User-Centric Study and Enhancement of Python Static Code Analysers

Steven Chen Emma Soderberg Alan T. McCabe
Lund University Lund University Lund University
UPC - ETSEIB emma.soderberg @cs.lth.se alan.mccabe @cs.lth.se

ohangyu@outlook.com

Abstract

Despite the growing integration of code analysis tools into developer workflows, usability challenges
persist in many aspects. Previous research, primarily focused on static languages and professional de-
velopers, has largely overlooked the needs of novice developers and non-static languages like Python.
In this paper, we investigate the experiences of novice Python programmers with static code analysis
tools. We aim to understand how these novices interact with and perceive these tools, with a focus on
identifying usability pain points. To this end, we conducted initial user research with a survey followed
by interviews. The insights derived from these studies were used to develop an enhanced version of the
Pylint extension to Visual Studio Code, incorporating additional quick-fixes to improve the user experi-
ence connected to configuration of static analysis tools. The developed prototype extension was finally
evaluated in a user study. The results from the interviews and surveys suggest that false positives, oth-
erwise reported as a dominant cause of usability issues with code analysis, may not be as dominant for
novice users who may focus on other aspects and not challenge the code analysis results. In addition,
the results from the evaluation give early input on one possible direction for an enhanced Python code
analyser interaction focused on novices.

1. Introduction

Code analysers, tools that inspect source code for potential problems like coding standard violations,
are often integrated into the development process in different ways (Nachtigall, Nguyen Quang Do, &
Bodden, 2019). Some analysers are plugged into integrated development environments (IDEs) to pro-
vide developers with immediate feedback as the code is written down. Others may need to be executed
separately in the command-line interface (CLI). One of the main advantages of static code analysis is
that it helps to identify issues early in the development process, at a time when it can be easier and less
expensive to fix. For example, identifying a security vulnerability in the source code during development
can be much less costly than finding it after the code has been deployed and is in use.

However, while static code analysers can be a powerful tool for developers, they also have limitations.
Empirical research over the past decade has looked into programmers’ experiences to understand why
they need or use static code analysers (Christakis & Bird, 2016; Do, Wright, & Ali, 2022). Johnson et
al. (Johnson, Song, Murphy-Hill, & Bowdidge, 2013) found the issue of false positives to be the most
impactful reason why professionals stopped using code analysers. They also emphasized the impor-
tance of integrating the analysis tool into the coding environment. In a later study by Christakis and
Bird (Christakis & Bird, 2016), they also found false positives to be significant barrier and suggested
not enabling all code analyser rules by default. Moreover, some tools may require a significant amount
of configuration and setup, or may produce messages that are difficult to understand (Nachtigall et al.,
2019; Nachtigall, Schlichtig, & Bodden, 2022). These issues can make it challenging for developers to
integrate static code analysers into their development process and get benefits from them, especially for
novice users.

In our work, we focus on the experiences of novice Python users. As Python has rapidly grown within
the computer science industry, particularly in the fields of machine learning and data analysis, there is a
notably higher percentage of non-programmers who are less familiar with code analysis tools. This target
group differs from those of previous studies, as most beginners are early in their careers or students. They
may not be concerned about false positives, and some might not even be aware of code analysis despite

PPIG 2023 178 ppig.org

encountering it within their coding environments, such as IDEs or notebooks. With the perspective that
a good user experience with code analysers is critical to fully utilise the benefits of these tools (Do et
al., 2022), we set out to increase our understanding of novice Python developers’ experience of code
analysers in order to gain insights into how the design may be adapted to meet their needs.

2. Method

The overall objective of this work is to investigate Python static code analysers and to design and im-
plement improved features that can enhance the efficiency and fluency of the novice programmers’
workflow. With this in mind, we focused on the following two research questions:

RQ; What experience do novice Python developers have with code analysers?

RQ; How can the interaction with Python code analysers be improved for novices?

The work presented in this paper was conducted as part of a M.Sc. thesis project at Lund Univer-
sity (Chen, 2023).

2.1. Data gathering and analysis

To address RQq, we first gathered empirical data by circulating a questionnaire among novice Python
users. This covered topics such as familiarity with code analysers, perceived usefulness, and challenges
faced. The questionnaire had three sections: basic information, users’ experience with code analysers,
and prior knowledge of static code analysers; and included a four screenshots featuring several Python
code analysis results as examples (Fig. 4 - Fig. 7). These screenshots were included because we sus-
pected that most users would have previous experience with code analysers, though they may not have
had explicit knowledge of the concept and technology. Before distribution, we conducted a pilot survey
for feedback, which was used to improve the questionnaire. We collected 39 survey responses from both
offline and online sources.

After the survey, we followed up with a semi-structured interview to gather greater insight. The partici-
pants for the interviews were recruited from the survey respondents via a final question in the survey. In
total, six interviews were conducted and recorded with informed consent, after which they were analysed
for relevant content. An overview of participants in the survey and interviews is included in Table 1.

2.2. Prototype development and evaluation

To answer RQ,, we analysed the gathered empirical data for issues that may be addressed with an
intervention that could be implemented within the scope of a Master’s thesis project. We elected to
focus on the Python code analyser Pylint (Microsoft, n.d.; Pylint Contributors, n.d.-b) and the invalid-
name (Pylint Contributors, n.d.-a) issue. Over the course of the project, we modified an existing Pylint
extension to the Visual Studio Code editor', to provide an alternative interaction connected to the invalid
name issue. We described the enhanced extension in more detail in Section 3.3.

To evaluate the enhanced Pylint extension, we designed two simple Python exercises containing errors
detectable by Pylint. Both Python test files were similar, each including an introduction explaining the
objectives to be achieved, namely the elimination of all linted and underlined code. In addition to this
requirement, the users were instructed to name every term (constants, variable, class...) using a specific
format. One exercise required terms to be in upper-case letters (UPPER_CASE standard), while the
other required naming everything in lower-case letters (snake_case standard).

The exercises were presented in a random order, one using the existing Pylint extension from the mar-
ketplace, and the other using our enhanced Pylint. The exercise was supervised by the first author, and
participants were encouraged to think aloud, allowing us to guide them if they deviated from the purpose
of the exercise.

The aim of this experiment was to observe user interaction with the Pylint analyser and determine if

https://code.visualstudio.com/

PPIG 2023 179 ppig.org

they reacted differently to Pylint’s new features. By enforcing a specific naming standard, we simulated
a situation where users intended to name variables in a non-standard way. This approach allowed us to
observe, in real time, user interactions with the Pylint analyser, providing valuable insights into potential
usability issues.

After completing the exercises, we asked users about their experience with Pylint. As each user’s ex-
perience was unique, we remained flexible in our guidance, providing explanations about the exercise
as necessary. During the interview, we made sure to explain how Pylint typically handles naming code
issues, the conflict we sought to test, and the enhanced features we developed. Once confident that the in-
terviewee understood the topic, we sought their preference between the two solutions our enhanced tool
offered: solving the conflict by adding annotations to their source code, or adjusting the configuration
file of the Pylint analyser.

Finally, we openly asked for suggestions and feedback to gain insights for future studies and improve-
ments. An overview of participants in the evaluation is included in Table 1 and the prototype extension
is available as open-source?.

Table 1 — Overview of study participants and their background

Phase Participant ID Participant’s Background
S1 The experience with Python ranged from less than 6
Survey 52 months (31%), 6m-2y (36%). 2-5y (26%), >S5y (8%).
: Python had been encountered in academic courses (95%),
S39 personal projects (46%), and work (26%).
P1 (also S38) Industrial/Informatics Engineering
P2 (also S11) Informatics Engineering
P3 (also S35) Computer Science
Interview P4 (also S39) Industrial Engineering
PS5 (also S37) Computer Science
P6 (also S36) Computer Science
Cl Civil Engineering
C2 Molecular Biology
Prototype Evaluation ™3 (3150 P3) Computer Science
C4 Computer Science

2.3. Threats to Validity

The sample size in this study, especially in the prototype evaluation, is relatively small. An investi-
gation with a larger sample size could potentially enhance the internal validity of our findings and the
representation of the target population. For gathering of empirical data and recruitment of participants,
there may a bias in the sample selection. Specifically, for the interviews we used convenient sampling
techniques, which resulted in some interviewees having prior relationships with the author. This could
introduce bias, as these individuals may have tendencies to express positive comments, potentially losing
objectivity.

Additionally, it is important to consider the potential influence of experimenter bias on our findings.
Participants may have been aware of their involvement in an experiment focused on code analysis. This
awareness could have influenced their behavior and responses, leading to experimenter bias. While we
cannot confirm this hypothesis definitively, it is a factor worth considering when evaluating the outcomes
of our study.

In conducting the survey, we employed both online and offline procedures to collect data, introducing
inconsistent procedure and conditions as the degree of interaction varied between online and offline

Zhttps://gitlab.com/lund-university/vscode-pylint-invalid-name

PPIG 2023 180 ppig.org

What programming environment do you usually code In what coding environment have you seen code analy-

with Python? (Q1.3) sis results? (Q2.2)
Visual Studio Code 46 - Visual Studio Code -
Jupyter notebook 44 = Pycharm |
Jupyter Notebook =
Spyder 28 [
Others =
Pycharm 21 [Spyder [
Others 15 - Sublime Text -
\ \ \
0% 20% 40% 60% 0% 20% 40%
(a) Percentage (b) Percentage

Figure 1 — Summary of the programming environment experience of the participants in the survey.

respondents. In the semi-structured interviews, the majority were conducted virtually via Zoom, while
a single session was performed in person. However, the final evaluation took place in person. It is
important to note that the location and environmental conditions differed for each interview, which
could have also introduced variables affecting the result. Given that the respondents’ backgrounds and
expertise varied, the questions posed during the semi-structured interviews and evaluations were not
consistent. This inconsistency could have introduced bias. Furthermore, the protocols for the surveys,
interviews, and evaluations were generally flexible and open to adjustments, which could also have
introduced variability into the results.

3. Results
In this section, we present the results of the study split into results from different activities; survey,
interviews, prototype development, and prototype evaluation.

3.1. Novice Experience with Python Code Analysers: Survey

We found that the majority of users (85%) had seen code analysis results for Python before, while a
minority (33%) had seen code analysis results for other programming languages. When considering the
interaction with code analysis results, a majority of participants (59%) usually check the code analysis
results and the majority (69%) typically checks warnings as they appear during coding, as opposed to
after finishing the script (36%).

We also asked participants about their usual Python programming environment and found VS Code
to be the most commonly used platform (46%), followed by Jupyter Notebook (44%) (see Fig. 1 for
details). In connection to the environment, we asked participants if they had ever manually installed
code analysers in their coding environment and found that the majority had not done so (77%). We
further found that the vast majority of participants (97%) had never configured a code analyser.

While a majority of the participants (69%) viewed code analysis as beneficial, believing that it has a
positive effect on code quality, almost half of the participants (47%) expressed frustration upon seeing
their code highlighted (see Fig. 2 (b)). Two reported reasons for ignoring warnings, as opposed to
investigating highlighted code, were that the warning looks useless, relating to the concept of false
positives, and because of indifference to warnings or messages (Fig. 2 (c)). Despite these frustrations,
a high percentage (92%) of users who interact with code analysis agreed that the analyser positively
influences their coding process by detecting errors and bugs early (Fig. 2 (a)). When it comes to the
reason for ignoring warning messages after reading them, 62% of users felt the warnings didn’t apply
(false positives), and 47% considered the problem difficult to fix (Fig. 2 (d)). In some cases, users
mentioned that the problem looked hard to fix, meaning that the tool did not provide an immediate or
adequate solution.

For cases where a participant might encounter a code analysis result they do not understand, the majority

PPIG 2023 181 ppig.org

How has the tool helped you improve your code? What are the reasons for interacting with the high-
(Q2.6) lighted objects? (Q2.4)

It helps me find S
errors and bugs 0l I think it will im- ol

prove the code
at an early stage

It helps me write I don’t like to
cleaner and 37 = see my code be- 47 =
readable code ing highlighted

To learn why
Others 5 = the tool thinks 11 =

there is an error
! ! ! !

|
(@) o» 50% 100% (b) 0% 20% 40% 60% 80%
Percentage Percentage
What are the reasons for not interacting with the If you ignore the warnings or messages that the tool
highlighted objects? (Q2.5) displays, what is usually the reason? (Q2.7)
T T T T
They look use- 43 | IvS:rrrllitnth;nk 1?:: B
less to me & appies
.. The message is |
I don’t mlnd hard to understand
the warnings 43
or messages I am unsure how |
to fix the issue
Others 24 = Others |
! ! ! ! !
© 0% 20% 40% d) o% 20% 40% 60%

Percentage Percentage

Figure 2 — Summary of survey participants’ reported interaction with code analysis.

look to the internet or other programmers (74%) for assistance, while others attempt to fix the issue
directly (49%), dig deeper into the code analysis tool (31%), and a fifth of the participants ignore the
results altogether (21%).

The full text of the questionnaire can be found in appendix A, and a detailed breakdown of the results
can be found in appendix B.

3.2. Novice Experience with Python Code Analysers: Interviews

All the participants in the interview part of the study expressed a positive attitude towards code analysers
in general. They conveyed the belief that they are powerful tools that improve their coding by detecting
errors at an early stage. (e.g., "Analysers are incredibly helpful because they save a lot of time. Instead
of having to run the code, wait for it to break, and then look at the interpreter to figure out what went
wrong, you can catch the mistake ahead of time. It’s especially helpful when you miss something like a
semicolon or a mismatched parentheses. If I don’t catch an error like that before running the code, and
it breaks, it can be frustrating.” — P3).

After hearing about the positive aspects of code analysers, we asked the respondents to share their
dislikes about the technology. We specifically asked about any pain points or frustrations they had
experienced while using code analysers in their work or studies. This part of the survey was an important
source of feedback for identifying areas of improvement, which can inform the design of features to
address issues (e.g., "Sometimes it tells me that a variable should not be named a certain way, but 1
feel like I can name my variable however I want." — P1, "Many times you just accidentally click on
something and change your code, like maybe you press enter and it automatically changes things. It
is really annoying. I tried to get rid of it but I couldn’t." — P4, and "I really dislike when the analyser
suggests a possible error of code. Because I wrote it for a reason, I probably wanna do it. I don’t like
when it informs me of something that may not be an error." — P6).

PPIG 2023 182 ppig.org

We asked the respondents if they felt whether the warning messages given by analysis tools were clear
enough, and what they typically do if they don’t understand them. Based on their responses, we found
that messages are usually understandable when the issue is simple, but when it becomes more complex
the messages can become difficult to understand and do not provide enough options for clarification.
Most users tended to turn to Google to find a solution (e.g., "I think I rarely read what it says. It’s just
like, oh, it marks this place. And I quickly realize what is wrong. Almost all the time I understand the
message, but when I don’t understand it, I really don’t understand it. If it marks something and I don’t
understand, reading it probably won’t help me." — P3, and "I would try to understand the message. If it
has a little help icon I probably would use it, it’s easier to press up than to go to Google." — P4).

False positives are a major usability problem with code analysers. To better understand the frequency of
this issue among students and novice Python developers, we asked the respondents about their experi-
ence with false positives (e.g., "I think it happens with typos, for example when you misspell a variable,
but it’s actually something you wanted to call it in that way on purpose.” — P2, "I don’t think there have
ever been false positives to me that I can remember. If it suggests something, it’s probably going to be
very technically correct.” — P3, and "I don’t think that’s ever happened. My code doesn’t usually get too
complicated.”" — P4).

We asked the interview participants about a specific feature that we believed would be useful in code
analysers: providing suggestions to help users solve the problems identified by the tool. We asked for
their thoughts on this feature and on the quality of the solutions suggested by the tool, and the attitude
towards suggestions was mixed (e.g., "Quick fixes for simple things are good, you just click it and change
it and it is really nice, I use a shortcut in VS all the time. I don’t think it’s ever happened that it marks
something and the suggestion is bad. Most of the time there is a suggestion that is probably good." —
P3, and "I’'ve almost never seen a quick fix that works. The only time I've seen it work is it’s like, oh you
haven’t imported, Numpy or other packages. But I, if it’s more complicated than that, I've never seen
that actually function in the tools I've used." — P6).

Finally, we asked the respondents to suggest areas of improvement for the code analyser tool. We
encouraged them to provide suggestions for enhancements in various areas, including user interface
design and other functionalities that they felt were lacking (e.g., "It would be nice to dismiss some
specific warnings. I don’t care about this thing on this line, but it usually will recheck every time. Like
Jjust dismiss this specific error in this specific situation. So in general, I want the check, but for this time,
ignore it." — P3, "I think a lot of code analysis doesn’t provide quick fixes or don’t for a lot of cases, and
1 feel often there’s pretty easy solutions to things. So getting some more quick fixes would be helpful."”
— PS5, and " I think a feature that is quite lacking in a lot of these built in code analysers is they give
you a very supertficial description of the problem, but there’s no option to have them explain more, or
dig deeper. Then you have to go to an external source to understand what that means. You only get the
superficial explanation from the tool most of the time." — P6).

3.3. Prototype Development: Invalid Name Config Support

When analysing the interview results, one specific issue that caught our attention was the problem of
naming terms that do not follow certain style standards. This type of warning occurs when a user names
a variable, for example, with a term that does not follow Python’s official PEP8 (Guido van Rossum
and Barry Warsaw and Nick Coghlan, 2001) style standard, though it is not related to the functionality
of the code. In some cases, users may want to name a term or variable in a specific way, regardless of
formatting, capitalization, or case. The fact that the tool provide neither a solution nor a fast and intuitive
way to ignore the warning can be frustrating for users and may discourage them from using the tool. We
found this to be an interesting problem to study and address.

We opted to tackle the invalid-name issue in the context of VS Code, as it was the most used program-
ming environment among survey respondents. We found that Pylint, a well known Python code analyser
available as an extension to VS Code, offers a limited set of quick-fixes that address 14 code problems
which do not include the invalid-name issue. Hence, we set forth to explore a solution for this issue in a

PPIG 2023 183 ppig.org

variant of the Pylint extension for the Visual Studio Code editor>.

In our implementation, we developed four quick-fix options that enable users to address the invalid-
name issue at different levels: on a single line, from a specific line, within the current block, or at the
document level by adding annotations. Additionally, we designed two quick-fix options that handle a
pylintrc configuration file, allowing users to either disable the rule entirely in the working directory or
add the treated naming variable as an always accepted term. We also considered adding support for a
quick fix that would adjust the name to the form suggested by the issue, but unfortunately we did not
have enough time in the project to also develop this feature. The final view of our implementation is
illustrated in Fig. 3.

P testlpy 9+ X
@ testl.py > [@) text
wan

This exercise should be done in 5 minutes. There are 2 main objectives:

1. Eliminate every linted, underlined and highlighted code.
2. Every naming term should be in cappital letters (UPPER_CASE).

You can refresh the warnings by pressing command + S saving the file,

Convention types:
- sneak_case: Lowercase letters and underscores to separate words. Example: user_name, my_module.
- Pascal_case: Uppercase letters for the first letter of each word, with no underscores.
Example: CalculateTotalPrice.
— UPPER_CASE: Uses uppercase letters and underscores to separate words. Example: TAX_RATE.

a =32
print(a+b)

Class name "employee" doesn't conform to PascalCase naming style Pylint(

class employee()
Employee class
Full name: testl.employee
View Problem (CF8) Quick Fix... (3.)
class employee:
WiEmployee class"™
pass

Quick Fix...
Ignore: at this line (Pylint)
Ignore: from this line (Pylint)
Ignore: in current block (Pylint)
gf;,tvE:?}\,‘;H}ﬁ,tﬁqffﬂg‘f.q.xfflgv‘?(p rodu Ignore: at document level (Pylint)
total_price = quantity * price_ Ignore: add this name as an exception (Pylint)
tﬂ’(= total_price * tax_rate Ignore: disable C0103 at this directory (Pylint)

Ffnal_price = total_price + tAx

return Final price

ce_per_unit, tax_rate):

36 text = "Fusce commodo, nisi est fringilla justo, et convallis augue elit in dolor.”

Figure 3 — Implemented quick-fixes.

3.4. Prototype Evaluation: Invalid Name Config Support

The two types of quick-fix options developed in the prototype extension address the invalid name issue in
different ways, each presenting unique advantages and disadvantages. For instance, adding annotations
directly into the user’s source code might be a flexible and visual way of controlling and customising
message rules. This can be an advantage, as users are always aware of which rules are enabled or
disabled at different points in their code, and can quickly modify the rules when necessary. However,
users might be annoyed by the tool adding extra information and code into their work.

On the other hand, using a configuration file, such as the pylintrc file, could be a more discreet solution.
The drawback is that it’s not as flexible as annotations, as users cannot specify which lines, blocks, or
Python files they intend to customise rules for. Although the configuration file might be more desirable
because it remains hidden, users might not be as aware of the available rules as they would be with
annotations. Moreover, if users later want to edit or change the settings, they need to locate the pylintrc

3The extension with more implementation details is available at https://gitlab.com/lund-university/
vscode—-pylint—-invalid—-name.

PPIG 2023 184 ppig.org

file and modify its content, which might not be an intuitive process for developers.

The purpose of this final evaluation was to assess users’ experiences with Pylint, and the newly devel-
oped features, as well as their thoughts on these two distinct methods for addressing code issues. We
asked the participants to edit two simple Python programs via instructions given in comments in the
beginning of each file. The instructions gave the participants the task of naming terms according to a
specific naming scheme, edits designed to trigger naming issues generated by Pylint. The participants
carried out one of the tasks with the new Pylint extension developed in the project and one task with the
default Pylint extension. We aimed to determine which option is more suitable, if there is one, as well as
to collect valuable suggestions and constructive feedback that could guide future work on similar topics.

All of the volunteers interviewed in the evaluation had some level of Python knowledge, but their ex-
pertise varied. Some were computer science students with substantial experience with programming
languages and coding environments, while others primarily used Python as a tool to complete tasks in
specific courses. Given these differences, we will first discuss their performance during the exercise,
followed by the topics discussed during the interview. We will refer to participants as C1-C4.

3.4.1. Experience of the Exercise

The participants’ responses to underlined codes were diverse. For instance, C2 consistently clicked on
the "View problem" option for more information and clicked the light bulb whenever possible. However,
the participant quickly lost interest in the message as it wasn’t immediately clear and intuitive. On
the other hand, C3 quickly understood the error and manually resolved some of the warnings. These
differences can be attributed to varying levels of expertise with the Python language and familiarity with
the code editor.

Despite these differences, all candidates reacted confused to the naming conflict presented during the
experiments. However, they expressed varying levels of annoyance. Some proceeded with the exercise
without giving it much thought, while others spent a few minutes trying to find a resolution.

A key observation was that only C1 noticed the difference between the two exercises, where the user
could apply the developed ignore options. For example, C2 tried to find similar options by right-clicking
on the linted variables. C3, on the other hand, assumed that the quick-fix option would enforce the
standard that the linter was expecting.

3.4.2. Adding Annotation

We asked the candidates how annoyed they would feel if the tool provided an option to ignore issues by
adding an annotation to their source code. Candidates C2 and C4 expressed a low level of annoyance,
provided the number of annotations wasn’t excessive. In contrast, candidates C1 and C3 expressed a
high level of annoyance. C1 stated that having annotations would affect the code’s readability, while
C3 raised concerns about sharing annotated code with others, as it could be less readable and confusing.
This latter opinion contrasts with that of C4: they expressed a preference for including comments in the
code rather than in the pylintrc file, arguing that this approach clarifies what is enabled and disabled in
the code when it’s shared with other collaborators.

3.4.3. Dealing with Pylintrc

We also asked the interviewees how they felt about adding a pylintrc file to their directory and ignoring
the rule within the configuration. All interviewees were open to having a configuration file that manages
different Pylint code rules. However, after discussing the advantages and disadvantages of this method
versus adding annotations to the source code, only C3 insisted that addressing the problem with pylintrc
would be more suitable. C4 expressed a preference for annotations to enhance collaboration, and C1
suggested that having the annotation at the top of the document would be the best solution. Participant
C2 mentioned that the choice between methods could depend on the severity of the rule. They suggested
that annotations could be useful for important rules or warnings to consistently remind the user of their
status, while for convention problems, the pylintrc file might be preferable.

PPIG 2023 185 ppig.org

4. Discussion and Conclusions

Interestingly, the mainly novice developers among our participants did not appear to be significantly
affected by false positives. Although a high percentage of respondents in Fig. 2 answered that they ignore
warning messages because they believe the warning does not apply, none of the users we interviewed
could provide an example of frustration with false positives.

Instead, in the suggestion section of the interviews, our participants talked about improving the warning
messages, increasing the number and variety of quick-fix features, and improving the user interface and
other functional options.

One possible explanation for this contrasting perspective lies in the expertise level of our participants.
Given that most of them had limited experience with the Python language, they may have a higher level
of trust in the code analyser compared to their own understanding. In contrast, professional developers,
with their extensive knowledge and expertise, may exhibit a higher level of confidence in assessing the
correctness of the analysis tool. Novices, therefore, might be more inclined to rely on the analyser’s
results, even when confronted with warning messages that they believe do not apply directly to their
code.

Another contributing factor could be the purpose for which novices typically use the Python language.
Since many novice users are likely to work on smaller-scale projects or specific tasks, their code is
generally less complex compared to those of professional developers. As a result, they may encounter
fewer instances of false positives, as the simplicity of their code reduces the probability of provoking
such cases.

Many of the issues that later emerged during the prototype evaluation interviews were related to the
general usability of the tool, suggesting that there is a need for further design iteration. For instance,
one of the most significant issues was that 3 of the 4 candidates did not recognise the difference between
the original and enhanced Pylint tool. The reason for this varied depending on the user: candidate C2
sought functionality by right-clicking the variables, C3 misinterpreted the quick-fix functionality, and
C4 didn’t notice the option as it was situated at the bottom of the hover message. Furthermore, some
problems echoed the survey findings, such as warning messages being difficult to understand.

Specifically for the invalid-name issue, C2 mentioned that the naming standard terms like "PascalCase"
might be confusing for a user without prior knowledge of the topic, reflecting the warning messages’
inadequate explanation of the correct standard or examples. On the other hand, she mentioned that the
option to disable the rule might be confusing as it is referred to as error code "C0103", not the name of
the issue itself.

Based on what we found in this study we see a need for further study of novice interaction with code
analysis, both in Python and also other programming languages. As such, we have identified several
directions for future work:

* Conduct a more thorough investigation of the usability challenges faced by novice Python de-
velopers. This should involve a larger and more varied sample size to capture a wider range of
experiences and challenges.

* Expand the quick-fix options available in the Pylint tool for VS Code or other editor platforms.
This could involve developing new features or refining existing ones based on user feedback.

* Consolidate the code implemented in this project and contribute to the wider Pylint community
by submitting a merge request to the official GitHub repository. This could provide benefits to a
large number of users.

* Refine the warning messages in Pylint to make them more comprehensible, particularly for novice
programmers. This could involve rewriting the messages or providing additional context or exam-
ples to help users understand the issues identified.

PPIG 2023 186 ppig.org

5. Acknowledgements

The authors would like to thank all the participants in the study. This work has been partially supported
by the Swedish Foundation for Strategic Research (grant no. FFL18-0231), the Swedish Research Coun-
cil (grant no. 2019-05658), ELLIIT - the Swedish Strategic Research Area in IT and Mobile Commu-
nications, and the Wallenberg Al, Autonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation.

6. References

Chen, S. (2023). User-centric study and enhancement of python static code analysers (LU-CS-EX
2023-31). Lund University.

Christakis, M., & Bird, C. (2016). What developers want and need from program analysis: An empirical
study. In 2016 31st ieee/acm international conference on automated software engineering (ase)
(p. 332-343).

Do, L. N. Q., Wright, J. R., & Ali, K. (2022). Why do software developers use static analysis tools?
a user-centered study of developer needs and motivations. /[EEE Transactions on Software Engi-
neering, 48(3), 835-847. doi: 10.1109/TSE.2020.3004525

Guido van Rossum and Barry Warsaw and Nick Coghlan. (2001). PEP 8 — Style Guide for Python
Code. Python Enhancement Proposal. Retrieved from https://pep8.org/ (Status: Active.
Created: 5-Jul-2001)

Johnson, B., Song, Y., Murphy-Hill, E., & Bowdidge, R. (2013). Why don’t software developers use
static analysis tools to find bugs? In 2013 35th international conference on software engineering
(icse) (p. 672-681). doi: 10.1109/ICSE.2013.6606613

Microsoft. (n.d.). Vscode-pylint. (https://github.com/microsoft/vscode-pylint)

Nachtigall, M., Nguyen Quang Do, L., & Bodden, E. (2019). Explaining static analysis - a perspective.
In 2019 34th ieee/acm international conference on automated software engineering workshop
(asew) (p. 29-32). doi: 10.1109/ASEW.2019.00023

Nachtigall, M., Schlichtig, M., & Bodden, E. (2022). A large-scale study of usability criteria addressed
by static analysis tools. In Proceedings of the 31st acm sigsoft international symposium on soft-
ware testing and analysis (pp. 532-543). doi: 10.1145/3533767.3534374

Pylint Contributors. (n.d.-a). Invalid-name / c0103. (https://pylint.readthedocs.io/en/
latest/user_guide/messages/convention/invalid-name.html)

Pylint Contributors. (n.d.-b). Pylint. (https://pylint.readthedocs.io/en/latest/
index.html)

A. Questionnaire

Please see below for questions included in the questionnaire. The screenshots included in the question-
naire are included in Fig. 4, Fig. 5, Fig. 6, and Fig. 7.

PPIG 2023 187 ppig.org

Section 1
1.1. How much experience do you have working actively with Python? (Select one.)

[J Less than 6 months

[] Between 6 months and 2 year
[J Between 2 and 5 years

[J More than 5 years

1.2. What experience do you have with Python? (Select all that apply.)
[J University or academy courses
(] Personal projects
(J work
[J Other (please specify):

1.3. What programming environment do you usually code with Python? (Select all that apply.)
[J Pycharm
[J Visual Studio
[J Sublime Text
(] Jupyter Notebook
[J Others (please specify):

Section 2
2.1. Figure 1 is an example of static code analysis in Python. Have you ever seen similar highlighted
code or warnings before? (Select one.)

(] Yes
] No

2.2. In which coding environments have you seen these warnings? (Select all that apply.)
[J Pycharm
[J Visual Studio
[J Sublime Text
[J Jupyter Notebook
[J Others (please specify):

2.3. Would you typically interact with the highlighted objects? (Select one.)
[J Yes
[J No

[J Sometimes

2.4. If you interact with the highlighted objects, what are the reasons why? (Select all that apply.)
[J I don't like to see my code being highlighted.
[J Ithink it will improve the code.
[J Other reasons, please specify why:

2.5. If you don’t interact with the highlighted objects, what are the reasons why? (Select all that
apply.)

[J I don’t mind the warnings or messages.

[J They look useless to me.

[] Other reasons, please specify why:

PPIG 2023 188 ppig.org

2.6. Figures 2-4 show more examples of Python code analysis results. From your own experience,
how has the tool helped you improve your code? (Select all that apply.)

[J It helps me write cleaner, more readable code.
(] It helps me find errors and bugs at an early stage.
[J Others, please specify:

2.7. If you ignore the warnings or messages that the tool displays, what is usually the reason? (Select
all that apply.)

(] 1 don’t think the warning applies.

[J The message is hard to understand.
[J I am unsure how to fix the issue.

[] Others, please specify why:

2.8. If you encounter a message that you don't understand, what do you typically do? (Select all that
apply.)

(] Ignore them

(] Try to check the issue by myself.

[J Look for external help (e.g., other people, the internet).

(] Try to understand the message by digging deeper into the tool.

[J Other, please specify:

2.9. When do you typically check the warnings? (Select all that apply.)
[J When the warning appears as | code.
(] After finishing the script.
[J Before committing to Git or similar.
[] Other, please specify:

Section 3
3.1. Have you ever used code analysers in other programming languages? (Select one.)

[J Yes, please specify:
[J 1 have not used code analysers in other programming languages.

3.2. Have you ever manually installed external code analysers into your coding environment to
improve your code quality? (Select one.)

[J Yes, please specify:
[J No

3.3. Have you ever customized or configured a code analyser? (Select one.)
[J Yes, please specify:
(J No

Would you be willing to participate in an interview to provide further insight? (Select one.)
(] Yes, please leave us a contact email:

J No

Disclaimer: The information you provide in this survey will be used for research purposes only. All responses will be kept
anonymous and confidential. Consent statement: By proceeding with this survey, you agree to allow us to use the information
you provide for research purposes. You understand that all responses will be kept anonymous and confidential. If you choose to
withdraw from the survey at any time, you may do so without penalty.

PPIG 2023 189 ppig.org

1. Undefined variable
def calculate_mpg(milesDriven, gallonsUsed):

mpg = milesDriven / gallonsUsed
mpg = round(mpg, 1)
return mpg

def main();

choice = 'y'

while
#

choice.lower()
get input form user

y':

milesDriven = float(input('enter miles driven: '))
gallonsUsed = float(input('enter gallons used: '))

#

call MPG function

calculate_mpg(milesDriven, gallonsUsed)
print('miles per gallon:\t',mpg)

#

determine fate of loop

choice = input('do you want to continue: y/n: ')

#.2... 700 many arquments. * Non-existing class attribute

def __init__(self, color):
self.color = color

apple = F
banana =
banana_ty;

3. Pass.
def say_h
retur

ruit("red", "apple", [1, 2, 3])
Fruit("yellow")
pe = banana.type

ing parameter of a different type than intended
i(name: str) -> str:
n f'Hi {name}'

TODO @ Problems Terminal & Python Packages @ Python Console

PEP 8: W391 blank line at end of file

¥ P

aseqeieq

©
=
<
3
2

4) Event Log

50:1 LF UTF-8 4spaces Python 3.8 (pythonProject) e @

Figure 4 — Piece of code highlighted by a code analyser.

MasesE A~ UMYy e e avene g
gallonsUsed = float(input('enter gallons used: '))
call MPG function

calculate_mpg(milesDriven, gallonsUsed)
print('miles per gallon:\t', mpg)

deter

e fate of loop

choice = input('do you want to continue: y/n: ')

2. Too many arguments + Non-existing class attribute
class Fruit:
def __init__(self, color):

self.color = color

apple = Fruit("red", "apple", [1, 2, 3])

banana

= Fruit("yellow")

banana_type = banana.type

3. P
Ang nn
main()

Mypy: "Fruit" has no attribute "type” [attr-defined]

Pylint: Instance of 'Fruit' has no 'type' member
assing pard

R fma

While ehojee /Users/stevenchen/Documents/Python/undefined_variable.py

banana: Fruit = Fruit("yellow")

Problems: ~ Current File 36 F

® [~ undefined_variable.py ~/C

Pylint:
Pylint:
Pylint:
Pylint:
Pylint:
Pylint:
Pylint:
Pylint:
Pylint:
Pylint:
Mypy:
Pylint

Structure

% Favorites.

(=]

s/Python 36 problems
Missing module docstring 1

Missing function or method docstring :2

Argument name "milesDriven" doesn't conform to snake_case naming style
Argument name "gallonsUsed" doesn't conform to snake_case naming style
Missing function or method docstring :7

Variable name "milesDriven” doesn't conform to snake_case naming style 11

2

Variable name "gallonsUsed" doesn't conform to snake_case naming style :12

Undefined variable 'mpg’ :15
Missing class docstring :22

Too few public methods (0/2) :22

Too many arguments for "Fruit" [call-arg] :27

Too many positional arguments for constructor call :27

0DO @ Problems & Mypy ¢ Pylint Terminal € Python Packages @ Python Console
Download PyCharm for Apple Silicon for better performance and stability. // Download... Don't show again (19 minutes ago)

10:30 LF UTF-8

Figure 5 — Code analysis results by Pylint and Mypy in Pycharm.

B. Survey results
Please see Fig. 8 for additional survey results complementing the details included in Section 2.

PPIG 2023

190

o
26 410 |3
&
&
8
o
g
=
3
I
& —
Q) Event Log

4spaces Python 3.8 (pythonProject) W @

ppig.org

B + X O T » m C » Code v # Python 3 (ipykernel) O
. : £
[]: def square(x):
""""Can you see me?"
return x*x
[]: result = square(2)
| Rl
- ined name ined_variable' -
NameError Traceback (most recent call last)
<ipython-input-4-4c6d5bf4bce5> in <module>
———-> 1 undefined_variable
NameError: name 'undefined_variable' is not defined
[5]: class Dog:
""""" def bark(self):
print('#% woof woof')
Message Code Severity - Source Cell Line:Ch
undefined name 'Ca’ Error pyflakes 1 0:0
undefined name 'undefined_variable' Error pyflakes 5 0:0
too many blank lines (5) E303 Warning pycodestyle 8 0:0
blank line contains whitespace W293 Warning pycodestyle 6 1:0
module level import not at top of file E402 Warning pycodestyle 4 0:0
'statistics.mean' imported but unused Warning pyflakes 4 0:0
iitialized Python 3 (ipykernel) | Idle Mode: Edit & Ln1,Col19 jupyterlab-Isp_exemple.ipynb

Figure 6 — Code analysis results by Jupyter-lsp in Jupyter Notebook.

1. Undefined variab
£ calculate_npo(itesbriven, GatlonsUsed):
mpg = milesDriven / gallonsUsed
mpg = round(mpg, 1)
return mpg

£ nain():

choice = ‘'y*

while choice.lower() ==
get input form user
= float(input('enter miles driven: '))
B d = float(input('enter gallons used: '))
call PG function
calculate_mpg(milesDriven, gallonsUsed)
print('miles per gallon:\t', fipd)
determine fate of loop .

e ¢ flake8: [F821 — undefined name 'mpg’
choice = input(‘do you want t | 1i o\ Fage2 - Undefined variable 'mpg® (undefined-variable)
Copy | Click ® to trigger a quick action

2. Too many arguments + Non-existing class attribute
lass Fruit:
def __init_ (self, color):
self.color = color

[@pple = Fruit(“red", “apple", [1, 2, 31)
banana = Fruit("yellow")
banana_type = banana.typd

3. Passing parameter of a different type than intended
(def say_hi(name: str) —> str:
return f'Hi {name}"

greeting = say_hi(123)
print(greeting)

4. Singleton comparison
if 5= None

ne:
print(“value = nothing")

5. Consider Using With
(def update_file(path, new_content):
with bpeni(path, "a") as ff:
f.write(new_content)

0

Figure 7 — Code analysis results by Pylint/Flake8 in SublimeText.

PPIG 2023 191 ppig.org

Have users seen simi-
lar code analysis results?

Q2.1)
100% — 80%
80% 60%

9 60% o
5 S 40%

S 40% 2

W) =¥
0% 20%
0% 0%

Yes

In what coding environment have you

seen code analysis results? (Q2.2)

Do users check the analysis
results? (Q2.3)

Have you ever used code
analysers in other program-
ming languages? (Q3.1)

100% — ‘

Visual Studio Code

80%
60%

26 40%

Percentage

15 20%

0%

No Yes

Yes Sometimes

Have you ever manually
installed external code
analysers into your coding Have you ever customised
or configured a code anal-

yser? (Q3.3)

environment to improve

your code quality? (Q3.2)
\ \ !

100% —
Pycharm : . 100% |- o7
Jupyter Notebook 80% |- 1
[9]
Others g 60% - &
= =
Spyder | o 5] |
Py S a0m | g 50%
Sublime Text Lo A~
! \ 20% 13
0% 20% 40% 3
Percentage 0% 0%
Yes No Yes No
When do you typically check the warn- If you encounter a message that you don’t un-
ings? (Q2.9) derstand, what do you typically do? (Q2.8)
Wh h T T T T T T T
a.rn'lin ; © 69 Look for ex-
warning ap- | ternal help |
pears as I code
) Try to check the |
After finish- . issue by myself
ing the script .
Dig deeper |
Before com- into the tool
mitting to - 18 -
Git or similar Ignore them |
Others *F 3 - Others -
| | | | | | | |
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80%
Percentage Percentage
Figure 8 — Summary of survey results.
PPIG 2023 192 ppig.org

