Environment, Cross Domain
Framework for Creative Coding Musicians

Owen Green, Pierre Alexandre Tremblay,
Ted Moore, James Bradbury,

Jacob Hart, Alex Harker
Centre for Research in New Music

University of Huddersfield
{o.green, p.a.tremblay, t.moore,

j.bradbury, j.hart2, a.harker}@hud.ac.uk

Gerard Roma
School of Computer Science

Leeds Trinity University
g.roma@leedstrinity.ac.uk

Abstract
In this paper, we offer reflections on the (still-forming) outcomes of a five-year project, situated in a
context of artistic research around music technology, that seeks to facilitate the use of machine listen-
ing and machine learning techniques for creative coding musicians working in the Max, Pure Data and
Supercollider environments. We have developed a suite of software extensions and learning materials,
and, unusually, we have included community development efforts in our work. Whilst the project has no
doubt differed in aims, methods and knowledge claims to how PPIG researchers may approach these top-
ics, we feel there is significant common interest in a number of the emerging themes. We focus here on
continuing attempts, by user-programmers and library programmers alike, to navigate various tensions
thrown up by ambitions for the project’s accessibility, community and continuity. Among these tensions
are: cross environment legibility vs cross domain legibility between music and data-science vs environ-
ment idioms vs (unknown) idiosyncratic working patterns vs quick iterative design vs maintainability
and longevity vs low cost of entry vs penetrability (Clarke & Becker, 2003).

1. Introduction
This paper offers some reflections from the late stages of a five-year project, Fluid Corpus Manipu-
lation (FluCoMa), that has sought to make a toolkit of signal processing and data science extensions
available to creative coding musicians who work in the Max (Zicarelli, 2002; Puckette, 2002), Pure
Data (Puckette, 1997) or Supercollider (McCartney, 2002) languages. Our goal here is to bring into
focus how a range of different priorities interacted to produce some specific design choices, and some
consequences these priorities have had for the usability of the toolkit, based on the experiences of users.

We will briefly introduce the project and its disciplinary background. We place our efforts in the context
of some earlier work in this area that serves to help explain how the priorities that steered the design
and implementation process took root. We then present four vignettes describing aspects of the toolkit
that continue to present difficulties to users, and point towards how our design priorities played a part in
producing these issues. A takeaway is that whilst these priorities have served us well in getting this far,
they may be coming to the end of their usefulness, both for dealing with remaining usability issues, and
as the project transitions (we hope) into community development.

2. Background
We will sketch out the background context to the FluCoMa project here to the extent that we can illustrate
how a particular set of design priorities came to inform development. For a fuller account of the toolkit’s
foundations and eventual form, interested readers can consult Green, Tremblay, and Roma (2018) and
Tremblay, Roma, and Green (2022).

Whilst the bulk of computer based music making still happens in the context of digital audio worksta-
tions (DAWs) that mimic the functionality of mixing consoles and multitrack recorders, a long-running
thread of creative work and research has focused on environments that are more open-ended in how
they allow musicians and other artists to work with sound. As computing power has increased, musical

PPIG 2022 14



languages have augmented symbolic data processing capabilities with ways of working directly with au-
dio, and with that has come an interest in getting and working with data from audio, ranging from very
simple analyses (like tracking the energy of a signal) to the much more complex (like ‘un-mixing’ the
voices of a polyphonic sound). Meanwhile, as machine learning techniques have become more tractable
and accessible, there has been interest in how these can be used to help facilitate or organise some of
this work.

Two particular strands of prior work in machine listening and learning for music had a formative influ-
ence on the types of task we wished to enable and explore with our toolkit. The first of these, pioneered
by Rebecca Fiebrink’s Wekinator, uses simple machine learning models as an alternative paradigm for
programming mappings between input data and controls for synthesisers or other processes (Fiebrink,
2019). Crafting such mappings plays a very large role in the programming of interactive and generative
music systems. Doing this work by hand can be tedious and unintuitive, as well as frequently produc-
ing brittle results, especially when using data derived from audio. The second strand, exemplified by
Diemo Schwarz’s CataRT (Schwarz, Beller, Verbrugghe, & Britton, 2006) uses audio feature analysis
as a tool to discover and play with relationships between sounds in a corpus. Typically this involves an
interface that uses a 2D scatter plot of segments of sound, arranged according to some audio descriptors
or, in more recent manifestations, according to some dimensionality reduction process (Roma, Green, &
Tremblay, 2019; Garber, Ciccola, & Amusategui, 2020)1.

The currently dominant languages for creative-coding musicians—Max, Pure Data and SuperCollider—
have a shared emphasis on working in real-time, making them useful not only for composing, but also
for building custom instruments, installations or even co-players. All are also able to host extensions
via plugins written in C or C++. Despite this common focus on real-time work, they are very different
environments (see Nash, 2015, for a fuller comparison). Max and Pure Data are superficially similar
data-flow-like languages that share the same inventor. A ‘box-and-arrow’ type patching idiom promotes
a focus on processes rather than data, and the facilities for manipulating data structures are quite limited
(though different) in each. However, Max and Pure Data have diverged somewhat from their common
roots, both in terms of what is possible or easy to achieve in each, but also in terms of what is idiomatic
to each.

SuperCollider, meanwhile, is a very different environment with a completely different architecture where
the language (‘sclang’) runs in a separate process to real-time audio processing (the server), leading to
very different usage experiences and constraints. sclang is a textual, dynamically-typed language, with
some similarities to Smalltalk, and sophisticated facilities for manipulating data and expressing the
timing and patterning of musical data. It communicates with the server (which actually does the sound
production) via a network protocol (using UDP by default). The server is primarily focused on the
playback of graphs of sound generators that have been specified in the client language, although there are
some limited facilities for adding new ‘commands’ for offline processing. Facilities for communicating
back from the server to the language are limited and awkward. Whilst there is a C-based SDK for
Supercollider, this applies only to the server (for writing new sound generators or commands), and not
to the language, so that all FluCoMa components need supporting scaffolding in sclang.

Whilst the built-in support for analysing and working with audio data has been quite limited in these
environments, there have been various extensions and packages available for each language, such as the
MuBu and Friends package for Max (Schnell et al., 2009). An impetus for the FluCoMa project was
that, despite much promise, existing extensions in this area left a number of things to be desired from
the point of view of supporting widespread uptake and long-term artistic research, such as:

1. Imposing a whole new language to learn on top of the host environment.

1For an impression of how our toolkit looks and works in practice, a video tutorial showing how to construct a CataRT-style
exploration interface in Max can be found at https://learn.flucoma.org/learn/2d-corpus-explorer/. To
compare the toolkit’s feel in different languages, these videos demonstrate equivalent examples in Max (https://youtu
.be/cjk9oHw7PQg) and SuperCollider (https://youtu.be/Y1cHmtbQPSk)

PPIG 2022 15

https://learn.flucoma.org/learn/2d-corpus-explorer/
https://youtu.be/cjk9oHw7PQg
https://youtu.be/cjk9oHw7PQg
https://youtu.be/Y1cHmtbQPSk


2. Having only sparse or expert-level documentation, whilst also introducing many new concepts.

3. Not releasing source code and / or being unmaintained after a short time.

4. Only being available for a single creative coding environment, inhibiting portability and cross-
communication.

From this background, the FluCoMa project had three overarching thematic preoccupations that would
crystallise into a set of design priorities as work progressed:

Accessibility Whilst recognising that we would be addressing a reasonably advanced subset of creative
coding musicians with this toolkit, there is no particular reason to believe that being an expert user
of one of these environments translates into an appetite for finding one’s own documentation or
for learning more new languages. Furthermore, we knew from experience that such appetite can
vary quite markedly depending on where in the progress of a creative project one is.

Community A key rationale of the project is that it should deliver enabling conditions for more and
better artistic research around data-driven music making, meaning that we are concerned not just
with augmenting the possibilities of our own artistic practices but with establishing a community
of interest around this topic. It was crucial for us that this community forming took place alongside
technical work. This is because we were conscious that developing in isolation could shape the
affordances of the toolkit too strongly around our own musical proclivities or ways of thinking, and
result in more exclusive and less interesting work. Moreover, evaluating artistic research requires
community: it is by nature discursive and qualitative, and poorly served by proxy measures.

Continuity Artistic research takes time: pieces take a long while to complete, instruments require many
hours of practice and performance, and typically research questions and concrete musical goals
solidify and emerge over the course of practical investigation rather than being clear at the outset
of a project. The timescales involved will very often be far in excess of funding periods, so artistic
researchers are justifiably nervous of tools that may stop working, or simply disappear.

These themes played a structuring role in the overall approach taken to development, as well as coming
to inform (more or less explicitly) design choices made along the way. A core commitment of the project,
serving both accessibility and community, was that the toolkit should target more than just a single host
language, the better to reach a wide range of practitioners and benefit from the distinct ways of thinking
about music and code that working in different languages might bring (McPherson & Tahıroğlu, 2020).

2.1. Project Phases
The early phase of the project was structured by two waves of professional commissions with public
performances, ensuring that we would have some committed input from fellow experts prepared to
endure using software in a state of flux whilst pushing some work through to a developed state over the
course of some months2. As the toolkit matured towards public release, the later stages of the project
have been marked by wider participation, both via our forum at https://discourse.flucoma
.org/, and over 30 workshops delivered to a mixture of researchers, students and independent artists,
mostly in Europe and North America.

Expanding our user pool in this later phase has also allowed us to dramatically improve our docu-
mentation based on being able to observe and discuss where people experienced problems. As well
as platform-specific help files and reference material, we developed a web site of learning resources
at https://learn.flucoma.org/, focussing on concepts and usage patterns rather than the
specifics of particular components.

2Documentation of these commissions can be found at https://www.flucoma.org/commissions/ along with
some deeper analysis amongst the articles at https://learn.flucoma.org/explore/

PPIG 2022 16

https://discourse.flucoma.org/
https://discourse.flucoma.org/
https://learn.flucoma.org/
https://www.flucoma.org/commissions/
https://learn.flucoma.org/explore/


2.2. Design Priorities
Certain design priorities fell out of this project structure quite naturally:

Rapid Development To make sure that we could be responsive to our commissioned artists’ experi-
ences with early versions of the tools, we tried to arrange matters to produce and trial new com-
ponents rapidly, across each of our host environments. To support this way of working we made
heavy use of C++ templates to establish a host-agnostic way to specify the form and behaviour of
a component (a ‘client’) that would yield a well-formed extension in each of Max, Pure Data or
SuperCollider (see Figure 1).

Maintainable Code Other priorities, meanwhile, needed to be observed despite this fast-paced, itera-
tive way of working. Trying to ensure continuity for the project, for instance, has meant always
bearing in mind what impact on future maintenance adding features might have, especially con-
sidering that we would ideally like this maintenance to be a communal affair in the future.

Idiomaticity A key feature of accessibility is whether an API respects established idioms for the lan-
guage it targets, which may well not be enforced by the language, but reflect common working
practices that in turn serve to support sharing and discussing code. At the same time, people pick
up these particular languages in quite distinct ways and there may well be multiple idioms emerg-
ing from different enclaves or traditions. Furthermore, we are addressing artists, many of whom
might well have playful and idiosyncratic ways of working, which we would not wish to hinder.

Legibility In the interests of accessibility and community, we have tried to ensure that both the func-
tionality and form of the APIs provided are consistent between each of our target languages, the
better to enable communication and comparison of practices, so that code using our toolkit in
one language should be legible to users of another language. We are also, of course, trying to
make legible concepts from outside the musical domain, imported from signal processing and
data science. Both of these exist in tension with idiomaticity.

Complexity Accessibility is also served by trying to ensure that the cost of participation is low: it should
be possible to do interesting things with a few components, with little tweaking and not too much
recourse to documentation. Meanwhile, however, both community and continuity require that
there is scope to do new and powerful things, and that more complex experimentation is both
feasible and rewarding. The process of bringing a creative project to fruition always involves
moving between different types of programming practices, and it is important that we can reward
‘sketching’ and ‘tinkering’ whilst also supporting more orthodox programming, as one ‘toughens’
a patch ready for performance or distribution (Bergström & Blackwell, 2016).

Algorithms
implementations

Clients
compose algorithms, define interface

Glue
compile-time dark magic

Host Wrappers
bindings to host APIs

Max Object Pure Data Object SuperCollider Object

Figure 1 – The Supporting C++ Architecture

PPIG 2022 17



Clearly, it would be impossible to satisfy all these principles all the time because they pull against each
other. Furthermore, we have to operate within the engineering constraints of what are actually pretty
different languages and supporting platforms. This is especially true with respect to SuperCollider’s
distinctive architecture: because it is only possible to write C++ extensions for the server side, coming up
with ways of working that satisfy both a sense of what is locally idiomatic and recognisably ‘FluCoMa’
is a delicate balancing act.

These tensions notwithstanding, we are reasonably happy that an approach of pragmatically balancing
between these factors has served us well so far. The toolkit and its associated resources have been
received well: people are using it in their work unprompted, and contributions of discussion, feedback,
and code from new people are coming in. Nevertheless, the ways in which we have been weighing
between these factors will probably have to change. The following section details four areas where we
have noticed that people experience particular difficulty in using the tools (this is not an exhaustive list,
mind you), and we reflect upon how these points of friction materialised.

3. Four Vignettes of Difficulty
We will present here four brief vignettes examining aspects that users have found it hard to learn or that
are cumbersome in practice. We discuss how some of our original design decisions brought these about,
and how / why it is hard to arrive at solutions that continue to balance the principles described in Section
2.2.

3.1. Components With Many Parameters
Dealing with an abundance of parameters is a routine problem in designing an API in any language.
Many of the algorithms we have implemented in the toolkit have a great many and, when in doubt, we
have often opted to expose things rather than hide them on the basis that any encapsulation can prema-
turely foreclose possibilities for creative experimentation. However, this can cause problems for users in
knowing what might be most useful to reach for at first, or in grasping how different parameters might
be related. In addition, parameters are exposed to users quite differently across our three environments,
and the available mechanism to help users make sense of large sets of these things also vary (see Figure
2).

Figure 2 – Views of the same component with many parameters in Max, SuperCollider and Pure
Data.

PPIG 2022 18



In principle, there are different tactics we could investigate to alleviate this. However, because of the
varied ways the environments expose parameters, these tactics push against our desire to keep things
consistent, and reduce maintainability by demanding environment specific approaches. For instance, we
could try to group together parameters so that the ‘primary’ and ‘tweaky’ controls for an algorithm are
clearly separated, or so that parameters addressing a given aspect are encapsulated together. In Super-
Collider this could be done by bundling parameters into new sclang classes that signal their relatedness.
In Max and Pure Data the mechanism isn’t so clear. An alternative would be to encapsulate whole
components into simpler interfaces for newcomers, and expose fewer moving parts. This could be done
through abstractions in Max / PD and wrapper classes in SuperCollider, but at the cost of a great deal of
duplication across environments that becomes hard to maintain as the number of components increases.
A more tenable solution would involve returning to our C++ APIs and working on making it possible to
compose ‘clients’ at this level.

3.2. Buffers as Universal Containers
Early on in development we realised that as well as having real-time processes, we needed processes
that worked offline on stored pieces of audio data. Some algorithms only work this way (because they
are not causal), but such a facility also enables one to process data in batches, often faster than real-time.
This raised a question about what the output of such offline processors should be contained in when
the result wasn’t audio data (e.g. some kind of analysed feature like pitch or loudness). We settled on
using the same containers that the host environments use to store audio, variously called ‘buffers’ (Max,
SuperCollider) or ‘arrays’ (Pure Data). It seemed a straightforward decision: all three environments had
such a component with which users would already be familiar, and they were also scalable up to very
large sizes (unlike the ‘list’ types in Max and Pure Data).

Input Audio Buffer (time-series)
sample[0] sampel[1] ... sample[N]

Slices Buffer (not a time-series)
index[0] index[1] ... index[K]

Multivariate Audio Features Buffer (time-series)
feature[0,0] feature [0,1]

...

feature[0,M]
feature[1,0] feature[1,1] feature[1,M]

... ...
feature[F,0] feature[F,1] feature[F,M]

Summary Statistics of Features Buffer (not a time-series)
statistic[0,0] statistic[0,1]

...

statistic[0,J]
statistic[1,0] statistic[1,1] statistic[1,J]

... ...
statistic[F,0] statistic[F,1] statistic[F,J]

Flattened Buffer (not a time-series)
statistic[0,0] statistic[0,1] ... statistic[0,J] statistic[1,0] ... statistic[F,J]

run some slicing algorithm

for each pair of slice indices, some multivariate analysis

summarise time series with some statistics (mean, stddev etc.)

flatten 2D structure to vector

Figure 3 – Various different structures we impose on the same generic container, at different points
in an audio analysis workflow

However, when we also encountered the need to output things that weren’t simple time series, we stuck
with buffers, primarily in the interests of being able to keep moving. This has contributed to a number
of difficulties we see people having:

• The very fact of using buffers ‘off-label’ by putting non-audio data into them causes trouble for
some users, though fortunately seldom long-lasting. Clearly, we violate a principle of least aston-
ishment at some level for these users.

• More stubborn difficulties arise when people need to manipulate data in these buffer objects.
These are two-fold. First is that reshaping operations, such as flattening a two-dimensional matrix

PPIG 2022 19



of values to a vector, can be hard to conceptualise in the absence of Matlab / NumPy-like facilities
for inspecting the effects of such moves.

• All this is exacerbated by the extent to which we have ‘overloaded’ the usage of buffers to also
contain things that either aren’t time series (vectors of statistics or slice points), or try to express
more dimensions than two in what is an inherently 2D structure.

• Slice point buffers are especially vexing, because there’s not a nice way to deal with them across
platforms. Typically, we wish to iterate over pairs of points to analyse sections of an audio buffer,
and this currently always pushes error-prone boilerplate on to the user: iteration in Max and Pure
Data is famously awkward. Meanwhile, in SuperCollider, the same iteration involves bringing the
buffer back to the language to be able to iterate over it, and then launching a stream of processes
back on the server. Because this is all asynchronous, it is all too easy to end up with code full of
nested callbacks that are hard to reason about.

A big part of the problem here is that the environments’ native buffer / array components don’t expose
much direct machinery for doing things beyond playing back audio. In Max and Pure Data we can
copy into a native ‘list’, which allows for more direct manipulation, but is limited in both size and
representative power (flat and one-dimensional only). In SuperCollider, we can talk to Buffers in the
context of Synths on the server (which is awkward), or stream them back to the language (which is slow
and awkward).

3.3. Iterative Workflows in Machine Learning
An important set of components in our toolkit provides building blocks for some basic machine learning
tasks, such as supervised and unsupervised learning, and some data pre-processing. Figure 4 shows
an example pipeline that combines some of these techniques. The shape of our API is heavily based on
scikit-learn (Buitinck et al., 2013), a machine learning toolkit for Python, which gave us something solid
and proven to go on quickly, and meant that there was a useful documentation resource available whilst
our own learning resources caught up.

Audio Data Segementation Feature Extraction
e.g. Mel-band energies

Statistical Summary
e.g. mean, standard deviation

Dataset Scaling
e.g. standardization

Dimension Reduction
e.g. principal component analysis

Neural Network
regression, classification

each slice

collect

Figure 4 – An example machine learning pipeline

Whilst this building-block approach works well for being able to quickly gather data and assemble
chains of algorithms, it has become apparent that it doesn’t really communicate a core expectation of
machine learning development practices: the process of building up a useful model is always iterative,
both in the senses of tweaking or perhaps swapping out each stage of a pipeline, but also that one will
return frequently to one’s data to experiment with its composition and analysis. In this sense there is a
moderately normative aspect of the practice that our API wishes to support that is left implicit by the
interface, and the costs of it not being apparent might be that newcomers simply get discouraged by poor
initial results.

Our target environments contribute different sorts of difficulty to this sort of iterative experimentation,
which suggests that solutions that maintain a consistent API might not be forthcoming. In the patching
languages (Max and Pure Data), assembling a pipeline is easy enough, but repeatedly re-assembling
or re-organising can be a drag as things tend to get messy, and there are a great many mouse clicks
involved. In SuperCollider, by contrast, sclang makes it much easier to reorganise things and also has
more powerful tools for manipulating data structures. However, the data and algorithms are all on the
server, meaning that people can end up having to manage a great deal more traffic between language and
server than is desirable.

PPIG 2022 20



For many musical users who are used to working in digital audio workstations or synthesisers, the basic
idea of such an iterative approach to finding a sweet spot would be familiar enough from the practice of
designing sounds through chains of audio generators and processors. However, what is conspicuously
different here is the immediacy of feedback and, crucially, the ease with one can make sense of it. This
leads us on to the issue of how one can evaluate results in machine learning pipelines and the question
of interpretation.

3.4. Making Sense: Evaluation and Interpretability
Sometimes all that is needed to verify that one is happy with how a model is performing in a musical
context is to play with it and decide if one likes the results. However, if one isn’t happy, then it can be
hard to know what to do about it. So far, we haven’t built in typical supporting machinery for model
evaluation, such as mechanisms for performing cross-validation or comparing performance on training
data to performance on held-out test data. In part this is because of the usage and implementation com-
plexity they would add, but also because the results of these processes still require careful interpretation.
Where this is most evident is with our neural network components, where we have noticed that new
users can become overly focused on isolated values for the training error, which signals—at the very
least—that we need to better document what limited sense can be made from this number.

More generally, we notice that people struggle with the increasing abstraction away from perceptually
explicable quantities as they move through pipelines like that shown in Figure 4. Supervised processes,
like neural networks, are hard to look ‘into’, whereas the output of unsupervised algorithms like di-
mension reduction can be hard (or impossible) to interpret in sonic terms. Even certain audio analysis
features can be difficult to relate directly to aural experience, such as Mel frequency cepstral coefficients
(MFCCs), which are commonly used but rarely well explained3.

Because all the components of such pipelines interact, difficulties in interpretation become compounded
and innocuous-seeming steps, like whether or how to normalise the ranges of input data, have presented
obstacles to some users. The ‘correct’ choice for such a step cannot be given a priori because it de-
pends both on the condition of the input data and often also on the assumptions of algorithms further
downstream. For instance, any algorithm that involves a distance calculation is likely to do better if all
input dimensions are uniformly scaled, and other algorithms may also depend on the data being cen-
tred. Using the sample mean and standard deviation for this centring and scaling is very much standard
practice in many machine learning workflows, but whether it actually makes sense to use these statistics
depends on the data itself. What if the distribution is not Gaussian, for instance? Again, we see implicit
conditions on what effective usage patterns might be that are not directly expressed by the API, and
whose explanations can get very technical quite quickly.

Established and emerging mechanisms for evaluating and interpreting machine learning models tend to
be numerical or visual. So far, we’ve hesitated to introduce more than quite minimal visual facilities
into the toolkit because, besides being hard to program well, they are non-portable between our hosts
and therefore represent a real maintenance headache.

4. Discussion
With these four vignettes our intention has been to develop a critical assessment of our toolkit from a
user perspective, and to illustrate some concrete challenges that arose from trying to balance contra-
dictory priorities over the course of development. In ending up having components with a great many
parameters, presented homogeneously, we opted to err on the side of exposing more moveable parts in
the interests of not imprinting the API with whatever we happened to think was musically important, and
to leave room for experimentation. Ways of mitigating this that also preserve consistency between the
APIs exposed in different hosts have so far eluded us. Opting to use our hosts’ audio buffer components
in a variety of ways unintended by their original authors served the interests of rapid development and of
accessibility, insofar as users didn’t have to learn a whole new container, but nevertheless is a persistent

3We have had a go: https://learn.flucoma.org/reference/mfcc/.

PPIG 2022 21

https://learn.flucoma.org/reference/mfcc/


source of confusion for new users that, again, resists easy fixes that would also preserve the consistency
of experience between environments.

Meanwhile, taking a building block approach to making some data science facilities available was mo-
tivated by wishing to balance immediate usability against scope for deeper experimentation, whilst not
foreclosing unforeseen musical outcomes by making advance judgements about what is important or
desirable. What we have ended up with resembles quite closely standard machine learning toolkits like
Python’s scikit-learn. On the plus side, this provides a proven basis of an effective API, and a smooth
route for users wishing to experiment in a different setting. However, there are aspects of common
practice that remain implicit in our implementation, and this can be confusing. Both dimensions of this
that we described—the expectation of an iterative workflow and the difficulties in interpreting what’s
happening—point not just at the possible fruitfulness of offering some alternative abstractions but, more
nebulously, at a need to try and make the statistical languages and practices of data science more legible
for musicians, perhaps even aurally.

While none of these challenges are insurmountable, addressing them may well mean relaxing adherence
to our guiding principles. In particular, striving to maintain consistency of both functionality and form
across three quite different environments finds itself in increasing tension with the ambition that the
tools should slot neatly into the idioms of each host, and that they should be accessible both to less
experienced (or, indeed, less patient) users whilst also offering a rich palette for experimentation. Of
course, a further difficulty with this ambition for cross-host consistency is that individual users may well
not care: if something’s difficult to use, it’s possibly not of much comfort to learn that this difficulty
stems from a lofty principle, however well-intentioned.

Furthermore, as the project ends its initial phase of development and moves into what we hope will be
a more communal mode of maintenance and enhancement, it seems clear that the balance of priorities
and principles would have to shift in any case. The idea of cross-host consistency has been possible to
try and stick to as long as we were a small group of developers working full-time. Insisting that any and
all future community contributions place the same level of focus on this is unrealistic, especially if we
don’t wish to deter people from getting involved. Similarly, our ideas of what is and is not maintainable
will probably shift. At present, these estimations are very much conditioned by the very fact that we are
so few people, as well as what kinds of change the existing C++ framework makes more or less difficult,
itself a function of how we have balanced priorities to date. One especially pressing body of work left
to address before the project moves into community development is the maintainability of the C++ code
itself, parts of which are suffering from repeated duct-tape solutions and over-obscurity, generally made
in the interests of trying to keep development iterations reasonably rapid. Crucially, just as we have
tried to create scope for progressively deeper engagement with the toolkit, we want something similar
for potential contributors of new algorithms and components in C++, in the form of a entry-level API
that tries to minimise the barriers to contribution.

If we are to be optimistic (and why not?), we may well hope that a wider pool of contributors will be
enabling in other ways. For instance, in this initial phase we have been wary of encapsulating too much
for fear that we would imprint our own, limited musical priorities on the toolkit too strongly. However, a
more distributed mode of development opens up more scope for a variety of different encapsulations and
ways-in that can address different musical practices and technical proclivities. In this way, we might also
hope that some of the problems of legibility pointed at in sections 3.3 and 3.4 could be tackled in varied
ways. If one dimension of the problems described is that there are implicit workflow expectations that
aren’t clearly illustrated by having all these separate building blocks, another is that the tools we have so
far borrowed from data science remain generic and that we don’t yet have a vocabulary for articulating
what is characteristic of different types of musical data, or for relating our aural experiences of these
data to statistical explanations.

PPIG 2022 22



5. Conclusion
Over the course of five years of research and development, the Fluid Corpus Manipulation project has put
together a toolkit for creative coding musicians that consolidates and builds upon a range of prior work
that provides functionality for audio decomposition, analysis and basic machine learning workflows
in Max, Pure Data and SuperCollider. The toolkit has been successfully used to produce a number
of complete pieces, has been enthusiastically received by user communities, and successfully taught to
newcomers in over 30 workshops, which gives us some confidence that our ambitions for the learnability,
utility, performance and robustness of the tools are being fulfilled. This has been achieved in part
by following a pattern of (relatively) rapid, iterative software development, combined with efforts to
produce expansive learning resources, and to bring forth a community of interest around the project’s
topic.

We have highlighted some wrinkles in usability, and explored how these have their roots in the inter-
action between some principles that guided development. In particular, we have tried to balance the
accessibility and flexibility of the tools, whilst also making efforts to keep a sense of consistency across
three quite distinct target languages, and ensure a basis for continued development once funding has
finished.

Whilst this work has taken place in an artistic research setting, with motivations and methods that may
be unfamiliar to some readers, we feel that this account points to questions and areas for further work
that are possibly interesting to the PPIG community. On one front, it charts the conduct of a moderately-
sized software project in the wild that has had to contend with the affordances of a range of languages
simultaneously, and reveals some of the dance between pragmatism and principle involved in making this
work. Meanwhile, answers to questions about how creative coding musicians might relate to and play
with concepts from data science might well be usefully approached in the future by some combination
of the release-it-and-see-what-happens approach we take here, and more controlled experimentation.

Acknowledgement
This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 725899).

6. References
Bergström, I., & Blackwell, A. F. (2016). The practices of programming. In 2016 IEEE Symposium

on Visual Languages and Human-Centric Computing (VL/HCC) (pp. 190–198). IEEE Computer
Society. doi: 10.1109/VLHCC.2016.7739684

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., . . . Varoquaux, G. (2013).
API design for machine learning software: Experiences from the scikit-learn project. In ECML
PKDD workshop: Languages for data mining and machine learning (pp. 108–122).

Clarke, S., & Becker, C. (2003). Using the Cognitive Dimensions Framework to evaluate the usability
of a class library. In Psychology of Programming Interest Group (PPIG) 2003.

Fiebrink, R. (2019). Machine Learning Education for Artists, Musicians, and Other Creative Practition-
ers. ACM Transactions on Computing Education, 19(4), 1–32. doi: 10.1145/3294008

Garber, L., Ciccola, T., & Amusategui, J. C. (2020). AudioStellar, an Open Source Corpus-Based Musi-
cal Instrument for Latent Sound Structure Discovery and Sonic Experimentation. In Proceedings
of the ICMC 2020. Santiago, Chile: Pontificia Universidad Católica de Chile.

Green, O., Tremblay, P. A., & Roma, G. (2018). Interdisciplinary Research as Musical Experimentation:
A case study in musicianly approaches to sound corpora. In Electroacoustic Studies Network
Conference. Florence, Italy.

McCartney, J. (2002). Rethinking the Computer Music Language: SuperCollider. Computer Music
Journal, 26(4), 61–68. doi: 10.1162/014892602320991383

McPherson, A., & Tahıroğlu, K. (2020). Idiomatic Patterns and Aesthetic Influence in Computer Music
Languages. Organised Sound, 25(1), 53–63. doi: 10.1017/S1355771819000463

Nash, C. (2015). The cognitive dimensions of music notations. In International Conference on Tech-

PPIG 2022 23



nologies for Music Notation and Representation (TENOR) (pp. 191–203).
Puckette, M. (1997). Pure Data: Another Integrated Computer Music Environment. In International

Computer Music Conference (pp. 224–227).
Puckette, M. (2002). Max at Seventeen. Computer Music Journal, 26(4), 31–43. doi: 10.1162/

014892602320991356
Roma, G., Green, O., & Tremblay, P. A. (2019). Adaptive Mapping of Sound Collections for Data-

driven Musical Interfaces. In Proceedings of the International Conference on New Interfaces for
Musical Expression (pp. 313–318).

Schnell, N., Röbel, A., Schwarz, D., Peeters, G., Borghesi, R., & Pompidou, I. C. (2009). Mubu
& Friends- Assembling Tools for Content Based Real-Time Interactive Audio Processing in
Max/Msp. In ICMC.

Schwarz, D., Beller, G., Verbrugghe, B., & Britton, S. (2006). Real-Time Corpus-Based Concatenative
Synthesis with CataRT. In Digital Audio Effects (DAFx) (pp. 279–282). Montreal, Canada.

Tremblay, P. A., Roma, G., & Green, O. (2022). Enabling Programmatic Data Mining as Musicking:
The Fluid Corpus Manipulation Toolkit. Computer Music Journal, 45(2), 9–23. doi: 10.1162/
comj_a_00600

Zicarelli, D. (2002). How I Learned to Love a Program That Does Nothing. Computer Music Journal,
26(4), 44–51. doi: 10.1162/014892602320991365

PPIG 2022 24


	2022-PPIG-33rd-green



