
Directions in Computational Music

Ian Clester
Center for Music Technology

Georgia Institute of Technology
ijc@gatech.edu

Abstract
This doctoral consortium submission describes my work on computational music, which has primarily
focused on three problems: representation, distribution, and environment. Among other topics, this
work relates to programming language design, interactive development, live coding, and programming
interfaces. I welcome feedback from the PPIG community, especially regarding methodology and future
directions, which I anticipate will prove helpful at this juncture midway through my doctoral program.

1. Introduction
Computational music is music represented as a computer program rather than as fixed media (such as
a score, DAW project, MIDI file, or audio file). Its representation may thus be far more compact than
its output (as it can directly encode abstractions of the composer’s choice), and it may encompass many
possible outputs by depending on external input or state (e.g. using a different seed for a random number
generator). This notion is closely related to generative music (Eno, 1996), aleatoric music (Cage, 2004),
process music (Reich, 1965), and algorithmic composition (Essl, 2007).

The general aim of my work is to realize the possibilities of computational music, primarily through
the analysis and development of languages, tools, and interfaces for its creation and use. I have been
pursuing this aim along three lines of investigation. The first is representation: how can computational
compositions be written down, and which abstractions are useful or necessary for a computer music
language? The second is distribution: how can computational compositions be effectively distributed
(i.e. with ease approximating that of distributing static, recorded music)? The third is environment: what
is a ‘good’ interface for creating computational compositions, and how can the possibilities enabled by
computational composition be extended to composers who do not consider themselves programmers?

These questions relate to several topics of interest in the PPIG community. The question of represen-
tation relates to programming language design and choice of abstraction, as embodied in the variety of
computer music languages and libraries available today. The question of distribution relates to issues of
software development, dependency management, containerization, and virtualization. And the question
of environment relates to user interfaces, interactive development, HCI, and programming pedagogy.

2. Existing & Related Work
I have conducted initial work in each of the three lines of investigation described above. The question
of representation is explored in Aleatora (Clester & Freeman, 2021), a composition framework that
challenges concepts taken for granted in most computer music systems. It is developed as a library for
an existing, general-purpose programming language (Python), and it eschews hard distinctions between
score and orchestra or between synthesis and control. Aleatora is built around the unifying abstraction
of streams, which support sequential, parallel, and function composition. Streams span the abstraction
hierarchy from patterns all the way down to samples, enabling the composer to compose at any level.
The generative composition itself is a first-class value within the language.

The challenge of distribution is addressed by Alternator (Clester & Freeman, 2022), a distribution system
that bundles computational compositions (written in existing languages such as Csound, Pure Data,
ChucK, Python, JavaScript, C, and Rust, among others) into self-contained packages for client-side
execution via WebAssembly. This presents the listener with a familiar music player interface which
supports common functions such as pausing and seeking, without requiring additional work on the part

PPIG 2023 74 ppig.org



of the composer/programmer. In addition, it enables each listener to hear different pieces and generative
variations without requiring a central server to run separate sandboxes for all concurrent listeners.

Finally, the question of environment is taken up by LambDAW (Clester & Freeman, 2023). LambDAW
takes the digital audio workstation (DAW) as its starting point and brings computation into the time-
line, introducing the concept of expression items that generate their contents by evaluating a Python
expression. Like spreadsheet formula, these expressions can reference other items in the timeline and
transform them, enabling the composer to freely mix code and data, combining the expressive power of
programming with the direct manipulation of the DAW. By taking an existing DAW (REAPER) as its
starting point, LambDAW augments the DAW’s capabilities and offers an entry point into computation
for composers and producers who already use the DAW in their creative workflows.

The full set of related work for these three projects is beyond the scope of this short submission; for
a more complete overview, see the related work section of each project’s paper. To briefly summarize,
Aleatora is related to computer music languages such as SuperCollider (McCartney, 2002) and Nyquist
(Dannenberg, 1997) and work on streams in general-purpose languages such as Scheme and Haskell.
Alternator is related to artistic works such as Generative.fm (Bainter, 2019) and generative radio stations
such as rand()%1and Streaaam (Hollerweger, 2021). And LambDAW is related to environments such
as EarSketch (Magerko et al., 2016), Manhattan (Nash, 2014), and DeadCode (Beverley, 2020), as well
as work on end-user programming more broadly.

3. Questions for the Community
3.1. Research Questions & Methodology
A key question for the community is how best to pose overarching research questions that relate to this
agenda. Of the various frames offered by relevant disciplines (music, creative coding, HCI, Psychology
of Programming), which provide the best fit for this kind of work? A related question is what research
methodologies may be most effective in answering these questions. Thus far, evaluation has consisted
largely of using these systems myself, demonstrating them to others, and discussing their design. What
quantitative or qualitative methods (such as surveys, user studies, interviews, etc.) will aid in more
rigorously evaluating them? To what extent is practice-led research appropriate for this area of inquiry?

3.2. Potential Directions
There are several potential directions to proceed from my current stage in my research, and I would ap-
preciate community feedback on the merits of these directions and relevant related work. One possibility
is “completing the loop.” Aleatora already connects nicely to LambDAW, as it is a Python framework
well-suited to writing concise expressions that generate audio or MIDI. Completing the loop by building
a way to export generative bundles from LambDAW that can run in Alternator would demonstrate a
complete approach to generative music, from composition to production to distribution.

Another direction is to enhance Aleatora (‘everything as a stream’) or Alternator (‘everything in a box’)
by building out infrastructure for embedding more within them, such as SuperCollider and other systems
which depend on it. This direction is particularly relevant for recording and replaying live coding perfor-
mances as code (while preserving random elements of the code, which can be re-decided on playback).

A third direction, and perhaps the one most relevant to the PPIG community, is using LambDAW as
a jumping-off point to explore hybrid compositional interfaces and programming environments, with
the general aim of supporting bricolage by allowing composers to freely mix code and data, taking in-
spiration from work on interactive visual syntax (Andersen, Ballantyne, & Felleisen, 2020) and livelits
(Omar et al., 2021). This direction further invites an exploration of how this work—which I have thus
far discussed in terms of ‘composition’ and ‘distribution’—relates to liveness, improvisation, and per-
formance. Such an exploration connects to broader questions about the relationship between generative
music and live coding (Blackwell & Collins, 2005) and may involve expanding the music/code compo-
sition environment beyond conventional computing interfaces such as screens, mice, and keyboards.

1https://www.bbc.co.uk/radio3/cutandsplice/rand.shtml

PPIG 2023 75 ppig.org



4. References
Andersen, L., Ballantyne, M., & Felleisen, M. (2020). Adding Interactive Visual Syntax to Textual

Code. Proc. ACM Program. Lang., 4(OOPSLA). doi: 10.1145/3428290
Bainter, A. (2019). Generative.fm. In A. Xambó, S. R. Martín, & G. Roma (Eds.), Proceedings of the

International Web Audio Conference (p. 148). Trondheim, Norway: NTNU.
Beverley, J. (2020). Liveness, Code, and DeadCode in Code Jockeying Practice. In Proceedings of

the 2020 International Conference on Live Coding (ICLC2020) (p. 117-131). Limerick, Ireland:
University of Limerick. doi: 10.5281/zenodo.3939222

Blackwell, A. F., & Collins, N. (2005). The Programming Language as a Musical Instrument. In
Proceedings of the 17th Annual Workshop of the Psychology of Programming Interest Group
(PPIG 2005) (p. 120-130).

Cage, J. (2004). Composition as process: indeterminacy. Christoph Cox, Daniel Warner, Audio Culture:
Readings in Modern Music, 176–187.

Clester, I., & Freeman, J. (2021). Composing the Network with Streams. In Audio Mostly 2021
(p. 196–199). New York, NY, USA: Association for Computing Machinery. doi: 10.1145/
3478384.3478416

Clester, I., & Freeman, J. (2022). Alternator: A General-Purpose Generative Music Player. In Proceed-
ings of the international web audio conference. Cannes, France: UCA.

Clester, I., & Freeman, J. (2023). LambDAW: Towards a Generative Audio Workstation. In Proceedings
of the 7th International Conference on Live Coding (ICLC2023). Utrecht, Netherlands. doi:
10.5281/zenodo.7842002

Dannenberg, R. B. (1997). Machine Tongues XIX: Nyquist, a Language for Composition and Sound
Synthesis. Computer Music Journal, 21(3), 50–60. (Publisher: The MIT Press) doi: 10.2307/
3681013

Eno, B. (1996). A Year with Swollen Appendices: Brian Eno’s Diary. Faber and Faber.
Essl, K. (2007). Algorithmic composition. In N. Collins & J. d’Escrivan (Eds.), The cambridge

companion to electronic music (p. 107–125). Cambridge University Press. doi: 10.1017/
CCOL9780521868617.008

Hollerweger, F. (2021). Streaaam: A Fully Automated Experimental Audio Streaming Server. In Audio
mostly 2021 (p. 161–168). New York, NY, USA: Association for Computing Machinery. doi:
10.1145/3478384.3478426

Magerko, B., Freeman, J., Mcklin, T., Reilly, M., Livingston, E., Mccoid, S., & Crews-Brown, A.
(2016). EarSketch: A STEAM-Based Approach for Underrepresented Populations in High School
Computer Science Education. ACM Trans. Comput. Educ., 16(4). doi: 10.1145/2886418

McCartney, J. (2002). Rethinking the Computer Music Language: SuperCollider. Computer Music
Journal, 26, 61–68. doi: 10.1162/014892602320991383

Nash, C. (2014). Manhattan: End-User Programming for Music. In Proceedings of the international
conference on new interfaces for musical expression (pp. 221–226). London, United Kingdom:
Goldsmiths, University of London. doi: 10.5281/zenodo.1178891

Omar, C., Moon, D., Blinn, A., Voysey, I., Collins, N., & Chugh, R. (2021). Filling Typed Holes with
Live GUIs. In Proceedings of the 42nd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation (p. 511–525). New York, NY, USA: Association for
Computing Machinery. doi: 10.1145/3453483.3454059

Reich, S. (1965). Music as a gradual process. Writings on music, 2000, 34–36.

PPIG 2023 76 ppig.org




