
Exploring cognitive waste and cognitive load in software development - a
grounded theory

Daniel Helgesson
Dept. of Computer Science

Lund University
daniel.helgesson@cs.lth.se

Abstract
This paper provides theoretical account of a critical/grounded theory study in industrial software engi-
neering/development settings. We extend our research into the ’critical ethnography’ domain, drawing
on Rosen, by revisiting previously collected data using social theory as a theoretical filter. We explore
the relations and underlying tensions between alienation and absence of user centered design in regards
to software development tools design using a critical lens. We further experiment with representation
of qualitative data and analysis using commentary excerpt units. We present a grounded theory ac-
count of the consequences of absent user centred design activities in regards to digital tools in industrial
software engineering. We conclude that not deploying user centered design when developing software
development tools is really (stressing really) bad waste management policy for a multitude of reasons.

Research paradigm: design science

Epistemological position: pragmatist

Methodology: case study

Method: grounded theory/(critical) ethnography

Analysis: abductive/iterative

Data collection: interviews, semistructured

Theoretical underpinnings: distributed cognition, cognitive load theory, cognitive load drivers, per-
spectives, social theory, marxism

1. Intro
As we have previously stated (Helgesson, 2021) the meaning of ’software engineering’ is dual. One
meaning is literal, i.e. ’the process of engineering software’, the other is a scientific engineering disci-
pline aimed providing software development practitioners with scientific evaluations, suggestions and
knowledge in regards to software development processes and tools. The actual phrase was coined at the
first NATO conference on the matter in the late sixties (Naur & Randell, 1969) . Despite the fact that
“personell factors” (Naur & Randell, 1969) was brought up as important factor in software engineering
activities at the seminal conference, and that software engineering as such was identified as “sociocul-
turally constituted phenomenon” in the mid nineties (Bertelsen, 1997) it has as a scientific discipline
and academic field been dominated by positivism and quantitative methodologies largely focused on
non-human factors (Lenberg, Feldt, & Wallgren, 2015) .

Further ’odd’ and/or ’novel’ research in terms of methodology within the community are often met
with a ’so what’ response from reviewers (Sharp, Dittrich, & de Souza, 2016) rather than an ’now thats
interesting’ (Davis, 1971). That being said being said, considerable efforts within the field have been
made to draw on qualitative methodology from social sciences, e.g. (Runeson, Höst, Rainer, & Regnell,
2012), (Stol, Ralph, & Fitzgerald, 2016), (Sharp et al., 2016).

The core phenomena we study are cause, and subsequent consequence, of cognitive load (i.e. ’roughly
mental effort’ (Helgesson, 2021)) as a consequence of digital work environment and corresponding
tools in the software industry. We have previously used grounded theory (Charmaz, 2014) (Bryant,
2017) approach in three studies resulting in a taxonomy of ’cognitive load drivers’ (Helgesson, En-
gström, Runeson, & Bjarnason, 2019), an ethnographic study of cognitive load in a distributed cognitive

PPIG 2023 60 ppig.org

setting (Helgesson, Appelquist, & Runeson, 2021), and a synthesis of previous research and extant lit-
erature (Helgesson & Runeson, 2021).

Purpose of paper – this paper, an industrial case study, is positioned as a halfway marker in (4th research
cycle/paper) in an extended (five year) grounded theory project on cognitive load (Helgesson & Rune-
son, 2021), as a consequence of digital work environment in software industry. In this specific paper
we explore ’critical traditions’ especially ’critical ethnography’(Prasad, 2018) in software engineering
by revisiting and re-analysing our aggregated dataset in regards to the sensitising concepts (Charmaz,
2014) of ’cognitive sustainability’ and ’cognitive productivity’ we noted in previous work (Helgesson
& Runeson, 2021). Further we deploy concepts from ’social theory’ (Luastsen, Larsen, Nielsen, Ravn,
& Sörensen, 2017) (i.e. primarily ’alienation’) as analytical filter/lens. Additionally, the analysis serves
as a vehicle for open-ended exploration on how one can ’write’ qualitative research in the software
engineering research community using ’commentary excerpt units’ (Rennstam & Wästefors, 2018).

2. Background
2.1. Cognitive load as phenomenon
Cognitive load (i.e. ’roughly mental effort’ (Helgesson, 2021)) is per definition inherent in all forms of
cognitive work. The limits of the human mind in terms of information processing and corresponding
bandwidth has been well known for more than fifty years (Miller, 1956). Most, if not all, activities
in software development are inherently cognitively loaded (Sedano, Ralph, & Péraire, 2017). We use
the term ’cognitive load driver’(Helgesson et al., 2019) to describe the causal nature of cognitive load
in regards to digital tools and work environment in the software industry. In the context of this paper
we look at cognitive load from a more general cognitive work environment perspective as described by
Gulliksen, Lantz, Walldius, Sandblad, and Åborg (2015). Kirsh (2000) describes cognitive overload1 in
work settings.

2.2. Cognitive load in software engineering
Cognitive load in software engineering has, to date, largely been investigated using quantitative method-
ology (Gonçales, Farias, & da Silva, 2021) (Helgesson, 2021). We let (Müller & Fritz, 2016) and (Fritz
& Müller, 2016) serve as contemporary examples. In addition to our qualitative studies (Helgesson et
al., 2019), (Helgesson et al., 2021), (Helgesson & Runeson, 2021), Sedano et al. (2017) used grounded
theory to investigate different forms of ’waste’ in software development, finding ’extraneous cognitive
load’ being one aspect.

2.3. Marxist/critical traditions and social theory in software engineering
In software engineering marxist traditions (Prasad, 2018) appear to have had very small impact as of
yet (Melegati & Wang, 2021) . The authors discuss ’Critical theory’ as a ’research paradigm’ rather
than ’a tradition’. The study mentions Hilderbrand et al. (2020) on ’gender’. We have further found
(Vorvoreanu et al., 2019) and (Burnett, Peters, Hill, & Elarief, 2016) on the same issue.

Finally, marxist approaches to explore software related phenomena can be found in other fields of re-
search - e.g. (Fuchs & Sevignani, 2013), (Pfeiffer, 2014), (Nygren & Gidlund, 2016) and (Krüger &
Johanssen, 2014). See also: cyberspace Froomkin (2002) on ’cyberspace’ and Söderberg (2011) on
’hacking’, and (D’Ignazio & Klein, 2020) on ’data science’ .

Use of social theory in relation to software engineering has been studied in (Ralph, Chiasson, & Kelley,
2016) and (Lorey, Ralph, & Felderer, 2022) respectively.

1See also Simon (1971): “In an information-rich world, the wealth of information means a dearth of something else: a
scarcity of whatever it is that information consumes. What information consumes is rather obvious: it consumes the attention
of its recipients. Hence a wealth of information creates a poverty of attention and a need to allocate that attention efficiently
among the overabundance of information sources that might consume it.”

PPIG 2023 61 ppig.org

3. Method
3.1. Grounded theory and epistemological position
In this paper, an industrial case study, we use grounded theory2 largely as prescribed by Charmaz (2014)
and Bryant (2017)34.

We deploy an ethnographic approach (Charmaz & Mitchell, 2001) using distributed cognition (Hollan,
Hutchins, & Kirsh, 2000) and concepts from ’social theory’ (Luastsen et al., 2017) (primarily ’alien-
ation’) as theoretical observational filters. We venture further into the ’critical’ ethnography tradition
(Prasad, 2018) using extant literature 5.

The work reported in this paper is conducted within the research paradigm of ’design science’ (Runeson,
Engström, & Storey, 2020). We see grounded theory as a general purpose qualitative method for gener-
ating ’theory’ (Abend, 2008) in order to describe a problem in practice, and we take a pragmatist (Rorty,
1979) epistemological grounded theory position (Bryant, 2017) 6.

3.2. Research goal and research questions
Given the exploratory nature of grounded theory it is common for studies informed by grounded theory
to start of with “an open ended research goal” (Stol et al., 2016) or “initial research questions that evolve
throughout the study” (Charmaz, 2014).

Our initial research goal was:

– To explore previously recorded data in regards to cognitive load in software engineering using
’grounded theory ethnography’ (Charmaz & Mitchell, 2001) from a ’critical ethnography’ (Prasad,
2018) angle using the sensitising concepts of ’cognitive sustainability’, ’cognitive productivity’ and
’cognitive sustainability’ we noted in previous work in conjunction with ’social theory’ (Luastsen et al.,

2Grounded theory is an exploratory (Stol et al., 2016) qualitative method, by some heralded as one of the (if not ’the’)
most important qualitative methods to appear in the scientific toolbox to date (Bryant, 2017). The aim of grounded theory is
to provide a framework for generating ’theory’ (Abend, 2008) from (largely) qualitative data (Charmaz, 2014). Core elements
in most grounded theory method sections written by phd students is a lengthy (and somewhat pretentious) segment on the
history of grounded theory (Bryant, 2017). Having written three of those ((Helgesson et al., 2021), (Helgesson & Runeson,
2021), (Helgesson, 2021)) we will not waste further space on this matter in this context. We see grounded theory as a general
purpose iterative qualitative method/vehicle for generating theory from largely qualitative data abductively (or inductively).
The guidelines provided by Charmaz (2014) helps us keep control of data and ensures methodological rigour (Gioia, Corley,
& Hamilton, 2013) and transparency. No more. No less.

3In order to be very precise here: Bryant (2017) does not consider his methodological approach as a singular version
of grounded theory in contradiction to that of Charmaz (2014), but rather as a complement. The main difference lies in
epistemological position. In order to rule out the relativisation that a constructivist position allows for, and may result in,
“’ultimate caricature of postmodernism”, Bryant advocates for a ’pragmatist’ (Rorty) epistemological position. So from a
methodological perspective we rely on Charmaz, while framing our epistemological within the epistemological framework of
Bryant since we want to close the door on relativisation.

4It should also be noted that Bryant (2017) highlights that the tension does not lie in a (false) dichotomy between ’qual-
itative’ and ’quantitative’ methodologies (and analysis and data). This is not really that hard to comprehend. How would it
be possible to make sense of quantitative findings without qualitative analysis? Instead Bryant highlights that the main epis-
temological tension lies between ’objectivist’ and ’constructivist’ stand points. They further offers a solution to this tension
by taking the middle ground of ’pragmatism’, thereby taking a position immune to constructivist epistemological critique of
objectivism as the core tenet in ’pragmatism’ is that it, itself, is inherently ’fallible’ and ’contingent’. With a background in ’sci-
ences of the natural’(Simon, 1969) constructivism (and corresponding risks of relativisation) is is not an easy epistemological
position to uphold and We thus lean toward pragmatism.

5Reading Glaser from a distance (i.e. not by using close reading, but reading explicitly): “...reading and use of literature is
not forsaken in the beginning of a grounded theory project. It is vital to be reading and studying from the outset of the research,
but in unrelated fields” (Glaser, 1992, p. 35). This is a clear indication that the use of literature and abduction has been
relevant in traditional grounded theory for almost 30 years. From our perspective the role of abduction has been rhetorically
underplayed and the matter of literature absence has equally been rhetorically overplayed in grounded theory discourse. See
also (Martin, 2019) and Dey (1999), (1993).

6Given the many variants and interpretations on grounded theory (Bryant, 2019) guidelines on grounded theory often
highlight the need to be very specific on describing what version of grounded theory and what epistemological position is
being used in order to avoid ’method slurring’ and avoiding criticism for deploying a “rhetorical sleight of hand”, e.g. (Stol et
al., 2016). We will, however, not venture further into this discussion at this point.

PPIG 2023 62 ppig.org

2017) in order to see what a ’critical’ ’perspective’ (Helgesson & Runeson, 2021) of cognitive load in
software engineering might consist of.

This evolved into the following research questions:

1 – What problems (psychosocial and cognitive) can be observed, in regard to a software development
tool (and its replacement) from a user perspective by means of social theory and distributed cognition?

2 – What are the underlying root causes of these problems, from a ’critical’ angle?

3 – Can we further our understanding of ’cognitive load drivers’ and ’cognitive waste’ by means of
deploying a ’critical’ analysis?

3.3. Study design consideration
In this study we revisit and use qualitative data previously collected, and reason abductively (Martin,
2019)7 in regards to these observations using extant literature from social sciences. So, the design is
labelled as ’flexible explorative case study’ (Runeson et al., 2012) using ’grounded theory’(Charmaz,
2014). We take deploy a ’critical ethnography’ (Prasad, 2018) angle in this study, drawing on (Rosen,
2000).

In closing, in regards to the labelling of this research – we investigate tool use, and consequences thereof,
within a culture in an exploratory fashion, so the research approach is, in our humble opinion the inher-
ently ethnographic. With that said, we are perfectly fine with leaning on the Chicago school tradition
root of grounded theory (Charmaz, 2014), (Bryant, 2017) and simply label the study ’an industrial case
study, using grounded theory and an ethnographic approach/data set’.

3.4. Case description
We are operating within ’case study’-methodology (Runeson et al., 2012). The case in this paper is a
large, 1000+ developers, international multi-site software development organisation. The object under
study is cognitive load, as a consequence of digital work environment in software industry, as experi-
enced by software developers. Over all we study the object from an individual as well as a distributed
perspective. In this specific study the unit of analys is the individual engineer but in the distributed
cognitive context (Hollan et al., 2000).

3.5. Data collection & data set construction
In this study we rely on 3 semi structured interviews (1 test engineer, 1 development engineer, 1 tools
responsible). Interviews were recorded, and transcribed by first author who also translated them into
English. Interviews were conducted in another language.

The first interview was conducted in the first field trip. We then approached the ’gatekeeper’/company
contact point and were provided access to a person responsible for tool activities within the company in
order to provide some background. This lead to an informal discussion lasting for about an hour during
which notes were taken. It was not recorded on account on the person being uncomfortable in recording
a session that they was unprepared for.. This was later recorded in a formal interview. The engineer
was approached and asked if willing to volunteer for an interview to add a different perspective on the
previous discussions for ’triangulation’ purposes (van Maanen, 1979). We also added extant literature
from ’social sciences’ (Luastsen et al., 2017) (e.g. ’alienation’) to the data set in order to explain the
phenomena we encountered after the open coding.

The interviews were fractured at the transcriptions, using emacs text line editor and .csv formatted
spatially separating the interviewers and the interview subject. Time codes were added at key passages.

3.6. Analysis
Coding was executed in two stages (’open’ and ’focused’) as suggested by Charmaz (2014). ’Open
coding’ was executed, in multi-pass fashion to allow for ’analytical bracketing’ (Rennstam & Wäste-

7See also (Bryant & Charmaz, 2019), (Bryant, 2017). Further, the definition offered by Alvesson and Sköldberg (2018, p.
4-8) is very succinct.

PPIG 2023 63 ppig.org

fors, 2018) 8, using the transcripts printed on paper and Pilot-V disposable reservoir pens in red and
blue. Codes for relevant ’incidents’(Glaser, 1978) were written on the printed transcripts. Coding was
executed ’chunk-by-chunk’ rather than actual ’line-by-line’.

The codes were then transferred to Post-It stickers (set A) as prescribed by Bryant (2017) and grouped,
thus forming ’categories’. The ’categories’ were then named. Prior to ’open coding’ we had used
(Prasad, 2018)) in order to sensitise ourselves with the ’critical’ tradition and to achieve some level of
“theoretical sensitivity”(Glaser, 1978) for the phenomena under study. We then produced a few ’memos’
(Charmaz, 2014) outlining the findings of the ’open coding’ stage. Prior to this stage we read (D’Ignazio
& Klein, 2020) in order to achieve some level of senzitation in regards to contemporary critical discourse
in software settings. We then read, and coded using Post-It-stickers, ’Social theory’ by Luastsen et al.
(2017) to further explore our findings (Set B).

’Focused coding’ was done in three stages: firstly we grouped the two sets (A and B) of Post-It stickers
and based on this we produced another ’memo’ into which fractured interview transcripts were added
forming lengthy ’excerpt commentary units’ (Rennstam & Wästefors, 2018). This process was also done
in multi-pass fashion to allow for ’analytical bracketing’(Rennstam & Wästefors, 2018), but the purpose
was to generate what van Maanen (1979) refers to as ’second order themes’ (i.e. not only allowing
the ’what’ and ’how’ but also the underlying ethnographically important ’why’ (Sharp et al., 2016)) to
emerge. Following this process we started writing the analysis using ’memoing’. Finally, these ’memos’
were fused into one that largely makes up the analysis section of this paper.

The rendering of our theory (Charmaz, 2014) was done in the same fashion as the one we generated
in previous work (Helgesson et al., 2021), using Post-It stickers and an A1 cardboard sheet. We have
previously found this technique extremely useful as it allows for a level of tactile feedback and interac-
tion impossible if one uses software. The theory was then transferred into digital format9. It has been
constructed from the actual ’memos’ and presented in a seminar.

3.7. Literature review
We did informal/preliminary literature surveys prior and post open coding. Following the focused coding
and theory generation we extended this using a similar strategy as in (Helgesson & Runeson, 2021). We
queried ACM from 2010 to 2013 with queries in regards to ’marxism/critical theory’ in conjunction with
’alienation’ 10 as well as ’social theory’ 11. In doing so we found 48 and 36 papers respectively. Having
done a reading of the abstracts we found no papers directly relevant to this study. But, we conclude that
the findings of Melegati and Wang (2021) are correct - the impact of the critical tradition in the area of
software development/engineering has been small. We also similarly queried IEEE 12 13 with similar
queries finding 99 and 87 titles respectively. From an abstract reading we could find no text directly
relevant for this study.

8See also: (Gearing, 2004), (Tufford & Newman, 2012) for in-depth discussions in regards ’bracketing’.
9While some reviewers have previously lamented on the absence of artefacts in regards to ’coding’, ’memoing’ and ’theory

generation’ we are in agreement of Bryant (2017) – these artefacts are private. The paper is the actual outcome, and artefact,
of the study. With that said, we are, of course happy to allow for audit of our anonymised transcripts and field notes – please
contact first author for details

10[[All: "marxism"] OR [All: "critical theory"] OR [[All: "marxism"] AND [All: "alienation"]]] AND [[All: "software
development"] OR [All: "software engineering"]] AND [E-Publication Date: (01/01/2010 TO 12/31/2023)]

11[All: "social theory"] AND [[All: "software development"] OR [All: "software engineering"]] AND [E-Publication Date:
(01/01/2010 TO 12/31/2023)]

12(("Full Text Metadata":"marxism" OR "Full Text Metadata":"critical theory") OR ("Full Text Metadata":"marxism" AND
"Full Text Metadata":"alienation")) AND ("Full Text Metadata":"Software Development" OR "Full Text Metadata":"Software
Engineering")

13("Full Text Metadata":"social theory") AND ("Full Text Metadata":"Software Development" OR "Full Text Meta-
data":"Software Engineering")

PPIG 2023 64 ppig.org

4. Analysis
4.1. Theory and theorising
We draw on excerpt commentary units (Rennstam & Wästefors, 2018) here; ’Tell’, ’Show’, ’Explain’
but intentionally convoluted and meta-level. The two engineers describe similar phenomena and the
tool responsible provides the underlying background. ’Categories’ are contained in [hard brackets],
explanations in <sharp brackets>, narrative is denoted with ’–talking dash’ and dialogue is contained
within “quotes”.14 is work in progress. The elements we explore in this theory are shown in Figures 1.

We see our ’theory’ (Abend, 2008) as an abstract account of events that have taken place within a
software development organisation that allows for ’theorisation’ (Sutton & Staw, 1995),(Weick, 1995)
in regards to consequences of poor tooling within the software development industry.

4.2. Absent UCD, cognitive waste, cause and consequence for the individual digital worker
The first facet of the theory we generate from the data set explores absence of user centred design in
relation to digital tools and cognitive waste from the perspective of the individual digital worker. The
’categories’ we choose to explore are: absent ucd, missing functionality, cognitive waste, frustration,
coping strategies and alienation.

The first facet of the theory, the individual perspective, is visualised in Figure 1, and each ’category’ is
explored and further explained in a corresponding subsection below.

absent ucd

missing
functionality

frustration alienation

theory:
the individual

cognitive
waste

coping
strategies

Figure 1 – Theory – consequence for the individual worker caused by absent UCD

4.2.1. cognitive waste
4.2.2. frustration
The following discussion between the interviewer and the informant, reveals that the developer is acutely
aware of the problems associated with the tools with which they are provided by the corporation.

“So... what digital tools do you use?”

14We use ’categories’(Charmaz, 2014) rather than ’codes’ or ’themes’ as we have aggregated the ’codes’ into ’categories’
(of ’codes’) and we will be visualising ’categories’ in our substantive theory.

“Well – ’Tool 1’, ’Tool 2’ and.... (<trying to remember>)... well, actually I try to avoid all tools if
possible!’ They are a pain in the butt to work with. I can’t come up with any good things to say about
them[alienation]! Starting off with ’Tool 1’: If you are to file an issue, I have to fill in a lot of input
fields. About twenty of them[waste]. For every field you have to think for one minute[cog waste], then
you can figure out how fun <sarcasm>[frustration] writing issues is....”

We clearly see that the effort that the developer need to spend on filing ’issues’ is clearly identified as
’waste’ and that it causes frustration.

4.2.3. absent ucd
4.2.4. alienation
The following two comments from developers display a connection between the absence of user centered
design activities and alienation of employees.

”I have a feeling that the software developers haven’t been asked what requirements they have[no ucd].
Instead the requirements come from, I don’t really know but I assume, project people and operator
managers etc. And they live in a different world than we do[alienation].”

”At this company there is an affinity for adding stuff. But not for removing them...This company is
extremely poor at that. If they[alienation] were to start counting how much time we spend on this[waste]
they would probably get shocked.´´

The way the developers use ’they’ clearly indicates that individuals see themselves as distanced, and
estranged from their employer.

4.2.5. missing functionality
This segment described the missing functionality in the tool discussed at detail. It focuses on two
aspects, the plethora of unnecessary information and selections that needs to be supplied when reporting
an ’issue’ (a defect report) and missing search functionality preventing the users to navigate the system
efficiently. It has been shorted considerably to fit page limitation (currently it only discusses one issue,
the interaction, not the missing search functionality).

The following passage in which the interviewer discusses the system with one of the engineers identifies
the first source of waste, that the user has no support for recalling his/her most common selections.
Instead they have to tediously selected from very long scroll lists in the user interface.

“So there is no support [missing functionality] that allows you to see just your common selections?”

“No, and that would be really good to have[no support]. ”

The need for the missing functionality is obvious from the perspective of the developer. Again we see
the alienation and the frustration the poor tooling causes. “With one new field?” “No. Three new fields
<sarcasm>. Why couldn’t they have removed the other fields[no support]? (<implying that redundant
work is necessary>)”

“But you have to fill in every field? Or you can’t [oppression] file your issue?”

“No, exactly... <sarcasm>[frustration] – there is no point in looking at the ’old stuff’ (<the fields
that are no longer used>), but you still need to fill them in. At this company there is an affinity for
adding stuff. But not for removing them... and ’clean up’. This company is extremely poor at that. If
they[alienation] were to start counting how much time we spend on this[waste] they would probably get
shocked. But it is not as easy as simply filing an issue in ’Tool 1’, once you have done that you must
find it again, and go into it and ’do modify’ as you must add what projects you want the issue tagged
for. This can’t be done while you actually file the issue. So you can’t even file all information is relevant
in one go. So you file, save, find it again[waste], select ’modify’, enter the additional info and save it
again[waste]. “That sounds harsh.” “I get paid[alienation] for this. It is not as bad as it could be. But
it could be handled a lot better [frustration]...”

PPIG 2023 66 ppig.org

Switching over to the other engineer we see that he/she is well aware of the same issues discussed in the
previous segment.

“... one thing that strike me in the earlier interviews... All these fields in ’Tool 1’ that need to be entered,
all variants that exist...”

“A lot of different tabs with a lot of different fields. And I am expected to fill out a subset of these, but
it is hard to understand which fields that should be filled out. And what information is expected to be
entered. So it appears as there has been requirements coming from a lot of different directions... We
need this, and that, and that... And while I’m sure that a lot it is relevant for the projects, it is not relevant
for me <as a developer> [alienation]”

“So you don’t really know what <information> you are expected to hand over <enter into ’Tool 1’>?

“Exactly. Sometimes it is just ridiculous [frustration] - a lot of these fields are designed under the
premise that we are working with an error, but ’Tool 1’ is used for development as well, and to fill out
’in what version of the system the error was detected’ is really not applicable but still you have to fill out
these fields.”

The developer here clearly indicates that the user does not know neither what information to supply,
neither where nor why. This largely confirms what was discussed in the previous section.

“Something else that was indicated was that some of these fields were made obsolete/replaced by new
fields, yet they remained.”

“Correct. Another thing that has occurred is that something new <kind of data> is invented and a field
is reused for this purpose. There was ’Found in’ and ’Found during’ and in ’Found during’ you were
supposed to fill out what team you were part of. Or something along those lines. Simply because a field
was reused. These kind of problems are quite common - you don’t really know how to use the system,
what information to enter.”

“That it is counter intuitive?”

“Counter intuitive, yes. It gives very little guidance of what you are supposed to do. And it is very easy
to do the wrong thing. To enter a state that you don’t understand how to exit <refers to state of issue not
state of program>).”

The consequences of absent user design is clearly visible to the developer. The tool, and corresponding
tasks, have become ’counter intuitive’ and makes the user error prone,

4.2.6. coping strategies
“... and to search for information in ’Tool 1’ is a problem?”

“Yes... I have solved in this way[coping strategy]... I get a mail for every issue in ’Tool 1’ that is created
for my team, and I save these. And I search in these mails because searching in ’Tool 1’ for something
that is handled and closed is not something I have ever been able understand how to do. And this is
actually something we struggle with in newer systems as well. That you get an error report and you
think ’didn’t we have an issue like that six months ago?’ - then you would like to find out what caused
it, and how it was solved. But once an issue has been closed... it does exist somewhere in the database...
but it is really hard to locate, it is really difficult to search for.. Searching for everything that I have been
involved in for instance, or... It might be possible to do if you are really good at creating queries, but it
is quite hard for normal users <lit. ordinary mortals>. ”

4.3. Absent UCD, cognitive waste, cause and consequence for the cause and consequence
for the corporation

The analysis originally also contained a theoretical account of the corporate perspective of this specific
case/tool, based on an interview with the person responsible for development and maintenance of the
system, and it successor. The person fully acknowledged the issues discussed by the users, and provided

PPIG 2023 67 ppig.org

an explanation on why the situation had been allowed to deteriorate. For space reasons we only present
a brief overview.

The root cause was absent organisational ownership, compounded by a confounding factor – namely
company culture and cultural differences, as well as a managerial lack of understanding of user needs.
As a consequence the tool was very inefficient, on account of missing functionality. In addition to the
corresponding cognitive and temporal/fiscal waste stemming from the absent UCD, the person also noted
that the data quality and reliability (of the data that could be extracted from the system) was very low.

While having observed the aforementioned problems, and the fact that the tool had been voted ’the
worst tool within the organisation’ by one of the development organisations the rationale of the business
case used to replace the existing tool was simply licensing fees rather than lacklustre functionality and
reliability. As a consequence the same mistakes were made in the customisation of the replacement –
ultimately resulting in a similarly inefficient tool. Again...

4.4. Conclusion
There is a complete absence of understanding of what the user needs from the tool, since no user centered
design steps are taken to ensure that it functions properly and serves the needs of the organisation and
the users. Only the management perspective of the tool is taken into consideration when designing and
implementing it. This is the complete opposite of core tenets of human factors engineering practice
(Gulliksen et al., 2015) (Wickens, Hollands, Banbury, & Parasuraman, 2015).

In fact it can be noted that Wickens et al. (2015, p. 1) explicitly state that human factors engineering
came about “...just after World War II when experimental psychologists were called in to help understand
why pilots were crashing perfectly good aircraft (Fitts & Jones, 1947)...” It is well known within the
company that ’Tool 1’ is extremely unpopular among the users in software production, yet it is only
changed for short term profitability reasons (lower licensing fees). The frustration it causes, the cognitive
and temporal waste it causes is not considered in the business case, neither is the poor quality of data –
that renders it useless as an analytical tool – which is one of the main reasons it is there in the first place.

5. Discussions in regard to RQ’s
1 – What problems (psychosocial and cognitive) can be observed, in regard to a software development
tool (and its replacement) from a user perspective by means of social theory, distributed cognition and
”perspectives’ respectively? – We focus on psychosocial rather than cognitive issues in this study. We
see several aspects of such issues in connection to what we have read in social theory (e.g. ’alienation’
and ’frustration’,). These, to some extent correspond to what Gulliksen et al. (2015) describes. The
“psychological distress” as described by Sedano et al. (2017) is clearly visible in our data set as well.

2 – What are the underlying root causes of these problems, from a ’critical’ and cognitive perspectives,
respectively? – The underlying root causes of these problems, from a ’critical’ perspective can mainly
be attributed to absence of user centred design when developing digital tools as a consequence of absent
mandate/responsibility and organisational issues.. From a cognitive perspectives, it is mainly related to
the presence of ’poorly functioning digital tools’ (Håkansson & Bjarnason, 2020) in conjunction with
the limits of the human mind (Wickens et al., 2015) (Miller, 1956). The underlying root cause is absence
of user centered design (Wickens et al., 2015)15.

3 – Can we further our understanding of ’cognitive sustainability’, ’cognitive productivity’ and ’cogni-
tive waste’ by means of deploying a ’critical perspective’? – Yes. Indeed we see that we further our
understanding ’cognitive productivity’ and ’cognitive waste’ by means of a ’critical’ perspective.

6. Validity/Generalisability
GT studies are commonly evaluated based on the following criteria (Charmaz, 2014) (Stol et al., 2016):

15The phenomena of poorly designed (from user centered design/interaction design perspective) software development tools
is well known within the software engineering community – it is referred to as ’developers in their own dog-food’

PPIG 2023 68 ppig.org

Credibility: Is there enough data to merit claims of the study? – Yes. While the data set the theory is
grounded in is limited, it still is indicative of a relevant problem.

Originality: Does the results offer new insight? – Hopefully, yes. It provides an inside account on the
consequences of absence of User Centered Design in the design process of software development tools.
It further shows that the there is no tension in relation between cognitive sustainability and efficiency
respectively; rather that the tension lies between cognitive sustainability/efficiency and corporate lack of
understanding of the need of user centred design.

Usefulness: Is the theory generated relevant for practitioners? – As of yet, we do not know. With that
said, it is a novel way of explaining the intangible cognitive waste, drain and frustration that occur as a
consequence of poorly functioning tools. So hopefully yes.

Resonance: Does the theory resonate with practitioners? – from the limited feedback received at the
time of writing, yes.

Ethnography is tricky, van Maanen (1979) lists several ways in which the researcher can be ¨¨misled”
by informants 16 . In this case we don’t see that as an issue. The data set triangulates our findings well
What we witnessed largely agreed with what the informants let us in on. We thus consider ourselves
“explicitly and extensively informed” (Rosen, 2000).

In regards to general criticism of single case generalisation we humbly point to Anzai and Simon (1979):
“It may be objected that a general psychological theory cannot be supported by a single case. One swal-
low does not make a summer, but one swallow does prove the existence of swallows. And careful dis-
section of even one swallow may provide a great deal of reliable information about swallow anatomy.”.

In the end of the introduction Rosen (2000) cites the dissertation of Kunda (unpublished), to make the
point that: “...ethnography is the only human activity in the social sciences. As a method it is not divorce
from the modes of experience that I consider human, that is, it is not divorced from my ’reality’.It is
therefore one of the few ways of doing research that speaks the ’truth’ as I understand it.”. We couldn’t
agree more.

7. Emerging concepts for future studies
In addition to the generated theory, we made some additional observations that we will shortly present
and theorise around.

7.1. learning/unlearning
When discussing systems in general with one user we noted that there might be something interesting at
play when systems are changed/replaced by something smilar, yet different. The person stated that when
a tool was replaced it became very difficult to adapt the mental model of how to operate the system.

Allowing for some theorisation here it is not farfetched to think that when a user has to make an active
choice/recall on ’how’ to perform an activity (depending on what tool is being used) this will result in
unnecessary cognitive load, since what was previously an instinctive recall now has become an active
choice. This would not be far fram what Rasmussen (1983) observed, that response to system stimuli is
dependent on whether it is a ’skill’, ’rule’ or ’knowledge’.

7.2. cognitive work & labour
When discussing cognitive load it is interesting to note that it is, similarly to ’load’ in physics, essentially
momentary. In order to fully understand cognitive waste, it would make sense to reason in terms of cog-
nitive work as a temporal aggregation of cognitive load (similarly to the relation between ’power’/’load’
in physics and ’energy’/’work’). Similarly the process of exerting cognitive load for wage could/should
be denoted ’cognitive labour’.

16See also: (Briggs, 1986) and (Agar, 2008)

PPIG 2023 69 ppig.org

8. Discussion
The problem with poorly functioning software development tools is rather well known within the in-
dustry , to the point that the term ’developers eat their own doogfood’ was been coined decades ago.
In this case, however, the issue is rather that ’engineers eat manager dogfood’, in a sense. The issues
with the tool in question are well known within the organisation, yet there is seemingly little interest in
doing something about it. Here we might draw similarities with early industrialisation, where workers
were provided tools by industrialists and User Centered Design and ergonomics lay a long time into the
future.

When discussed in course seminars the ’mundanity’ of the story were reflected on by students from
varying disciplines. Given the high level of identification in the kafka-esque story displayed by audience
at seminars, this might suggest a wider applicability – and a wider problem17.

In light of the post conference publication of PPIG we will pend the discussion section post conference
presentation.

9. Acknowledgements
We wish to thank librarian Andeas Karman for (once and again) helping out with database queries, and
esteemed supervisor prof. Per Runeson for input and proof read (as well as putting up with the grounded
theory shenanigans).

10. References
Abend, G. (2008). The Meaning of ‘Theory’. Sociological Theory, 26(2), 173–199.
Agar, M. H. (2008). the Professional Stranger An informal Introduction to Ethnography (2nd ed.).

Bingley, UK: Emerald Group Publishing Ltd.
Alvesson, M., & Sköldberg, K. (2018). Reflexive Methodology - New Vistas for Qualitative Research

(3rd ed.). London, UK: SAGE Publications.
Anzai, Y., & Simon, H. A. (1979). The Theory of Learning by Doing. Psychological Review, 86(2),

124–140.
Bertelsen, O. W. (1997, November). Toward A Unified Field Of SE Research And Practice. IEEE

Software, 14(6), 87–88.
Briggs, C. L. (1986). Learning how to ask - A sociolinguistic appraisal of the role of the interview in

social science research. Cambridge ; New York: Cambridge University Press.
Bryant, A. (2017). Grounded Theory and Grounded Theorizing – Pragmatisism in Research Practice.

Oxford, UK: Oxford University Press.
Bryant, A. (2019). The varieties of grounded theory (1st ed.). London, UK: SAGE Publications Ltd.
Bryant, A., & Charmaz, K. (2019). The SAGE Handbook of Current Developments in Grounded Theory.

London, UK: SAGE Publications.
Burnett, M., Peters, A., Hill, C., & Elarief, N. (2016, May). Finding Gender-Inclusiveness Software

Issues with GenderMag: A Field Investigation. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems (pp. 2586–2598). San Jose, California, USA: Association
for Computing Machinery. doi: 10.1145/2858036.2858274

Charmaz, K. (2014). Constructing Grounded Theory (2nd ed.). London, UK: SAGE Publications.
Charmaz, K., & Mitchell, R. (2001). Grounded Theory in Ethnography. In Handbook of Ethnography.

London, UK: SAGE Publications.
Davis, M. S. (1971, June). That’s Interesting!: Towards a Phenomenology of Sociology and a Sociology

of Phenomenology. Philosophy of the Social Sciences, 1(2), 309–344.
Dey, I. (1993). Qualitative Data Analysis: A user-friendly guide for social scientists. London, UK:

Routledge.

17At the time of writing (May 2023) there has been a discussion in media e.g. https://www.expressen.se/ledare/patrik-
kronqvist/politikerna-skryter-men--sverige-ar-ett-u-land/ in regards to poorly functioning systems in the wake of the ongoing
digitalisation of society which also supports that, albeit not applicable to software development tools and organisations, this is
becoming a societal issue at a large scale.

PPIG 2023 70 ppig.org

Dey, I. (1999). Grounding Grounded Theory - Guidelines for Qualitative Inqury. San Diego, California,
USA: Academic Press.

D’Ignazio, C., & Klein, L. F. (2020). Data Feminism (1st ed.). Cambridge, Mass. USA: MIT Press.
Fritz, T., & Müller, S. C. (2016, March). Leveraging Biometric Data to Boost Software Developer

Productivity. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER) (Vol. 5, pp. 66–77).

Froomkin, A. M. (2002). Habermas@Discourse.Net: Toward a Critical Theory of Cyberspace. Harvard
Law Review, 116(3), 749–873.

Fuchs, C., & Sevignani, S. (2013, June). What Is Digital Labour? What Is Digital Work? What’s their
Difference? And Why Do These Questions Matter for Understanding Social Media? tripleC:
Communication, Capitalism & Critique. Open Access Journal for a Global Sustainable Informa-
tion Society, 11(2), 237–293. doi: 10.31269/triplec.v11i2.461

Gearing, R. E. (2004, December). Bracketing in Research: A Typology. Qualitative Health Research,
14(10), 1429–1452. (Publisher: SAGE Publications Inc) doi: 10.1177/1049732304270394

Gioia, D. A., Corley, K. G., & Hamilton, A. L. (2013, January). Seeking Qualitative Rigor in Inductive
Research: Notes on the Gioia Methodology. Organizational Research Methods, 16(1), 15–31.
Retrieved from https://doi.org/10.1177/1094428112452151 (Publisher: SAGE
Publications Inc) doi: 10.1177/1094428112452151

Glaser, B. G. (1978). Theoretical Sensitivity. CA, USA: Sociology Press.
Glaser, B. G. (1992). Emergence vs Forcing - Basics of Grounded Theory Analysis. CA, USA: Sociology

Press.
Gonçales, L. J., Farias, K., & da Silva, B. C. (2021, August). Measuring the cognitive load of software

developers: An extended Systematic Mapping Study. Information and Software Technology, 136,
106563. doi: 10.1016/j.infsof.2021.106563

Gulliksen, J., Lantz, A., Walldius, Å., Sandblad, B., & Åborg, C. (2015). Digital arbetsmiljö,
en kartläggning (RAP 2015:17) (Tech. Rep.). Retrieved from https://www.av.se/
arbetsmiljoarbete-och-inspektioner/kunskapssammanstallningar/
digital-arbetsmiljo-kunskapssammanstallning/

Helgesson, D. (2021). Exploring grounded theory perspectives of cognitive load in software engineering
(Unpublished doctoral dissertation).

Helgesson, D., Appelquist, D., & Runeson, P. (2021). A grounded theory of cognitive load drivers in
novice agile software development teams. In Unpublished manuscript. Retrieved from http://
arxiv.org/abs/2107.04254

Helgesson, D., Engström, E., Runeson, P., & Bjarnason, E. (2019). Cognitive Load Drivers in Large
Scale Software Development. In Proceedings of the 12th International Workshop on Cooperative
and Human Aspects of Software Engineering (pp. 91–94). Piscataway, NJ, USA: IEEE Press. doi:
10.1109/CHASE.2019.00030

Helgesson, D., & Runeson, P. (2021). Toward grounded Theory perspectives in Software Engineering.
In Ppig’21.

Hilderbrand, C., Perdriau, C., Letaw, L., Emard, J., Steine-Hanson, Z., Burnett, M., & Sarma,
A. (2020, June). Engineering gender-inclusivity into software: ten teams’ tales from the
trenches. In Proceedings of the ACM/IEEE 42nd International Conference on Software En-
gineering (pp. 433–444). Seoul, South Korea: Association for Computing Machinery. doi:
10.1145/3377811.3380371

Hollan, J., Hutchins, E., & Kirsh, D. (2000, June). Distributed Cognition: Toward a New Foundation
for Human-computer Interaction Research. ACM Trans. Comput.-Hum. Interact., 7(2), 174–196.

Håkansson, E., & Bjarnason, E. (2020, August). Including Human Factors and Ergonomics in
Requirements Engineering for Digital Work Environments. In 2020 IEEE First International
Workshop on Requirements Engineering for Well-Being, Aging, and Health (REWBAH). doi:
10.1109/REWBAH51211.2020.00013

Kirsh, D. (2000). A Few Thoughts on Cognitive Overload. Intellectia(30), 19–51.

PPIG 2023 71 ppig.org

Krüger, S., & Johanssen, J. (2014, September). Alienation and Digital Labour—A Depth-Hermeneutic
Inquiry into Online Commodification and the Unconscious. tripleC: Communication, Capitalism
& Critique. Open Access Journal for a Global Sustainable Information Society, 12(2), 632–647.
doi: 10.31269/triplec.v12i2.548

Lenberg, P., Feldt, R., & Wallgren, L. G. (2015, September). Behavioral software engineering: A
definition and systematic literature review. Journal of Systems and Software, 107, 15–37.

Lorey, T., Ralph, P., & Felderer, M. (2022). Social science theories in software engineering research. In
Proceedings of the 44th international conference on software engineering (p. 1994–2005). New
York, NY, USA: Association for Computing Machinery. Retrieved from https://doi.org/
10.1145/3510003.3510076 doi: 10.1145/3510003.3510076

Luastsen, C. B., Larsen, L. T., Nielsen, M. W., Ravn, T., & Sörensen, M. P. (2017). Social Theory - A
Textbook (1st ed.). New York, NY, USA: Routledge.

Martin, V. (2019). Using Popular and Academic Literature as Data for Formal Grounded Theory.
In The SAGE Handbook of Current Developments in Grounded Theory. London, UK: SAGE
Publications.

Melegati, J., & Wang, X. (2021, May). Surfacing Paradigms underneath Research on Human and
Social Aspects of Software Engineering. In (pp. 41–50). IEEE Computer Society. doi: 10.1109/
CHASE52884.2021.00013

Miller, G. A. (1956). The magical number seven plus or minus two: some limits on our capacity for
processing information. Psychological review, 63(2), 81–97.

Müller, S. C., & Fritz, T. (2016, May). Using (Bio)Metrics to Predict Code Quality Online. In 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE) (pp. 452–463). (ISSN:
1558-1225) doi: 10.1145/2884781.2884803

Naur, P., & Randell, B. (1969, January). Software engineering: Report on a conference sponsored by
the nato science committee (Tech. Rep.). Scientific Affairs Division, NATO.

Nygren, K. G., & Gidlund, K. L. (2016). The Pastoral Power of Technology. Rethinking Alienation in
Digital Culture. Brill. (Pages: 396-412 Section: Marx in the Age of Digital Capitalism) doi:
10.1163/9789004291393_013

Pfeiffer, S. (2014, September). Digital Labour and the Use-value of Human Work. On the Importance of
Labouring Capacity for understanding Digital Capitalism. tripleC: Communication, Capitalism
& Critique. Open Access Journal for a Global Sustainable Information Society, 12(2), 599–619.
doi: 10.31269/triplec.v12i2.545

Prasad, P. (2018). Crafting Qualitative Research: Beyond Positivist Traditions. Routledge.
Ralph, P., Chiasson, M., & Kelley, H. (2016). Social theory for software engineering research.

In Proceedings of the 20th international conference on evaluation and assessment in software
engineering. New York, NY, USA: Association for Computing Machinery. Retrieved from
https://doi.org/10.1145/2915970.2915998 doi: 10.1145/2915970.2915998

Rasmussen, J. (1983, May). Skills, rules, and knowledge; signals, signs, and symbols, and other
distinctions in human performance models. IEEE Transactions on Systems, Man, and Cybernetics,
SMC-13(3), 257–266. doi: 10.1109/TSMC.1983.6313160

Rennstam, J., & Wästefors, D. (2018). Analyze! Crafting your Data in Qualitative Research (1st ed.).
Lund, Sweden: Studentlitteratur.

Rorty, R. (1979). Philosophy and the mirror of nature (1st ed.). Prinston, NJ, USA: Princeton University
Press.

Rosen, M. (2000). Turning Words Spinning Worlds (Vol. 25). Harwod.
Runeson, P., Engström, E., & Storey, M.-A. (2020). The Design Science Paradigm as a Frame for Em-

pirical Software Engineering. In M. Felderer & G. H. Travassos (Eds.), Contemporary Empirical
Methods in Software Engineering (pp. 127–147). Cham: Springer International Publishing. doi:
10.1007/978-3-030-32489-6_5

Runeson, P., Höst, M., Rainer, A., & Regnell, B. (2012). Case Study Research in Software Engineering:
Guidelines and Examples. John Wiley & Sons.

PPIG 2023 72 ppig.org

Sedano, T., Ralph, P., & Péraire, C. (2017, May). Software Development Waste. In 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE) (pp. 130–140). doi: 10.1109/
ICSE.2017.20

Sharp, H., Dittrich, Y., & de Souza, C. R. B. (2016, August). The Role of Ethnographic Studies in
Empirical Software Engineering. IEEE Transactions on Software Engineering, 42(8), 786–804.

Simon, H. A. (1969). The sciences of the artificial (2nd ed.). Cambridge, USA: MIT Press.
Simon, H. A. (1971). Designing organizations for an information-rich world. In M. Greenberger

(Ed.), Computers, communication, and the public interest (pp. 40–41). Baltimore. MD: The Johns
Hopkins Press.

Stol, K.-J., Ralph, P., & Fitzgerald, B. (2016, May). Grounded Theory in Software Engineering Re-
search: A Critical Review and Guidelines. In 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE) (pp. 120–131). doi: 10.1145/2884781.2884833

Sutton, R. I., & Staw, B. M. (1995). What Theory is Not. Administrative Science Quarterly, 40(3),
371–384. (Publisher: [Sage Publications, Inc., Johnson Graduate School of Management, Cornell
University]) doi: 10.2307/2393788

Söderberg, J. (2011). Free software to open hardware: critical theory on the frontiers of hacking
(No. 17). Gothenburg: University of Gothenburg, Dept. of Sociology.

Tufford, L., & Newman, P. (2012, January). Bracketing in Qualitative Research. Qualitative Social
Work, 11(1), 80–96. (Publisher: SAGE Publications) doi: 10.1177/1473325010368316

van Maanen, J. (1979). The Fact of Fiction in Organizational Ethnography. , 13.
Vorvoreanu, M., Zhang, L., Huang, Y.-H., Hilderbrand, C., Steine-Hanson, Z., & Burnett, M. (2019,

May). From Gender Biases to Gender-Inclusive Design: An Empirical Investigation. In Proceed-
ings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1–14). New York,
NY, USA: Association for Computing Machinery.

Weick, K. E. (1995). What Theory is Not, Theorizing Is. Administrative Science Quarterly, 40(3),
385–390. (Publisher: [Sage Publications, Inc., Johnson Graduate School of Management, Cornell
University]) doi: 10.2307/2393789

Wickens, C. D., Hollands, J. G., Banbury, S., & Parasuraman, R. (2015). Engineering Psychology &
Human Performance. Psychology Press.

PPIG 2023 73 ppig.org

