
A brief history of the human centric study of programming languages

Luke Church
Computer Laboratory
Cambridge University
luke@church.name

Alan F. Blackwell
Computer Laboratory
Cambridge University

Alan.Blackwell@cl.cam.ac.uk

Abstract

The study of programming languages focussing on the needs of the programmer has been a subject of
intellectual enquiry for at least the past 50 years. We draw one through this history that is likely to be
of particular interest to the Psychology of Programming audience highlighting recurring tensions of
internal validity, generalisability and practical utility. We suggest this longer term perspective is useful
for informing contemporary debates.

1. Introduction

The question of how to design languages for programming computers has been a matter of interest for
a number of different disciplines in the past. Engineers working in compiler construction have
considered the impact of the design of the languages on the technology needed to run programs (e.g.
Waite and Goos 1984). Mathematicians have studied the ways in which the structure of programs
affects the statements we can make about their behaviour (e.g. Pierce 2002). Psychologists and
interaction design researchers have studied the design from a human perspective. In their landmark
paper (Newell and Card 1985) observe that:

“Now programming languages are obviously symmetrical, the computer on one side, the programmer
on the other. In an appropriate science of computer languages, one would expect that half the effort
would be on the computer side, understanding how to translate the languages into executable form,
and half on the human side, understanding how to design languages that are easy or productive to
use.”

This paper offers an overview and reflections on the human focussed, scientifically inclined, study of
programmers and their behaviour. It is not a historical overview of the literature in psychology of
programming - readers interested in that overview can refer to (A. F. Blackwell, Petre, and Church
2019). Alternatively, a more light-hearted historical introduction to the field can be found in (A. F.
Blackwell 2017).

2. The origins of programming

During the early history of electronic computing, the only way of interacting with a computer was to
write, or control the execution of, a program. For more than a century, the study of the interaction with
a computer was effectively the study of programming, from Ada Lovelace’s famous 1843 notes on the
programming of Babbage’s Analytical Engine (Menabrea and of Lovelace 1843) to the 1947 report by
Goldstine and Von Neumann on Planning and coding of problems for an electronic computing
instrument (Goldstine and von Neumann, n.d.).

PPIG 2023 5 ppig.org

https://paperpile.com/c/Nxo4HL/MOWGZ/?prefix=e.g.
https://paperpile.com/c/Nxo4HL/MOWGZ/?prefix=e.g.
https://paperpile.com/c/Nxo4HL/9ZD59/?prefix=e.g.
https://paperpile.com/c/Nxo4HL/4CHns
https://paperpile.com/c/Nxo4HL/0MKN
https://paperpile.com/c/Nxo4HL/0MKN
https://paperpile.com/c/Nxo4HL/fwIG
https://paperpile.com/c/Nxo4HL/fwIG
https://paperpile.com/c/Nxo4HL/Epnw
https://paperpile.com/c/Nxo4HL/9AfE


Although nothing corresponding to the modern user interface had been imagined, it is notable that
these pioneers already focused on problems of notation, and also that they considered the extent to
which it would be feasible to specify different classes of problem using these notations. This means
that early research on interaction with programs can still be informative when discussing the
properties of modern programming environments (see e.g. (Arawjo 2020)). Furthermore, due to the
importance of programming in early computing, the study of the usability of programming was
formative in the study of the usability of computing more generally. In the first part of this review we
will describe the evolution of the perspectives and techniques that researchers have used to try and
improve the usability of programming, as well as the venues in which this work was disseminated.

From the perspective of subsequent consolidation of cognitive science as an interdisciplinary field, we
can see that early contributions often involved implicit cognitive claims about what people find easy
or hard when programming, followed by the implications for design of those claims. Aspects of
human performance and experience have been part of the argument from the beginning.

3. Early cognitive claims (1968-1973)

An early example of a cognitive claim made by a computer scientist came from Edsger Dijkstra. In a
now famous letter to the Communications of the ACM, he stated his position that ‘Go To Statement
Considered Harmful’ (Edsger W. Dijkstra 1968) . This work makes essentially cognitive arguments
such as:

‘My second remark is that our intellectual powers are rather geared to master static relations and that
our powers to visualize processes evolving in time are relatively poorly developed.’

Dijkstra then goes on to consider the implications for design of these claims such as:

‘For that reason we should do (as wise programmers aware of our limitations) our utmost to shorten
the conceptual gap between the static program and the dynamic process, to make the correspondence
between the program (spread out in text space) and the process (spread out in time) as trivial as
possible.‘

The broader position that is outlined in the ‘goto considered harmful’ letter is that the structure of
programs can be described by a number of ‘independent co-ordinates’ inherent to sequential processes
by which progress in execution can be measured. Dijkstra argues that the ‘unbridled use of the go to
statement has an immediate consequence that it becomes terribly hard to find a meaningful set of
coordinates in which to describe the process progress.’

The argumentation is presented as an expert experience report “For a number of years I have been
familiar with the observation that the quality of programmers is a decreasing function of the density of
go to statements in the programs they produce.“, it does not present evidence to support this claim, or
a definition of what ‘quality of programmers’ might be, or even a description of what the
programmers being considered were doing. However on the basis of this experience report and several
cognitive hypotheses, Dijkstra felt confident in recommending broad design changes to the majority
of programming languages:

PPIG 2023 6 ppig.org

https://paperpile.com/c/Nxo4HL/BIVO
https://paperpile.com/c/Nxo4HL/gaBeq


‘I became convinced that the go to statement should be abolished from all "higher level"
programming languages (i.e. everything except, perhaps, plain machine Code).’

In 1971, (Evershed and Rippon 1971) follow a similar form of argumentation, considering their
experience of the usability characteristics of various aspects of ALGOL and FORTRAN. On the basis
of these characteristics they go on to make recommendations for a variety of design changes. They
include an economic argument, which can be seen as a precursor of end-user programming: ‘with the
esoteric content of programming eliminated, a much broader section of the population will become
potential computer users’.

The scope of Evershed and Rippon’s work is broader than Dijkstra’s earlier work; it independently
discusses several language features, however it doesn’t propose an overarching psychological
hypothesis like Dijkstra’s ‘independent coordinates’.

Evershed and Rippon, as well as Dijkstra, argue from their experience rather than from documented
empirical evidence. When (Sime, Green, and Guest 1973) published the results of a controlled
experiment, it represented both a new approach to studying programming languages as well one of the
first applications of what would become known as Human Computer Interaction (HCI) methods
(Katz, Petre, and Leventhal 2001).

In their work, Sime, Green and Guest compare the behaviour of programmers when presented with
two different forms of a conditional construct, the if-then-else form (named NEST) and the
branch-to-label form (named JUMP). The authors constructed two micro-languages using the NEST
and JUMP forms respectively. They then conducted a controlled experiment, in which participants
were given a simple program description in English which they needed to translate into one form, and
then after a week to translate the same English description into the other form. The experimenters
recorded the number of problems that the participants did not correctly solve the first time, as well as
the time to complete the tasks.

The experiment clearly identified that the NEST form is a statistically significant improvement over
the JUMP form, resulting in increased task completion rate and fewer semantic errors where the
program the participant submitted for execution did the wrong thing.

This experimental approach is borrowed from cognitive psychology. It follows the methodology of
considering a particular property that is common in a number of languages, constructing a
micro-language that stresses the property and conducting an empirical experiment for measuring the
effect of those properties. The authors hope that

‘By devising micro-languages exemplifying particular features of interest, knowledge can be gained
which allows more informed decisions to be made when designing new languages.’ - (Sime et al.
1973).

Green and others expanded on this strategy in subsequent work on e.g. the delimitation of scopes
(Sime, Green, and Guest 1977). This arc of work not only set the foundation for later work in HCI,
but also established an empirical perspective on the evaluation of candidate language features.

PPIG 2023 7 ppig.org

https://paperpile.com/c/Nxo4HL/jPFMB
https://paperpile.com/c/Nxo4HL/39fUQ
https://paperpile.com/c/Nxo4HL/bMAWv
https://paperpile.com/c/Nxo4HL/QiUK6


Just as Evershed and Rippon were hopeful of increasing the access to computers for a broader section
of the population, Sime et al. were concerned with the importance of studying the usability of
computers and of programming systems by ‘non-specialists’. In a practice that would be followed by
many others, the population of non-specialists they used as test participants were university students.

4. Broadening interest (1973-1986)

After the publication of the Sime et al’s work there was a growth of interest in the application of
empirical techniques, especially the relatively informal Software Psychology society convened by Ben
Shneiderman (Shneiderman 1986). In his book Software Psychology, Shneiderman (Shneiderman
1980) outlines many perspectives on the problem of creating software. He defines software
psychology, a term he attributes to Tom Love, as “the study of human performance in the using
computer and information systems” - but concentrates on software development rather than software
use.

Shneiderman outlines a number of the methodologies in use for this research including introspection,
detailed analysis of recordings of activities, called protocol analysis, discussion of code corpora such
as (Knuth 1971), and controlled experiments. Shneiderman also deconstructs the idea of
‘programming’ as an activity, instead describing it as being composed of the tasks of Learning,
Design, Composition, Comprehension, Testing, Debugging, Documentation and Modification.

Much of the book is concerned with what would become the study of software engineering, including
organisational and managerial concerns. The material concerned with the design of language features
is primarily discussed in Chapter 4 - ‘Programming Style’. It documents experiments concerned with
the impact of comments on comprehensibility, (unpublished work by Peter Newsted) and apparently
contradictory results on the effect of variable naming schemes ((Weissman and University of Toronto.
Computer Systems Research Group 1973)), null results on the effects of indentation on
comprehension of FORTRAN programs ((“RELATING INDIVIDUAL DIFFERENCES IN
COMPUTER PROGRAMMING PERFORMANCE TO HUMAN INFORMATION PROCESSING
ABILITIES” 1977)) and a extended discussion of choices of control structures.

At the end of this chapter, Shneiderman’s advice for designers of languages is that they
‘should recognize the that specific features may have a statistically significant effect on performance
and should thoroughly test alternative proposals’ ((Shneiderman 1980), p90)

It is clear from the number of studies referred to in this section that by 1980 there was a growing
community of research around programming language usability, and whilst advice about specific
features such as jumps or blocks could be given, the broad advice at this point was that it was
important to test the usability properties of the various choices in languages.

The work between 1973 and 1980 was criticised by (R. E. Brooks 1980) and (Sheil 1981). Brooks
raised concerns that the heterogeneous nature of the total population of programmers results in
experiments needing extremely large samples to achieve significance. He highlights a specific source
of variation associated with the use of timing measures, observing that the time to solve the problem is
interleaved in a non-trivial way with the time to understand the question, and that the effect size is
diluted by the participants needing to understand concerns not strictly relevant to the test, for example

PPIG 2023 8 ppig.org

https://paperpile.com/c/Nxo4HL/F1TV
https://paperpile.com/c/Nxo4HL/IUuCw
https://paperpile.com/c/Nxo4HL/IUuCw
https://paperpile.com/c/Nxo4HL/lEKSf
https://paperpile.com/c/Nxo4HL/MlLi
https://paperpile.com/c/Nxo4HL/MlLi
https://paperpile.com/c/Nxo4HL/YZYZ
https://paperpile.com/c/Nxo4HL/YZYZ
https://paperpile.com/c/Nxo4HL/YZYZ
https://paperpile.com/c/Nxo4HL/IUuCw
https://paperpile.com/c/Nxo4HL/1dJAD
https://paperpile.com/c/Nxo4HL/jPXvJ


understanding a library used in the stimulus material, when the purpose of the experiment was
actually instruction flow.

Brooks also mentions a range of issues with the external validity of the experimental designs; he is
concerned that a common practice to reduce variation, using students as participants, results in studies
where the sample is not representative of the larger population of programmers. Brooks observed that
the programs in the stimulus materials at the time were all under 500 lines, compared to contemporary
commercial programs which were in excess of a million lines. He questions the validity of the
experimental measures used, suggesting that timing studies may not be representative of a real value
property. For example, measuring only development time may exclude considerations of quality, and
debugging exercises may not successfully entail that the participant understands the program and so
on.

The broad direction of this criticism is that designing an experiment which has a statistically
significant effect is hard, and even when it is achieved, it can be difficult to know if the observed
effect generalises to the practice of programming and software engineering.

Brooks is outlining, in 1980, one of the central motivating concerns of our work: knowing how to use
information about programmers to improve design in a way that has validity outside of the
experimental context. Brooks’ response to these problems was to advocate the development of models
of the cognitive processes involved in programming to understand and manage the methodological
issues:

“What approaches, then, show promise? Any successful characterization of the program-programmer
interaction will probably be based on a model of the process or processes used by a programmer in
interacting with a program. The development of such theories or models of the cognitive processes
involved in programming is, therefore, likely to be a prerequisite to progress on these methodological
issues.” (R. E. Brooks 1980)

In a lengthier critique (Sheil 1981) outlines not only concerns about methodology but also about the
lack of impact of the psychological research on the computing community. Sheil begins by outlining
the state of the art in 1981:

“As practiced by computer science, the study of programming is an unholy mixture of mathematics
(e.g. (Edsger Wybe Dijkstra 1997)), literary criticism (e.g. (Kernighan and Plauger 1974)) and
folklore (e.g. (F. P. Brooks 1975)). However, despite the stylistic variation, the claims that are made
are all basically psychological; that is, that programming done in such and such a manner will be
easier, faster, less prone to error, or whatever” (Sheil 1981), [citation format updated]

Sheil’s argument, however, is not that these alternative styles are problematic, it is that the direct
psychological study of languages as it was performed in 1981 was problematic.

Sheil points out several underlying patterns: that results that might appear strong for novices quickly
vanish as the participants become more experienced, that it is easy to measure the effect of
pathological designs but multiple practical alternatives are often difficult to distinguish, and that it is
difficult to separate out the ways in which a treatment, such as the introduction of static typing, which

PPIG 2023 9 ppig.org

https://paperpile.com/c/Nxo4HL/1dJAD
https://paperpile.com/c/Nxo4HL/jPXvJ
https://paperpile.com/c/Nxo4HL/Vr9qx
https://paperpile.com/c/Nxo4HL/Zvw6L
https://paperpile.com/c/Nxo4HL/dwUSj
https://paperpile.com/c/Nxo4HL/jPXvJ


Sheil argues entails the introduction of structural typing, affects the subject performance. Sheil
continues enumerating other methodological challenges to the experimental designs and reporting of
the experiments published at that point, the strongest critique however is in the general handling and
deployment of evidence in support of design.

“Yet, as Shneiderman sadly notes in a retrospective of this work, “Flowchart critics cheered our
results as the justification of their claims, while adherents found fault and pronounced their
confidence in the utility of flowcharts in their own work” (Shneiderman 1980). It is in response to
reactions like this that the use of psychology in computer science debates was earlier characterized as
“ammunition.” (Sheil 1981)

Sheil is concerned that, as the actually empirically supported conclusions are too weak, there is a
tendency to overreach, blurring what is known with what is conjecture.

“Another consequence of this dependency on computing is that behavioural researchers tend, possibly
in an attempt to make their work appeal to computer scientists, to generalize far beyond their data…
[discussing (Shneiderman 1980)] Detailed discussions of experimental results are interleaved with
totally (empirically) unsupported opinions on programming style. Much of this material would be
quite legitimate, intuitively based argument in a computer science debate. However its presentation as
part of a discussion of empirical research completely blurs the distinction between data and intuition,
inviting readers to reject data that do not support their preconceptions. This makes the entire
empirical enterprise moot”. - (Sheil 1981)

And

“The absence of a critical review process, coupled with the very considerable difficulty of research in
this area and the constant tendency to drift into intuitively based argument and generalize far beyond
what has been established, has created a pseudopsychology of programming” (Sheil 1981)

Similar to Brooks, Sheil argues that the most pressing need is to establish a theory of programming
skill.

“The experimental investigation of such factors as the style of conditional notation is premature
without some theory which gives some account of why they might be significant factors in
programmer behavior.” (Sheil 1981)

In a retrospective in 1986, (Curtis 1986) argues that these methodological critiques were coupled with
a problem of the better designed studies tending to come after decisions had already been taken:

‘Computer science was little interested in weak empirical justifications for directions it had already
taken, such as structured programming. Computer scientists cared more for deductive proofs than for
the rejection of null hypotheses.’ (Curtis 1986)

Looking back, Curtis sees 1981 as a turning point, that in response to Sheil and Brooks future research
of the field adopted a cognitive psychological approach rather than a human factors approach.
However, Curtis somewhat laments that cognitive psychology was chosen. At this point in time, the

PPIG 2023 10 ppig.org

https://paperpile.com/c/Nxo4HL/IUuCw
https://paperpile.com/c/Nxo4HL/jPXvJ
https://paperpile.com/c/Nxo4HL/IUuCw
https://paperpile.com/c/Nxo4HL/jPXvJ
https://paperpile.com/c/Nxo4HL/jPXvJ
https://paperpile.com/c/Nxo4HL/jPXvJ
https://paperpile.com/c/Nxo4HL/nA9fN
https://paperpile.com/c/Nxo4HL/nA9fN


first workshop on the Empirical Studies of Programmers was organised, and it was here where Curtis
was presenting his retrospective.

5. Community of study: Empirical Studies of Programmers (1986 - 1997)

Although the most prominent spinout from the Software Psychology society was the ACM CHI series
((Shneiderman 1986)), a smaller group was convened to continue the specific focus on programming.
Empirical Studies of Programmers (ESP) first met in June 1986 in Rosslyn VA ((Shneiderman1

1986)). The preface of the proceedings outlines the purpose of the research as guiding interventions to
improve practice:

‘Broadly speaking, the basic assumption of researchers who study programmers is this: By
understanding how and why programmers do a task, we will be in a better position to make
prescriptions that can aid programmers in their task. For example, if we can understand how a
maintainer, say, goes about comprehending a program, we should be in a good position to recommend
changes in documentation standards that would enable the maintainer to more effectively glean from
the documentation the necessary information. Similarly, recommendations for software tools and
education should also follow.’ ((Soloway and Sitharama Iyengar 1987), pvii).

They outline a number of the challenges of carrying out experiments in this area, many of which
persist to the current day. One is for the research to be multidisciplinary, requiring ‘a healthy degree of
sophistication in both programming and psychology in order to recognize what are the important
research issues’. They also acknowledge a limitation of the work contained in the proceedings: that
the research was examining ‘programming in the small’ whilst million line programs could be found
in industry and ‘software of such magnitude has not as yet received significant attention by
researchers in the field’.

Curtis ((Curtis 1986)) shares this concern about the ecological validity of the studies carried out,
suggesting that the series might be called “Empirical Studies of Student Programmers” or that the
work will continue to be retrospective in focus on ‘demonstrating already established cognitive
phenomena’ (p257), raising doubts as to the justification for experimental studies as a cost-effective
method of influencing design.

Curtis argues for increased ecological validity in studies, considering not only the individual’s
cognition but also the broader organisational context in which programming takes place. (Soloway
1986) concludes the proceedings discussing an agenda for the continued importance of
programming-in-the-small to identify ‘baseline-issues’, that is to catalogue the important and
recurrent behaviours of programmers as well as to develop confidence in the research methodologies.
He also goes on to suggest that controlled studies may ‘not be that useful for initially studying
programming-in-the-large. This type of methodology requires carefully worked out hypotheses be
developed first, before the experiment.’, going on to state that ‘Almost by definition,
programming-in-the-large violates the basic premises for a controlled study.’ ((Soloway 1986), p266).
Instead he suggests that alternative techniques such as ‘talking-aloud’ may be a richer source of data
for theory building.

1 http://www.ppig.org/news/2006-06-01/whatever-happened-empirical-studies-programmers

PPIG 2023 11 ppig.org

https://paperpile.com/c/Nxo4HL/F1TV
https://paperpile.com/c/Nxo4HL/F1TV
https://paperpile.com/c/Nxo4HL/F1TV
https://paperpile.com/c/Nxo4HL/D0DCS
https://paperpile.com/c/Nxo4HL/nA9fN
https://paperpile.com/c/Nxo4HL/9smkO
https://paperpile.com/c/Nxo4HL/9smkO
https://paperpile.com/c/Nxo4HL/9smkO


Even at this very early stage of the field a number of techniques and questions are outlined. For
example, (Onorato and Schvaneveldt 1986) considers, in the proceedings for the first Empirical
Studies of Programmers workshop, the difference in exploratory behaviour for communicating how to
do something between programmers and non-programmers. This kind of question is now important in
discussions of how to support ‘end-user programmers’ in an organisational context, as identified in
both MacLean et al’s pioneering Buttons project ((MacLean et al. 1990)) and Nardi’s seminal text
((Nardi 1993)).

Similarly, (Spohrer and Soloway 1986) describe a project to understand high-frequency bugs, showing
that there are bugs that occur very commonly in novice programs (such as off-by-one errors), but also
that these are not the result of novices misunderstanding a language feature. They conducted this
experiment by gathering a corpus using a rudimentary form of instrumented tooling. They augmented
the operating system of the computer their participants were using (a VAX 750), and obtained a copy
of each syntactically correct program submitted for compilation. They refer to this data as on-line
protocols.

By the conclusion of the first workshop of the Empirical Studies of Programmers, many of the core
methodological tensions (e.g. internal validity vs; ecological validity, and what form of evidence
needs to be in place to have an effective impact on language design) were already established.

Over the course of the subsequent workshops these issues continued to be explored with the balance
shifting towards the study of professionals (by ESP 5, 70% of subjects in studies were professionals,
compared to 21% in ESP 1). The series concluded with what would have been ESP 8. The
submissions were included in a special issue of the International Journal of Human-Computer Studies
(IJHCS Volume 54, No 2, Feb 2001). As the Editorial of this final issue suggests (Katz, Petre, and
Leventhal 2001), the need for research into the Empirical Studies of Programmers had grown as wider
populations engaged in programming ranging from the growing business applications, to educational
and end-user programming fields. However, after this 8th workshop, some of the core researchers
moved into other communities.

The role of a US based workshop considering the empirical investigation of professional programmers
has been taken up by the Workshop on Evaluation and Usability of Programming Languages and
Tools (PLATEAU) series discussed below. Human factors and HCI aspects have also been strongly
represented at the Visual Language and Human Centric Computing (VL/HCC) IEEE symposium
series, especially since the addition of “HCC” to the original focus on descriptions of novel kinds of
visual syntax, which had an implicit concern with improving usability while seldom actually testing
this ((A. F. Blackwell 1996)).

6. PLATEAU (2009 - present)

PLATEAU started in 2009 with the goal of considering and improving the efficiency of programmers
by improving the usability of the languages and tools they develop with (Anslow, Markstrum, and
Email: 2009). It was explicitly aimed at improving the visibility of the work on Human Computer
Interaction to the programming language community. As such, PLATEAU tends to meet co-located
with major software engineering conferences such as ICSE or OOPSLA/SPLASH.

PPIG 2023 12 ppig.org

https://paperpile.com/c/Nxo4HL/AYkXN
https://paperpile.com/c/Nxo4HL/5JF3
https://paperpile.com/c/Nxo4HL/GsJN
https://paperpile.com/c/Nxo4HL/LgvpS
https://paperpile.com/c/Nxo4HL/bMAWv
https://paperpile.com/c/Nxo4HL/bMAWv
https://paperpile.com/c/Nxo4HL/ROOm
https://paperpile.com/c/Nxo4HL/cPDT
https://paperpile.com/c/Nxo4HL/cPDT


PLATEAU has taken a software engineering perspective on the questions that ESP was interested in.
It has a similar focus on professional and expert study (60% of studies that explicitly reported their
sample, were of professional programmers compared to 23% at PPIG, discussed below).

The work that is published at PLATEAU includes corpus analyses, for example (Pritchard 2015)
models the distribution of error messages from a system for novices learning to program as a
precursor to systematically improving their usability. They compare their system for writing Python
(Pritchard and Vasiga 2012) with data from Blackbox, which records data from the BlueJ Java editor
(Brown et al. 2014).

PLATEAU also published empirical investigations into tools usage such as (Sadowski and Yi 2014)’s
qualitative study into how developers at Google use tools for concurrent race detection, (Kabáč,
Volanschi, and Consel 2015)’s controlled experiments with four professionals evaluating the ease of
learning of DiaSuite, or (Campusano et al)’s controlled experiment investigating preference,
developer productivity and comprehension in live programming robots.

Work at PLATEAU is often focussed around evaluation techniques such as (Hanenberg and Stefik
2015)’s call to build a community standard for the design of controlled experiments. (Kurtev,
Christensen, and Thomsen 2016) outline a methodology for supporting the design of iterative or
incremental improvements to programming languages. They observe that the ‘evaluation’ step of the
incremental design of languages is often prohibitively expensive, especially if large scale empirical
studies are used. Instead they propose a ‘discount usability evaluation’ method conducting a simple
test observing participants completing basic tasks and categorising the problems they experienced by
severity.

As well as these discussions and publications of empirical results on how programming is done,
PLATEAU also provides a venue for higher level discussions such as (Ko 2016)’s description of the
socio-technical roles of programming languages.

As would be expected given the focus on professional users, the PLATEAU community has in general
been focussed on conventional uses of programming. This is in contrast to the sibling community of
ESP and PLATEAU in Europe, PPIG, which has often provided a venue for the discussion of avant
garde uses of programming such as bricolage programming (McLean and Wiggins 2010),
choreography (Church, Rothwell, and Downie 2012) and education via robotics (Martin and Hughes
2011).

8. What works - the ‘language wars’ (2014 - present)

In 1981 Sheil criticised the construction of a ‘pseudoscience of programming’ through a combination
of a lack of theory development, poor experimental practice and systematic overreach from weak
empirical positions. Since 2014 there has been a resurgence of critique along a similar line, notably
from Stefik and Hanenberg, that the standards of evidence used in programming research is
inadequate, especially in contrast to the use of Randomised Control Trials (RCTs).

PPIG 2023 13 ppig.org

https://paperpile.com/c/Nxo4HL/zaeV2
https://paperpile.com/c/Nxo4HL/o7CwH
https://paperpile.com/c/Nxo4HL/nP4dk
https://paperpile.com/c/Nxo4HL/80gld
https://paperpile.com/c/Nxo4HL/amn2K
https://paperpile.com/c/Nxo4HL/amn2K
https://paperpile.com/c/Nxo4HL/aBqQ8
https://paperpile.com/c/Nxo4HL/aBqQ8
https://paperpile.com/c/Nxo4HL/fktSd
https://paperpile.com/c/Nxo4HL/fktSd
https://paperpile.com/c/Nxo4HL/Yjzv1
https://paperpile.com/c/Nxo4HL/x2vtR
https://paperpile.com/c/Nxo4HL/TEG7f
https://paperpile.com/c/Nxo4HL/whkOH
https://paperpile.com/c/Nxo4HL/whkOH


In the earlier critique, Sheil was primarily concerned with the integrity and scientific standing of
programming language research, a concern that Stefik and Hanenberg also share. In ((Andreas Stefik
et al. 2014)) they describe a systematic review of the papers in PPIG and PLATEAU, coded according
to their own scheme for categories and using criteria from the campaign for evidence-based policy in
education research in the USA known as the What Works Clearinghouse. As described in a critical
evaluation of that campaign (an evaluation which the author claims was suppressed by the federal
funders of WWC), in asking why it had attracted so much controversy, ‘The answer to these questions
can be summed up in two words: “math wars.”’ (Schoenfeld 2006).

The goal of the WWC in USA educational policy had been to ensure that educational initiatives
resulted in quantifiable improvements, applying the same logic as the use of RCTs in publicly-funded
health interventions. Although driven by a recognisable political agenda, education researchers are
well aware of the futility of attempting RCTs in children’s education, for factors that include the
primarily political and social drivers of educational outcomes (e.g. race, gender, social deprivation)
that political actors hope not to draw attention to when advocating curriculum change or technological
intervention as a less costly panacea.

The desire for more clear cut quantifiable evidence in programming language design was also
associated with a particular approach to programming education, hoping to demonstrate that Stefik’s
Quorum language (2017) had a more solid scientific basis than the more popular Scratch. Scratch had
been introduced to schools from the more arts-based tradition of live, creative coding, rather than a
focus on teaching conventional syntax, and this was a matter of concern for computer scientists who,
as had occurred earlier with Dijkstra’s polemic against BASIC, were concerned that the more
easily-learned graphical syntax would damage students’ understanding. Stefik originally implemented
Quorum (and its predecessors) to support the needs of students with disabilities, but developed this
into a campaign to make Quorum the first language for which every feature could be justified with a
scientific study.

Advocates of the evidence-based approach, meeting the “what works” standards, focus on technical
properties of programming language design, for example explicitly labelling the discussion of
self-efficacy, tooling support, education or program comprehension as not related to programming
language design ((Andreas Stefik et al. 2014), p228). Instead they concentrate on properties such as
type systems, syntax and API design. In a direct challenge to established methods in Psychology of
Programming, Stefik and colleagues concluded that only 1.1% of PPIG papers were both related to
programming language design (by the above definition), and also met the standards proposed by the
What Works Clearinghouse. They report that the corresponding number for Plateau is 14.3% and
16.7% for ESP.

They argue that this represents a fundamental weakness in programming language design research.
However, they go on from there to suggest that this weak evidential base for language design may be
an important cause of long-standing controversy that they describe as ‘language wars’ (Andreas Stefik
and Siebert 2013)), which they argue have had substantial, negative, social consequences caused by
the effort of creating, learning and adopting multiple languages. As an alternative they advocate for
methodologies that contribute “what works” style evidence, such as RCT’s of specific features.
Examples of this approach based on RCTs are found in (Uesbeck et al. 2016), (Endrikat et al. 2014),
(Andreas Stefik and Siebert 2013).

PPIG 2023 14 ppig.org

https://paperpile.com/c/Nxo4HL/DJ1P
https://paperpile.com/c/Nxo4HL/DJ1P
https://paperpile.com/c/Nxo4HL/yyVF
https://paperpile.com/c/Nxo4HL/DJ1P
https://paperpile.com/c/Nxo4HL/hAbtE
https://paperpile.com/c/Nxo4HL/hAbtE
https://paperpile.com/c/Nxo4HL/Agxyp
https://paperpile.com/c/Nxo4HL/GdB41
https://paperpile.com/c/Nxo4HL/hAbtE


In the math wars in education research that the “language wars” phrase alludes to, the political drivers
reflect conservative advocacy of labour utility, as imagined through the rote classroom “labour” of
skill acquisition, practice drills, and quantitative assessment of the numbers of uniformly correct
answers, as contrasted with a vision of education that emphasises creative experience and diversity of
assessment. In education, these two poles are associated with alternative scientific agendas - on the
creative side, qualitative and interpretive research that is politically informed, while on the utilitarian
side, research emphasises quantitative assessment and RCTs to verify reductionist cognitive or
perceptual models.

The same dynamics can be seen in programming language research, where a utilitarian labour focus
emphasises the number of correct actions taken by the programmer implementing a well-defined
specification, rather than programming as an exploratory, creative and diverse experience. As
programming language research becomes more human-centric, in the recognition that the language is
a user interface and that some account needs to be taken on the user, these two alternative perspectives
have led to the language wars campaigners suggesting that programming language design should
prefer some HCI research methods, but not others.

Large scale software application deployments do use RCT-like A/B tests to compare interface design
alternatives, where there is a clear productivity measure that can be used by the company (e.g.
numbers of sales or click-throughs). We note that these methods are especially relevant to incremental
optimisation of programming language designs. This is in contrast to research such as that in the
Visual Languages or Live Coding communities that focuses on novel paradigms, new styles of
representation, and applications beyond traditional waterfall-style software engineering. Of course,
the focus on novelty within VL/HCC may indeed miss opportunities for optimisation of existing
language designs, which often have points of detail that could be improved through application of
RCTs. A point of particular relevance for incremental RCTs is decisions that relate to the surface
syntax of programming languages and environments. There are many details of syntax that have been
chosen on an arbitrary basis, without clear evidence for the choice made. When supported by
empirical evidence, we are able to determine, for example, whether a special assignment operator
corrects frequent misconceptions that arise from misuse of the equals sign ((Mc Iver, n.d.)).

The natural desire of computer scientists to produce quantitative accounts of human behaviour ((A. F.
Blackwell 2022)), combined with the particular kind of political drivers that expect educational policy
to produce a mechanically trained, yet disempowered, workforce ((Hicks 2017)), combine in the
software industry with those large companies whose business model require measurement and control
of user’s attention ((Zuboff 2019), (Seaver 2022)). The result for the psychology of programming has
been a constant struggle to take a well-informed approach to design guidance.

8. Cognitive dimensions (1989 - present)

The paper describing the broad layout of the language wars (Andreas Stefik and Hanenberg 2014)
raises a number of questions that overlap with our research interests. Perhaps the largest point of
difference is that they are particularly upset about the widespread use of Thomas Green’s Cognitive
Dimensions of Notations framework ((Green 1990), (Green and Petre 1996), (Hadhrawi, Blackwell,
and Church 2017)). The emphasis of CDs on the importance of the tool and environment suggested

PPIG 2023 15 ppig.org

https://paperpile.com/c/Nxo4HL/NxOg
https://paperpile.com/c/Nxo4HL/LFGL
https://paperpile.com/c/Nxo4HL/LFGL
https://paperpile.com/c/Nxo4HL/yAri
https://paperpile.com/c/Nxo4HL/xFeW
https://paperpile.com/c/Nxo4HL/SB02
https://paperpile.com/c/Nxo4HL/QjhY
https://paperpile.com/c/Nxo4HL/ijll
https://paperpile.com/c/Nxo4HL/6BmM
https://paperpile.com/c/Nxo4HL/MzU9
https://paperpile.com/c/Nxo4HL/MzU9


that reductive controlled comparison of syntax choice as the primary scientific agenda in language
design might not actually be the most important question to investigate. The emphasis of CDs on the
need for different solutions to different problems, insisting that a language should only be evaluated in
relation to a particular profile of activities, also seemed contrary to the desire to identify objectively
“best” features.

(A. Stefik and Hanenberg 2017) write:
For example, one common approach that we think lacks merit is the so-called cognitive dimensions of
notations framework, a set of design principles conceived by Thomas R.G. Green in 1989 and
expanded in a 1996 article. According to Google Scholar this influential article has been cited some
500 times, but Green’s theory wasn’t based on sound empirical evidence--by 1989 there had only been
seven programming language design studies.

Emphasis on citation counts as a measure of scientific quality is not one that we would advocate,
especially since the publication describing Stefik’s own Quorum language ((Andreas Stefik and
Ladner 2017)) has only been cited 23 times, which is less influential than we would hope for “the first
language to use human-factors evidence from both field data and randomized controlled trials in its
design” (the “language wars” paper has been cited many more times than the language itself, which
certainly does not do justice to the original scientific or design objectives of Quorum).

The language wars authors were not the first to have criticised the intentions and scientific
significance of Cognitive Dimensions. Green’s work at the MRC Applied Psychology Unit, had been
intended precisely to use empirical human factors techniques as a basis for engineering design, along
with much other research that made the MRC-APU one of the founding centres of HCI research
internationally ((Craik 1944), (Reynolds and Tansey 2003)). It was after 20 years of work on this
problem that Green came to realize individual controlled experiments were not a practical or effective
source of design guidance for the designers of new interactive systems. The intentions of Cognitive
Dimensions were precisely to avoid the “death by detail” that made it infeasible to address design
problems in this way, instead offering a theoretically informed “broad brush” vocabulary with which
designers could be encouraged to discuss decisions and trade-offs that were cognitively relevant.

Some younger researchers have perceived this response to the need for “broad brush” design guidance
as a lack of scientific rigour. In particular, those coming from human-factors engineering or business
productivity contexts have hoped that problems of design could be reduced to more quantified
performance formulas or objective observations of what is right. This was the driver for the “Physics
of Notations” proposed by business school lecturer Daniel Moody ((Moody 2009)) - a critique that is
even more highly cited than the above quote, even more critical of the supposedly scientific status of
CDs (keeping in mind that CDs was always intended to be a resource for designers, not a scientific
theory), and also driven by the desire for objective and measurable criteria. As it turns out, much of
Moody’s alternative “physics” was no less subjective than the CDs themselves, since supposedly
“physical” facts such as semantic interpretation are always dependent on the observer. The Physics of
Notations has become far more widely cited than CDs, and certainly has greater appeal to quantitative
PL researchers, but meta-analysis of the many studies citing this work show that they are just as
lacking in scientific rigour and replicability as Moody felt that Green had been ((Linden and Hadar
2018)).

PPIG 2023 16 ppig.org

https://paperpile.com/c/Nxo4HL/Uv0G7
https://paperpile.com/c/Nxo4HL/EPvi
https://paperpile.com/c/Nxo4HL/EPvi
https://paperpile.com/c/Nxo4HL/vkR1
https://paperpile.com/c/Nxo4HL/LlCf
https://paperpile.com/c/Nxo4HL/AbeJ
https://paperpile.com/c/Nxo4HL/LN6p
https://paperpile.com/c/Nxo4HL/LN6p


The desire for a physics-based set of design principles for PLs, or a laboratory controlled trial for
choosing the objectively best features, is typical of first-wave HCI ((Bødker 2006)), with its emphasis
on human factors as an optimisable component within an engineering system. Perhaps CDs might be
considered a part of the turn toward context that was characteristic of second-wave HCI. The
possibility of focusing on a more diverse variety of creative experiences, including artistic practices as
well as utilitarian ones, is a focus more characteristic of third-wave HCI. Blackwell and Fincher’s
suggestion that CDs might be regarded as a pattern language describing Patterns of User Experience
(PUX) ((A. F. Blackwell and Fincher 2010)), offers a third-wave alternative to the design orientation
of the field ((A. Blackwell 2015)), following first-wave Physics of Notations and second-wave
original CDs.

9. Conclusion: Lack of consensus on how to improve human centric programming

As the breadth of the discussion above shows, in the 50 years since Dijkstra’s speculation on the
socio-cognitive implications of the goto statement, no consensus has arisen as to where and how to go
about improving programming language usability.

Existing communities lend varying degrees of support to a collection of different methods: PLATEAU
supports empirical methods for discussing professional software engineers, ICLC focuses on
practice-based research for supporting artist programmers, and PPIG accepts contributions in a wide
variety of forms ranging from participant ethnographies, to design discussions, theoretical framework
and philosophical speculations.

There is an ongoing tension within the community as to what the scientific status of the research is,
and what techniques are appropriate to address these problems. Even more so, there are tensions
between what are the right questions for the field to try and address.

This brief history of the study of human centric programming language design has provided the
background to those tensions, to be used as a reference for the ongoing work in our group, looking at
what kinds of questions programming language designers face, what techniques are currently
available for answering them, and what is missing

10. Acknowledgements

The authors would like to thank the community for many years of interesting discussions

11. References

Anslow, Craig, Shane Markstrum, and Emerson Murphy-Hill Email: 2009. “Evaluation and Usability
of Programming Languages and Tools (PLATEAU) PLATEAU.”
https://ecs.wgtn.ac.nz/foswiki/pub/Main/TechnicalReportSeries/ECSTR10-12.pdf.

Arawjo, Ian. 2020. “To Write Code: The Cultural Fabrication of Programming Notation and Practice.”
In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–15.
CHI ’20. New York, NY, USA: Association for Computing Machinery.

Blackwell, Alan. 2015. “Patterns of User Experience in Performance Programming.” In . Zenodo.

PPIG 2023 17 ppig.org

https://paperpile.com/c/Nxo4HL/w4S2
https://paperpile.com/c/Nxo4HL/7kzs
https://paperpile.com/c/Nxo4HL/BOm5
http://paperpile.com/b/Nxo4HL/cPDT
http://paperpile.com/b/Nxo4HL/cPDT
https://ecs.wgtn.ac.nz/foswiki/pub/Main/TechnicalReportSeries/ECSTR10-12.pdf
http://paperpile.com/b/Nxo4HL/cPDT
http://paperpile.com/b/Nxo4HL/BIVO
http://paperpile.com/b/Nxo4HL/BIVO
http://paperpile.com/b/Nxo4HL/BIVO
http://paperpile.com/b/Nxo4HL/BOm5


https://doi.org/10.5281/zenodo.19315.
Blackwell, Alan F. 1996. “Metacognitive Theories of Visual Programming: What Do We Think We

Are Doing?” In Proceedings of the 1996 IEEE Symposium on Visual Languages, 240. VL ’96.
USA: IEEE Computer Society.

———. 2017. “6,000 Years of Programming Language Design: A Meditation on Eco’s Perfect
Language.” In Conversations Around Semiotic Engineering, 31–39. Cham: Springer
International Publishing.

———. 2022. “Wonders without Number: The Information Economy of Data and Its Subjects.” AI &
Society, January. https://doi.org/10.1007/s00146-021-01324-8.

Blackwell, Alan F., and Sally Fincher. 2010. “PUX: Patterns of User Experience.” Interactions 17 (2):
27–31.

Blackwell, Alan F., Marian Petre, and Luke Church. 2019. “Fifty Years of the Psychology of
Programming.” International Journal of Human-Computer Studies 131 (November): 52–63.

Bødker, Susanne. 2006. “When Second Wave HCI Meets Third Wave Challenges.” In Proceedings of
the 4th Nordic Conference on Human-Computer Interaction: Changing Roles, 1–8. NordiCHI
’06. New York, NY, USA: Association for Computing Machinery.

Brooks, Frederick P. 1975. The Mythical Man-Month : Essays on Software Engineering. Reading,
Mass.: Addison-Wesley Pub. Co.

Brooks, Ruven E. 1980. “Studying Programmer Behavior Experimentally: The Problems of Proper
Methodology.” Communications of the ACM 23 (4): 207–13.

Brown, Neil Christopher Charles, Michael Kölling, Davin McCall, and Ian Utting. 2014. “Blackbox:
A Large Scale Repository of Novice Programmers’ Activity.” In Proceedings of the 45th ACM
Technical Symposium on Computer Science Education, 223–28. SIGCSE ’14. New York, NY,
USA: ACM.

Church, L., N. Rothwell, and M. Downie. 2012. “Sketching by Programming in the Choreographic
Language Agent.” Proceedings of the.
https://pdfs.semanticscholar.org/17c3/e3b7530bc25c9e45fa4f7430a3fc54ba3db4.pdf.

Craik, K. J. W. 1944. “Medical Research Council Unit for Applied Psychology.” Nature 154: 476–77.
Curtis, Bill. 1986. “By the Way, Did Anyone Study Any Real Programmers?” In Papers Presented at

the First Workshop on Empirical Studies of Programmers on Empirical Studies of Programmers,
256–62. Norwood, NJ, USA: Ablex Publishing Corp.

Dijkstra, Edsger W. 1968. “Letters to the Editor: Go to Statement Considered Harmful.”
Communications of the ACM 11 (3): 147–48.

Dijkstra, Edsger Wybe. 1997. A Discipline of Programming. 1st ed. Upper Saddle River, NJ, USA:
Prentice Hall PTR.

Endrikat, Stefan, Stefan Hanenberg, Romain Robbes, and Andreas Stefik. 2014. “How Do API
Documentation and Static Typing Affect API Usability?” In Proceedings of the 36th
International Conference on Software Engineering, 632–42. ICSE 2014. New York, NY, USA:
ACM.

Evershed, D. G., and G. E. Rippon. 1971. “High Level Languages for Low Level Users.” Computer
Journal 14 (1): 87–90.

Goldstine, H. H., and J. von Neumann. n.d. “Planning and Coding of Problems for an Electronic
Computing Instrument. Part II, Vol.” The Institute for Advanced Study Princeton, New.

Green, T. R. G. 1990. “Cognitive Dimensions of Notations. People and Computers V: Proc. British
Computer Society HCI’89 Conference.” Cambridge University Press.

Green, T. R. G., and M. Petre. 1996. “Usability Analysis of Visual Programming Environments: A
‘Cognitive Dimensions’ Framework.” Journal of Visual Languages & Computing 7 (2): 131–74.

Hadhrawi, Mohammad, Alan F. Blackwell, and Luke Church. 2017. “A Systematic Literature Review
of Cognitive Dimensions.” In Proceedings of the 28th Annual Workshop of the Psychology of
Programming Interest Group (PPIG 2017), 13.

Hanenberg, Stefan, and Andreas Stefik. 2015. “On the Need to Define Community Agreements for

PPIG 2023 18 ppig.org

http://paperpile.com/b/Nxo4HL/BOm5
http://dx.doi.org/10.5281/zenodo.19315
http://paperpile.com/b/Nxo4HL/BOm5
http://paperpile.com/b/Nxo4HL/ROOm
http://paperpile.com/b/Nxo4HL/ROOm
http://paperpile.com/b/Nxo4HL/ROOm
http://paperpile.com/b/Nxo4HL/fwIG
http://paperpile.com/b/Nxo4HL/fwIG
http://paperpile.com/b/Nxo4HL/fwIG
http://paperpile.com/b/Nxo4HL/LFGL
http://paperpile.com/b/Nxo4HL/LFGL
http://dx.doi.org/10.1007/s00146-021-01324-8
http://paperpile.com/b/Nxo4HL/LFGL
http://paperpile.com/b/Nxo4HL/7kzs
http://paperpile.com/b/Nxo4HL/7kzs
http://paperpile.com/b/Nxo4HL/0MKN
http://paperpile.com/b/Nxo4HL/0MKN
http://paperpile.com/b/Nxo4HL/w4S2
http://paperpile.com/b/Nxo4HL/w4S2
http://paperpile.com/b/Nxo4HL/w4S2
http://paperpile.com/b/Nxo4HL/dwUSj
http://paperpile.com/b/Nxo4HL/dwUSj
http://paperpile.com/b/Nxo4HL/1dJAD
http://paperpile.com/b/Nxo4HL/1dJAD
http://paperpile.com/b/Nxo4HL/nP4dk
http://paperpile.com/b/Nxo4HL/nP4dk
http://paperpile.com/b/Nxo4HL/nP4dk
http://paperpile.com/b/Nxo4HL/nP4dk
http://paperpile.com/b/Nxo4HL/TEG7f
http://paperpile.com/b/Nxo4HL/TEG7f
https://pdfs.semanticscholar.org/17c3/e3b7530bc25c9e45fa4f7430a3fc54ba3db4.pdf
http://paperpile.com/b/Nxo4HL/TEG7f
http://paperpile.com/b/Nxo4HL/vkR1
http://paperpile.com/b/Nxo4HL/nA9fN
http://paperpile.com/b/Nxo4HL/nA9fN
http://paperpile.com/b/Nxo4HL/nA9fN
http://paperpile.com/b/Nxo4HL/gaBeq
http://paperpile.com/b/Nxo4HL/gaBeq
http://paperpile.com/b/Nxo4HL/Vr9qx
http://paperpile.com/b/Nxo4HL/Vr9qx
http://paperpile.com/b/Nxo4HL/GdB41
http://paperpile.com/b/Nxo4HL/GdB41
http://paperpile.com/b/Nxo4HL/GdB41
http://paperpile.com/b/Nxo4HL/GdB41
http://paperpile.com/b/Nxo4HL/jPFMB
http://paperpile.com/b/Nxo4HL/jPFMB
http://paperpile.com/b/Nxo4HL/9AfE
http://paperpile.com/b/Nxo4HL/9AfE
http://paperpile.com/b/Nxo4HL/ijll
http://paperpile.com/b/Nxo4HL/ijll
http://paperpile.com/b/Nxo4HL/6BmM
http://paperpile.com/b/Nxo4HL/6BmM
http://paperpile.com/b/Nxo4HL/MzU9
http://paperpile.com/b/Nxo4HL/MzU9
http://paperpile.com/b/Nxo4HL/MzU9
http://paperpile.com/b/Nxo4HL/aBqQ8


Controlled Experiments with Human Subjects: A Discussion Paper.” In Proceedings of the 6th
Workshop on Evaluation and Usability of Programming Languages and Tools, 61–67.
PLATEAU 2015. New York, NY, USA: ACM.

Hicks, Mar. 2017. Programmed Inequality: How Britain Discarded Women Technologists and Lost Its
Edge in Computing. MIT Press.

Kabáč, Milan, Nic Volanschi, and Charles Consel. 2015. “An Evaluation of the DiaSuite Toolset by
Professional Developers: Learning Cost and Usability.” In Proceedings of the 6th Workshop on
Evaluation and Usability of Programming Languages and Tools, 9–16. PLATEAU 2015. New
York, NY, USA: ACM.

Katz, Irvin R., Marian Petre, and Laura Leventhal. 2001. “Editorial: Empirical Studies of
Programmers.” International Journal of Human-Computer Studies 54 (2): 185–88.

Kernighan, Brian W., and P. J. Plauger. 1974. Elements of Programming Style. New York, NY, USA:
McGraw-Hill, Inc.

Knuth, Donald E. 1971. “An Empirical Study of FORTRAN Programs.” Software: Practice &
Experience 1 (2): 105–33.

Ko, Andrew J. 2016. “What Is a Programming Language, Really?” In Proceedings of the 7th
International Workshop on Evaluation and Usability of Programming Languages and Tools,
32–33. ACM.

Kurtev, Svetomir, Tommy Aagaard Christensen, and Bent Thomsen. 2016. “Discount Method for
Programming Language Evaluation.” In Proceedings of the 7th International Workshop on
Evaluation and Usability of Programming Languages and Tools (plateau 2016). Association for
Computing Machinery.
http://people.cs.aau.dk/~bt/PLATEAU2016/Preprint-PLATEAU2016-KurtevChristensenThomse
n.pdf.

Linden, D. Van Der, and I. Hadar. 2018. “A Systematic Literature Review of Applications of the
Physics of Notation.” IEEE Transactions on Software Engineering, 1–1.

MacLean, Allan, Kathleen Carter, Lennart Lövstrand, and Thomas Moran. 1990. “User-Tailorable
Systems: Pressing the Issues with Buttons.” In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 175–82. CHI ’90. New York, NY, USA: Association for
Computing Machinery.

Martin, C., and J. Hughes. 2011. “Robot Dance: Edutainment or Engaging Learning.” Proceedings of
the 23rd Psychology of Programming. http://www.ppig.org/papers/23/14%20Martin.pdf.

Mc Iver, Linda. n.d. “The Effect of Programming Language on Error Rates of Novice Programmers.”
https://pdfs.semanticscholar.org/ac30/ee4129122006bbe2c1af6a935d958c416eb4.pdf.

McLean, A., and G. Wiggins. 2010. “Bricolage Programming in the Creative Arts.” 22nd Psychology
of Programming Interest. http://www.academia.edu/download/30255078/22nd-eup-2.pdf.

Menabrea, Luigi Federico, and Ada King Countess of Lovelace. 1843. Sketch of the Analytical Engine
Invented by Charles Babbage, Esq. Richard and John E. Taylor.

Moody, Daniel. 2009. “The ``Physics’' of Notations: Toward a Scientific Basis for Constructing
Visual Notations in Software Engineering.” IEEE Transactions on Software Engineering 35 (6):
756–79.

Nardi, Bonnie A. 1993. A Small Matter of Programming: Perspectives on End User Computing.
Cambridge, MA, USA: MIT Press.

Newell, Allen, and Stuart K. Card. 1985. “The Prospects for Psychological Science in
Human-Computer Interaction.” Hum. -Comput. Interact. 1 (3): 209–42.

Onorato, Lisa A., and Roger W. Schvaneveldt. 1986. “Programmer/Nonprogrammer Differences in
Specifying Procedures to People and Computers.” In Papers Presented at the First Workshop on
Empirical Studies of Programmers on Empirical Studies of Programmers, 128–37. Norwood,
NJ, USA: Ablex Publishing Corp.

Pierce, Benjamin C. 2002. Types and Programming Languages. 1st ed. The MIT Press.
Pritchard, David. 2015. “Frequency Distribution of Error Messages.” arXiv [cs.SE]. arXiv.

PPIG 2023 19 ppig.org

http://paperpile.com/b/Nxo4HL/aBqQ8
http://paperpile.com/b/Nxo4HL/aBqQ8
http://paperpile.com/b/Nxo4HL/aBqQ8
http://paperpile.com/b/Nxo4HL/yAri
http://paperpile.com/b/Nxo4HL/yAri
http://paperpile.com/b/Nxo4HL/amn2K
http://paperpile.com/b/Nxo4HL/amn2K
http://paperpile.com/b/Nxo4HL/amn2K
http://paperpile.com/b/Nxo4HL/amn2K
http://paperpile.com/b/Nxo4HL/bMAWv
http://paperpile.com/b/Nxo4HL/bMAWv
http://paperpile.com/b/Nxo4HL/Zvw6L
http://paperpile.com/b/Nxo4HL/Zvw6L
http://paperpile.com/b/Nxo4HL/lEKSf
http://paperpile.com/b/Nxo4HL/lEKSf
http://paperpile.com/b/Nxo4HL/Yjzv1
http://paperpile.com/b/Nxo4HL/Yjzv1
http://paperpile.com/b/Nxo4HL/Yjzv1
http://paperpile.com/b/Nxo4HL/fktSd
http://paperpile.com/b/Nxo4HL/fktSd
http://paperpile.com/b/Nxo4HL/fktSd
http://paperpile.com/b/Nxo4HL/fktSd
http://people.cs.aau.dk/~bt/PLATEAU2016/Preprint-PLATEAU2016-KurtevChristensenThomsen.pdf
http://people.cs.aau.dk/~bt/PLATEAU2016/Preprint-PLATEAU2016-KurtevChristensenThomsen.pdf
http://paperpile.com/b/Nxo4HL/fktSd
http://paperpile.com/b/Nxo4HL/LN6p
http://paperpile.com/b/Nxo4HL/LN6p
http://paperpile.com/b/Nxo4HL/5JF3
http://paperpile.com/b/Nxo4HL/5JF3
http://paperpile.com/b/Nxo4HL/5JF3
http://paperpile.com/b/Nxo4HL/5JF3
http://paperpile.com/b/Nxo4HL/whkOH
http://paperpile.com/b/Nxo4HL/whkOH
http://www.ppig.org/papers/23/14%20Martin.pdf
http://paperpile.com/b/Nxo4HL/whkOH
http://paperpile.com/b/Nxo4HL/NxOg
https://pdfs.semanticscholar.org/ac30/ee4129122006bbe2c1af6a935d958c416eb4.pdf
http://paperpile.com/b/Nxo4HL/NxOg
http://paperpile.com/b/Nxo4HL/x2vtR
http://paperpile.com/b/Nxo4HL/x2vtR
http://www.academia.edu/download/30255078/22nd-eup-2.pdf
http://paperpile.com/b/Nxo4HL/x2vtR
http://paperpile.com/b/Nxo4HL/Epnw
http://paperpile.com/b/Nxo4HL/Epnw
http://paperpile.com/b/Nxo4HL/AbeJ
http://paperpile.com/b/Nxo4HL/AbeJ
http://paperpile.com/b/Nxo4HL/AbeJ
http://paperpile.com/b/Nxo4HL/GsJN
http://paperpile.com/b/Nxo4HL/GsJN
http://paperpile.com/b/Nxo4HL/4CHns
http://paperpile.com/b/Nxo4HL/4CHns
http://paperpile.com/b/Nxo4HL/AYkXN
http://paperpile.com/b/Nxo4HL/AYkXN
http://paperpile.com/b/Nxo4HL/AYkXN
http://paperpile.com/b/Nxo4HL/AYkXN
http://paperpile.com/b/Nxo4HL/9ZD59
http://paperpile.com/b/Nxo4HL/zaeV2


http://arxiv.org/abs/1509.07238.
Pritchard, David, and Troy Vasiga. 2012. “CS Circles: An In-Browser Python Course for Beginners.”

arXiv [cs.CY]. arXiv. http://arxiv.org/abs/1209.2166.
“RELATING INDIVIDUAL DIFFERENCES IN COMPUTER PROGRAMMING PERFORMANCE

TO HUMAN INFORMATION PROCESSING ABILITIES.” 1977.
https://search.proquest.com/openview/c39f5fd5a80bb3296095014ef2d2b881/1?pq-origsite=gsch
olar&cbl=18750&diss=y.

Reynolds, L. A., and E. M. Tansey. 2003. The MRC Applied Psychology Unit: V. 16. Edited by L. A.
Reynolds and E. M. Tansey. Wellcome Witnesses to Twentieth Century Medicine S. London,
England: Wellcome Trust Centre for the History of Medicine at UCL.

Sadowski, Caitlin, and Jaeheon Yi. 2014. “How Developers Use Data Race Detection Tools.” In
Proceedings of the 5th Workshop on Evaluation and Usability of Programming Languages and
Tools, 43–51. ACM.

Schoenfeld, Alan H. 2006. “What Doesn’t Work: The Challenge and Failure of the What Works
Clearinghouse to Conduct Meaningful Reviews of Studies of Mathematics Curricula.”
Educational Researcher 35 (2): 13–21.

Seaver, Nick. 2022. Computing Taste: Algorithms and the Makers of Music Recommendation.
University of Chicago Press.

Sheil, B. A. 1981. “The Psychological Study of Programming.” ACM Comput. Surv. 13 (1): 101–20.
Shneiderman, Ben. 1980. Software Psychology: Human Factors in Computer and Information

Systems (Winthrop Computer Systems Series). Winthrop Publishers.
———. 1986. “No Members, No Officers, No Dues: A Ten Year History of the Software Psychology

Society.” SIGCHI Bull. 18 (2): 14–16.
Sime, M. E., T. R. G. Green, and D. J. Guest. 1973. “Psychological Evaluation of Two Conditional

Constructions Used in Computer Languages.” International Journal of Man-Machine Studies 5
(1): 105–13.

———. 1977. “Scope Marking in Computer Conditionals—a Psychological Evaluation.”
International Journal of Man-Machine Studies 9 (1): 107–18.

Soloway, Elliot. 1986. “What to Do next: Meeting the Challenge of Programming-in-the-Large.” In
Papers Presented at the First Workshop on Empirical Studies of Programmers on Empirical
Studies of Programmers, 263–68. Ablex Publishing Corp.

Soloway, Elliot, and S. Sitharama Iyengar. 1987. Empirical Studies of Programmers
(Human-Computer Interaction Series). Intellect.

Spohrer, James G., and Elliot Soloway. 1986. “Analyzing the High Frequency Bugs in Novice
Programs.” In Papers Presented at the First Workshop on Empirical Studies of Programmers on
Empirical Studies of Programmers, 230–51. Norwood, NJ, USA: Ablex Publishing Corp.

Stefik, A., and S. Hanenberg. 2017. “Methodological Irregularities in Programming-Language
Research.” Computer 50 (8): 60–63.

Stefik, Andreas, and Stefan Hanenberg. 2014. “The Programming Language Wars: Questions and
Responsibilities for the Programming Language Community.” In Proceedings of the 2014 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software, 283–99. Onward! 2014. New York, NY, USA: ACM.

Stefik, Andreas, Stefan Hanenberg, Mark McKenney, Anneliese Andrews, Srinivas Kalyan Yellanki,
and Susanna Siebert. 2014. “What Is the Foundation of Evidence of Human Factors Decisions in
Language Design? An Empirical Study on Programming Language Workshops.” In Proceedings
of the 22Nd International Conference on Program Comprehension, 223–31. ICPC 2014. New
York, NY, USA: ACM.

Stefik, Andreas, and Richard Ladner. 2017. “The Quorum Programming Language (abstract Only).”
In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education. New York, NY, USA: ACM. https://doi.org/10.1145/3017680.3022377.

Stefik, Andreas, and Susanna Siebert. 2013. “An Empirical Investigation into Programming Language

PPIG 2023 20 ppig.org

http://arxiv.org/abs/1509.07238
http://paperpile.com/b/Nxo4HL/zaeV2
http://paperpile.com/b/Nxo4HL/o7CwH
http://paperpile.com/b/Nxo4HL/o7CwH
http://arxiv.org/abs/1209.2166
http://paperpile.com/b/Nxo4HL/o7CwH
http://paperpile.com/b/Nxo4HL/YZYZ
http://paperpile.com/b/Nxo4HL/YZYZ
https://search.proquest.com/openview/c39f5fd5a80bb3296095014ef2d2b881/1?pq-origsite=gscholar&cbl=18750&diss=y
https://search.proquest.com/openview/c39f5fd5a80bb3296095014ef2d2b881/1?pq-origsite=gscholar&cbl=18750&diss=y
http://paperpile.com/b/Nxo4HL/YZYZ
http://paperpile.com/b/Nxo4HL/LlCf
http://paperpile.com/b/Nxo4HL/LlCf
http://paperpile.com/b/Nxo4HL/LlCf
http://paperpile.com/b/Nxo4HL/80gld
http://paperpile.com/b/Nxo4HL/80gld
http://paperpile.com/b/Nxo4HL/80gld
http://paperpile.com/b/Nxo4HL/yyVF
http://paperpile.com/b/Nxo4HL/yyVF
http://paperpile.com/b/Nxo4HL/yyVF
http://paperpile.com/b/Nxo4HL/SB02
http://paperpile.com/b/Nxo4HL/SB02
http://paperpile.com/b/Nxo4HL/jPXvJ
http://paperpile.com/b/Nxo4HL/IUuCw
http://paperpile.com/b/Nxo4HL/IUuCw
http://paperpile.com/b/Nxo4HL/F1TV
http://paperpile.com/b/Nxo4HL/F1TV
http://paperpile.com/b/Nxo4HL/39fUQ
http://paperpile.com/b/Nxo4HL/39fUQ
http://paperpile.com/b/Nxo4HL/39fUQ
http://paperpile.com/b/Nxo4HL/QiUK6
http://paperpile.com/b/Nxo4HL/QiUK6
http://paperpile.com/b/Nxo4HL/9smkO
http://paperpile.com/b/Nxo4HL/9smkO
http://paperpile.com/b/Nxo4HL/9smkO
http://paperpile.com/b/Nxo4HL/D0DCS
http://paperpile.com/b/Nxo4HL/D0DCS
http://paperpile.com/b/Nxo4HL/LgvpS
http://paperpile.com/b/Nxo4HL/LgvpS
http://paperpile.com/b/Nxo4HL/LgvpS
http://paperpile.com/b/Nxo4HL/Uv0G7
http://paperpile.com/b/Nxo4HL/Uv0G7
http://paperpile.com/b/Nxo4HL/QjhY
http://paperpile.com/b/Nxo4HL/QjhY
http://paperpile.com/b/Nxo4HL/QjhY
http://paperpile.com/b/Nxo4HL/QjhY
http://paperpile.com/b/Nxo4HL/DJ1P
http://paperpile.com/b/Nxo4HL/DJ1P
http://paperpile.com/b/Nxo4HL/DJ1P
http://paperpile.com/b/Nxo4HL/DJ1P
http://paperpile.com/b/Nxo4HL/DJ1P
http://paperpile.com/b/Nxo4HL/EPvi
http://paperpile.com/b/Nxo4HL/EPvi
http://paperpile.com/b/Nxo4HL/EPvi
http://dx.doi.org/10.1145/3017680.3022377
http://paperpile.com/b/Nxo4HL/EPvi
http://paperpile.com/b/Nxo4HL/hAbtE


Syntax.” Trans. Comput. Educ. 13 (4): 19:1–19:40.
Uesbeck, Phillip Merlin, Andreas Stefik, Stefan Hanenberg, Jan Pedersen, and Patrick Daleiden.

2016. “An Empirical Study on the Impact of C++ Lambdas and Programmer Experience.” In
Proceedings of the 38th International Conference on Software Engineering, 760–71. ACM.

Waite, William M., and Gerhard Goos. 1984. Compiler Construction. Springer-Verlag New York.
Weissman, Larry, and University of Toronto. Computer Systems Research Group. 1973.

Psychological Complexity of Computer Programs: An Initial Experiment. Computer Systems
Research Group, University of Toronto.

Zuboff, Shoshana. 2019. The Age of Surveillance Capitalism: The Fight for a Human Future at the
New Frontier of Power: Barack Obama’s Books of 2019. Profile Books.

PPIG 2023 21 ppig.org

http://paperpile.com/b/Nxo4HL/hAbtE
http://paperpile.com/b/Nxo4HL/Agxyp
http://paperpile.com/b/Nxo4HL/Agxyp
http://paperpile.com/b/Nxo4HL/Agxyp
http://paperpile.com/b/Nxo4HL/MOWGZ
http://paperpile.com/b/Nxo4HL/MlLi
http://paperpile.com/b/Nxo4HL/MlLi
http://paperpile.com/b/Nxo4HL/MlLi
http://paperpile.com/b/Nxo4HL/xFeW
http://paperpile.com/b/Nxo4HL/xFeW



