
PPIG 2024
of the Psychology of Programming Interest Group

organised in conjunction with VL/HCC 2024

Edited by
Mariana Marasoiu, Luke Church

2 - 6 September 2024
Liverpool University, UK & online

Proceedings of the 35th Annual Workshop

Editors’ preface

Thank you to all who participated at this year’s workshop. It was PPIG’s 35th annual
meeting, and what better way to celebrate this than to get together with VL/HCC and gather
everyone for a week of exciting events. The University of Liverpool generously hosted us all,
and we enjoyed Liverpool’s fare and sights.

We continued the precedent set in the past few years of enabling remote attendance for the
paper presentations parts of the programme, which has enabled authors who otherwise would
not have been able to join us to participate.

Many thanks go to the VL/HCC 2024 organising committee, in particular to Andrew Fish,
Dulaji Hidellaarachchi, Mattia De Rosa, Anita Sarma and John Grundy for generously
integrating VL/HCC’s programming and publicity with PPIG. Kind thanks to Alexei Lisitsa,
Safa'a Fallatah and Nouf Aljuaid for incredibly helpful local organising.

Thank you to Michael Coblenz and Margaret Burnett for helping us organise a wonderful
joint Graduate Consortium, which exceeded expectations in numbers of submissions and
needed us to get creative in supporting many promising doctoral students, both in-person on
the first day of the conference week (Monday 2nd September) and online a few days before
the conference with a few students who couldn’t travel (Friday 30th August).

The paper presentation sessions were graciously chaired by Alan Blackwell, Dulaji
Hidellaarachchi, Caitlin Kelleher, Judith Good, Tom Beckmann, Andreas Bexell and Michael
Lee - thank you for enabling a convivial atmosphere. Special thanks to Tom Beckmann and
Andreas Bexell for stellar tech and hybrid support.

And finally, thanks to all the authors, attendees, and contributors who collectively brought
PPIG 2024 to life. We hope to see you, and diverse newcomers at PPIG 2025!

Mariana Marasoiu & Luke Church
October 2024

PPIG 2024

www.ppig.org 1

PPIG 2024

www.ppig.org 2

PPIG 2024
Programme & Proceedings Index

Monday, 2nd September

8:45 - 17:15 VL/HCC + PPIG Joint Graduate Consortium (invite-only meeting)

Tuesday, 3rd September

9:00 - 17:00 VL/HCC research presentations

Wednesday, 4th September

9:00 - 17:00 VL/HCC research presentations

Thursday, 5th September

8:30 - 9:30 Coffee and registration

9:00 - 10:30 Joint PPIG / VL/HCC Keynote - hybrid

PPIG 2024 Welcome
Luke Church

Keynote: Computational Ekphrasis - Reflections on generative modes of
cultural production
Daniel Chávez Heras

7

10:30 - 11:00 Coffee break

11:00 - 12:30 Presentations session - hybrid

Ghost in The Paper: Player Reflex Testing with Computational Paper
Prototypes
Tom Beckmann, Eva Krebs, Leonard Geier, Lukas Böhme, Stefan Ramson,
Robert Hirschfeld

8

VL/HCC RULER: Prebugging with Proxy-Based Programming
Alexander Repenning, Ashok Basawapatna

VL/HCC Where Are We and Where Can We Go on the Road to Reliance-Aware
Explainable User Interfaces?
José Cezar de Souza Filho, Rafik Belloum, Kathia Oliveira

Designing A Multi-modal IDE with Developers: An Exploratory Study on
Next-generation Programming Tool Assistance
Peng Kuang, Emma Söderberg, Martin Höst

20

12:30 - 14:00 Lunch

14:00 - 15:30 Presentations session - hybrid

VL/HCC Age-Inclusive Integrated Development Environments for End-Users
Katharine Kerr, Reid Holmes

PPIG 2024

www.ppig.org 3

VL/HCC ScrapeViz: Hierarchical Representations for Web Scraping Macros
Rebecca Krosnick, Steve Oney

Assessing Consensus on Developers' Views on Code Readability
Agnia Sergeyuk, Olga Lvova, Sergey Titov, Anastasiia Serova, Farid Bagirov,
Timofey Bryksin

37

VL/HCC Unfold: Enabling Live Programming for Debugging GUI Applications
Ruanqianqian (Lisa) Huang, Philip Guo, Sorin Lerner

15:30 - 16:00 Coffee break

16:00 - 17:30 Presentations session - hybrid

VL/HCC Knotation: Supporting Exploration in Macrame Textile Crafting Through
Parametric Motif Design
Yanchen Lu, Tobias Höllerer, Jennifer Jacobs

For Modeling Programmers as Readers with Cognitive Literary Science
Rijul Jain

45

VL/HCC What Makes a Great Example Gallery?
Junran Yang, Andrew McNutt, Leilani Battle

VL/HCC VL/HCC 2024 Closing
Andrew Fish, Anita Sarma, John Grundy

18:30
onwards

In-person
PPIG Conference dinner @ The Philharmonic Dining Rooms

Friday, 6th September

8:30 - 9:30 Coffee and registration

9:00 - 10:30 Presentations session - hybrid

Predictability of identifier naming with Copilot: A case study for
mixed-initiative programming tools
Michael Lee, Advait Sarkar, Alan Blackwell

47

Further Evaluations of a Didactic CPU Visual Simulator (CPUVSIM)
Renato Cortinovis, Tamer Mohamed Abdellatif, Devender Goyal, Luiz Fernando
Capretz

69

Exploring Teachers’ Perspectives on Navigating Recursion Pedagogies
Jude Nzemeke, Marjahan Begum, Jo Wood

77

10:30 - 11:00 Coffee break

11:00 - 12:30 Presentations session - hybrid

Understanding APIs and the software that provides them - Analysis of
programmers’ API mental models used in programming tasks
Ava Heinonen

90

Analysing Open Source Software to Better Understand Long Term Memory
Structures in the Human Brain
Thomas Mullen

102

PPIG 2024

www.ppig.org 4

Designing a didactic model for programs and data structures
Federico Gómez, Sylvia da Rosa

112

Craft Ethics - Aiming for Virtue in Programming with Generative AI
Martin Jonsson, Jakob Tholander

123

12:30 - 14:00 Lunch

14:00 - 15:30 Presentations session - hybrid

Educational Tools for Probabilistic Machine Learning Curriculum in
Schools
Josephine Rey, Alan Blackwell, Xinyue Li, Gemma Penson, Hong Ge, Helen
Arnold

134

Automatic Bias Detection in Source Code Review
Yoseph Berhanu Alebachew, Chris Brown

144

Ethical Integration in Computer Science Education: Leveraging Open
Educational Resources and Generative Artificial Intelligence for Enhanced
Learning
Ranjidha Rajan, Renato Cortinovis

152

Intention is All You Need
Advait Sarkar

160

15:30 - 16:00 Coffee break

16:00 - 17:30 Presentations session - hybrid

How Do Developers Approach Their First Bug in an Unfamiliar Code Base?
An Exploratory Study of Large Program Comprehension
Andreas Bexell, Emma Söderberg, Christofer Rydenfält, Sigrid Eldh

174

PUX Explorer: An Interactive Critique and Ideation Tool for Notation
Designers
Justas Brazauskas, Alan Blackwell

186

Boxer Sunrise Development Update and Demos
Steven Githens

204

PPIG 2024 Prizes and Closing
Mariana Marasoiu, Luke Church

PPIG 2024

www.ppig.org 5

PPIG 2024

www.ppig.org 6

Computational Ekphrasis
Reflections on generative modes of cultural production

Daniel Chávez Heras
King’s College London
daniel.chavez@kcl.ac.uk

Keynote abstract

Contemporary generative AI systems enable a mode of visual production through verbal interaction.
Multi-modal models that take text and/or images interchangeably as inputs and reproduce them as
outputs are being used by millions of people around the world and are already having a significant
impact on contemporary visual culture.

In philosophy, there is a term to describe this type of inter-semiotic correspondence between words
and images: Ekphrasis ―from the Greek ek meaning “out” and phrásis meaning “speak.” Current
generative systems allow new forms of correspondence and permutation between visual and linguistic
registers through calculation, I call this: computational ekphrasis, a process by which language can
frozen to be seen all at once, as if it was an image, and images can be sequentially unrolled as it they
were read and written.

In this presentation I elaborate on this notion of computational ekphrasis. Through a series of
examples, including from my own practice in the computational modelling of moving images, I
explore ways to mobilise aesthetic frameworks to think critically about programming and about
generative modes of cultural production, before and after generative AI.

PPIG 2024

www.ppig.org 7

Ghost in The Paper: Player Reflex Testing with Computational Paper Prototypes

Tom Beckmann
Hasso Plattner Institute
University of Potsdam

tom.beckmann@*

Eva Krebs
Hasso Plattner Institute
University of Potsdam

eva.krebs@*

Leonard Geier
Hasso Plattner Institute
University of Potsdam

leonard.geier@*

Lukas Böhme
Hasso Plattner Institute
University of Potsdam

lukas.boehme@*

Stefan Ramson
Hasso Plattner Institute
University of Potsdam

stefan.ramson@*

Robert Hirschfeld
Hasso Plattner Institute
University of Potsdam

robert.hirschfeld@*

Abstract
Paper prototyping is an effective strategy for digital game designers to explore a design space. However,
a large area of the design space is out of reach for paper: prototypes that need to react to player reflexes
are challenging to realize. Many game genres use player reflexes as an integral part of their concept.

Through a set of examples, we analyze factors that contribute to the effectiveness and spontaneous spirit
of paper prototyping. We then propose digital tool support designed to broaden the scope of paper
prototyping, by introducing computation to paper arrangement, while maintaining its effectiveness and
spontaneous spirit. We present and discuss the design of an explorative study to evaluate the concept.

1. Introduction
Game designers are faced with the challenge of obtaining feedback on their concepts as quickly as
possible (Schell, 2019). As they typically work to create the elusive quality of "fun", it is difficult
for them to gain insights through any other means than observing players of their game or playing it
themselves.

Consequently, game designers frequently create prototypes that reveal an insight about their concept
with as little time invested as possible. To this end, paper prototyping, or more generally low-fidelity
prototyping, is a popular method that allows designers to quickly materialize a playable concept, even
improvising more elements or rules on the fly. Contrarily, in most digital game prototyping methods a
designer first needs to laboriously formalize the rules of the game in a way that a computer can execute
them. While a designer may prepare a set of parameters to tweak quickly in their digital game, free
improvisation is turned nigh impossible, even in settings with fast edit-compile-run cycles like live
programming systems.

However, there are certain questions about a concept that are difficult to answer through a paper proto-
type. Games appeal through a variety of factors, such as engaging puzzles, skill challenges, or social
communities. Concepts that seek to exercise the players’ reflexes will likely benefit from a digital pro-
totype, as a computer can respond to a player’s actions within milliseconds, whereas an interpretation of
another human directing a paper prototype will likely take seconds and be subject to significant impre-
cision.

In this paper, we seek to find a way to bring the benefits of paper prototyping to concepts that want to test
player reflexes. To this end, we constrained a digital drawing tool to closely resemble paper prototyping.
We then added the possibility for a designer to express rules within that tool that are automatically
simulated by the computer. With this setup, we present insights from an exploratory user study pilot that
seeks to answer two research questions:

• How does our digital counterpart compare to analog paper prototyping in terms of the designer’s
and the player’s experience?

*hpi.uni-potsdam.de

PPIG 2024

www.ppig.org 8

• How well does our digital paper prototyping tool allow for prototyping game concepts that rely
on player reflexes?

In the following, we will present insights from several paper prototyping sessions we observed and drew
conclusions from for our digital tool (Section 2). We will then briefly describe how we mapped those
insights to a digital tool (Section 3). Next, we describe our setup and insights gained from the pilot
user study (Section 4) and discuss those (Section 5), before considering related work (Section 6) and
concluding the paper.

2. Paper Prototyping
To guide the design of our digital tool for paper prototyping, we first observed two colleagues while
they collaboratively designed a paper prototype. In the session, the designers conceptualized and started
drafting a single-player card game where the player draws cards from a stack and maintains a hitpoint
and defense counter. We interrupted their prototyping session after about one hour. We took notes
focused on the activities and actions they performed during prototyping. While activities describe the
operation on a high-level, actions describe how the designers physically perform activities.

2.1. Activities
During the prototyping process, multiple activities freely interleave. Designers may spontaneously in-
terrupt one activity, perform another one, and return within seconds. Based on the actions we observed
designers perform, we derive three activities: discussion, asset creation, and playtesting.

Discussion At the very start, whenever the next step appeared unclear, or when a new insight surfaced,
the designers started brainstorming and discussing ideas. These could involve rules for the game, the
look and feel of game elements, or balancing decisions. Often, the discussion served to align ideas or
conclusions between the designers.

Asset Creation Here, the designers created pieces for their playable prototype. In the observed in-
stance, this involved paper cut-outs, blank cards, as well as tokens from a board game that the designers
found in the room.

Playtesting Once enough assets were available, the designers began playtesting the prototype. No-
tably, the designers would frequently interrupt playtesting and return to discussion or asset creation.
This occurred when a rule appeared to be missing or ambiguous but also when a designer believed to
have identified potential for an even better rule. Often, one designer would be playing while the other
was observing or creating new assets to quickly inject into the playing session.

2.2. Operationalization of Activities
During the three activities, the designers performed a variety of actions.

During discussions, the designers made use of a whiteboard. They wrote text on it, drew shapes, circled
drawn elements, or connected them with arrows. The relative placement of text and shapes was used to
signify relationships.

The designers verbally added context to ad-hoc syntax, such as dotted lines to signify an implicit ef-
fect between two elements, or arrows to demonstrate movement. They proposed rules verbally, named
challenges, and frequently referenced mechanics from other games as a shortcut for explanations. When
discussions interrupted playtesting, the designers pointed at paper elements, gathered relevant elements
for a better overview, or asked for opinions from their colleague.

The actions that occur during asset creation and playtesting are of special importance to our goal of
creating a digital paper prototyping tool. From the actions the designers performed, we derive three
categories: Arranging , Describing , and Editing .

PPIG 2024

www.ppig.org 9

Figure 1 – Screenshot of our digital prototyping tool. Three pieces of paper are on the canvas that
the user has named. The computations panel is currently open, showing first the users’ instructions,
then extracted constants for the generated code, and finally, the code itself in case it needs to be
debugged. The second user’s cursor is shown in red.

To create game elements, they took paper or cards and drew on them. While drawing, they sometimes also
tried to exactly copy previously drawn shapes to another piece of paper. When the designers deemed a
change necessary, they simply overwrote a previous shape on the paper, for example increasing a number.

Designers were rotating , stacking , and placing tokens and cards. They shuffled stacks of cards or drew

cards from a stack.

Once game elements had been created, designers pointed at elements and named them verbally, for
example proclaiming that this is the "draw pile" or "a token worth 5 points". Occasionally, they would
also refer by name or point at an element and explain an associated rule or the meaning of an icon they
drew. Throughout asset creation, designers also stated rules or revised previously stated ones.

During playtesting, the same Arranging actions came into play as the designers rearranged elements to
signify changes to the game state.

3. Digital "Paper" Prototyping
The list in Subsection 2.2 provides us with an initial vocabulary of actions that a digital paper prototyping
tool needs to support. Fortunately, most of these actions are already supported by digital whiteboards or
drawing tools. We chose as a basis tldraw*, an open-source, web-based canvas component. A screenshot
of our tool is shown in Figure 1.

In particular, our goal is to create an experience in the digital tool that is as close as possible to analog
paper with a single change: designers can make elements move automatically based on a set of rules.
As a consequence, we remove functionality that is commonly available in digital tools, such as undo.
While there are still significant differences, notably the use of a digital interface as opposed to tangible
paper, we hope to thus constrain the effects of other conveniences that the digital medium brings to a
minimum, to focus on the single, desired intervention of automatic computation.

*https://github.com/tldraw/tldraw

PPIG 2024

www.ppig.org 10

3.1. Adaptations to tldraw
To make tldraw suitable for our needs, we included a remote collaboration feature, such that two users
could work and play on the same canvas using two computers.

In terms of interactions, we removed all built-in tools besides those that we derived from our observations
on paper prototyping. To ensure that the desired interactions feel natural, we added a pen/touch hybrid
tool:

• By dragging the pen across the canvas, the user creates a piece of paper of variable size.

• By dragging the pen across a piece of paper, the user draws on it.

• By dragging a piece of paper with their finger, the user moves that piece. This way, they can also
stack pieces.

• By dragging the canvas with their finger, the user pans the viewport.

We left the default tools for creating rectangles (pieces of paper), drawing, and selecting available, in
case users wanted to use a mouse instead of a pen.

Finally, we added two special tools: one tool for pointing at an element and to name or explain it using a
text, and a second tool that ignores all inputs but still provides mouse inputs to the computation system,
as the interactions during play may overlap with those for editing.

3.2. The Ghost in The Paper
The reason for recreating paper prototyping in the digital space, as described in Section 1, is to allow
elements to move automatically, reacting immediately to player input. We ideally want designers to be
spontaneous and have quick feedback loops akin to prototyping with paper – ruling out the option of
writing code manually. For this purpose, we added a text field that allows users to state rules in natural
language, as seen on the right of Figure 1.

As guide for designers, we envision a scenario where they describe to a third, absent designer how
elements should behave. That third designer would take the role of computer and execute these steps.
As the third designer is not present during creation of the prototype, the rules need to be unambiguous
and complete. Notably, not all rules of the prototype need to be spelled out, only those that require the
computer to be involved.

Given this semi-formalized description of rules, we had a generative artificial intelligence produce a
formal, executable version of the rules in JavaScript. Once JavaScript code has been generated, the
user can toggle a play mode, which toggles continuous execution of the generated code for every frame
in a game loop. When the play mode is activated, we persist a snapshot of the canvas state and allow
designers to revert to that state before any modifications by the computer took place. To avoid any issues
from networked play, we constrain the play mode to a single client. The other clients still see the scene
evolving but the computational rules, such as checks for mouse position, are not run on their instances.

LLM Configuration We used the gpt-4o model in our experiments, with its JSON mode enabled and
a temperature of 1. The prompt consisted of multiple system messages:

• Informing the AI that it is meant to create rules for a 2D game.

• The layout of the designers’ scene, including the names and explanations that designers have
attached to elements.

• The API available to it, auto-generated from a TypeScript file, resembling the Arranging actions
of our vocabulary.

PPIG 2024

www.ppig.org 11

• The boilerplate for the gameLoop, shown in Listing 1.

• A request to extract and return any constants.

• A set of instructions aimed at preventing misuse of the API we have observed.

• Optionally: the previous code, instructions, and constants the LLM had generated, with the request
to match it closely if possible.

• As a user message, the rules they specified.

• The layout of the JSON object to be returned: {constants: {name: string, default: number

, unit: string}[], code: string, instructions: string}.

We display two buttons for updating the rules: one that includes and one that excludes the previously
generated code. In practice including or excluding the previous code did not appear to make a difference,
as the newly generated code often deviated significantly from the previously generated one, even for
small change requests.

// any state you may want to store
// let a = ...
return function gameLoop(api, constants) {

...
}

Listing 1 – Boilerplate for the Game Loop

3.3. Exemplary Workflow
As an example, let us consider a simple jump-and-run to which we want to introduce a new mechanic:
a ghost should follow the player while they are not looking at it. The scenario is drawn from an early
experiment we did ourselves.

We begin by drawing pieces of paper for platforms onto the canvas. We then create two pieces of paper
on which we draw a player icon and a ghost icon.

One designer is moving the player, the other is moving the ghost, each on their respective device. We
observed that it is difficult to realize when the ghost should stop moving, i.e. the player is looking in its
direction. An attempt to have the player call out the direction they are looking to turned out to be too
unreliable. We also do not want to fully automate the ghost’s movement, as we are still unsure about its
ideal movement pattern and want to maintain the option to improvise its movement.

Instead, we add a computation rule that displays a piece of paper either on the left or on the right of the
screen, depending on the direction the player last moved in. This suffices as a guide for the designer
moving the ghost to react quickly.

4. Pilot User Study
We design a user study that answers (1) how the experience of using our digital paper prototyping tool
compares to analog paper prototyping, and (2) how well our tool allows prototyping concepts that rely
on player reflexes. Here, we are presenting the design of and discussing insights from a pilot study.

4.1. Setup
We recruit participants who state that they have prior experience with paper prototyping. To answer the
two questions, we give participants two prototyping prompts: one that we believe would work well for
analog paper prototyping and one that we believe would be challenging to prototype. Participants work
in teams of two. They work on both prototype prompts once with analog paper and once with our digital
tool, for a total of four prototyping sessions.

PPIG 2024

www.ppig.org 12

Figure 2 – Materials we provided during the prototyping session for analog prototyping.

For the analog prototypes, we provided a set of materials as shown in figure Figure 2. In addition, we
allowed participants to ask for any additional materials, that the instructions would then procure or state
that those cannot be used.

Before the first use of our digital tool, participants receive a brief introduction and can try out the tool.
We also explain the framing of specifying rules for computations in the setting of recording instructions
for a third, currently absent, designer who will later be performing the instructions. In addition, we prime
them to consider involvement of computations a "last resort", when it is clear that manual execution will
falsify the prototyping insights.

4.2. Prototyping Prompts
For the prompt that should work well with paper, we ask participants to extend the rules of the puzzle
video game Baba Is You. In Baba Is You, the player moves the eponymous Baba on a top-down, rect-
angular grid. In the grid cells are objects or words. Pushing the words with Baba to form sentences
changes the game rules. For instance, building the sentence "Wall is Push" means that Baba can now
push wall objects around the grid.

We ask participants to add a new "invert" word to the game that should invert whatever words it is
combined with. Participants should investigate two questions through their prototype:

• With what other words of the base game does the "invert" word work well?

• Does the "invert" word allow for interesting puzzles?

For the second prompt, we ask participants to modify the 2D game Fruit Ninja that is typically played
on a touchscreen. In Fruit Ninja, fruits are thrown across the screen and the player tries to slice through
these to gain points by swiping across them. Among the fruits are bombs that the player has to avoid.

We ask participants to investigate how the game is best played with a mouse through the question:

• How to best interact with Fruit Ninja using a mouse?

PPIG 2024

www.ppig.org 13

4.3. Method
The participants are given the prototyping prompt with a time limit of 30 minutes. While the participants
are working on the prompt, we record their interactions and conversations for later analysis. Once the
time limit has elapsed, we perform a semi-structured interview with the participants. In particular, we
ask the following questions to facilitate answering our research questions concerning the comparison
between the mediums and the effectiveness of computations for testing reflexes:

1. What was the most frustrating part about working with the given materials?

2. What worked best in with the given materials?

3. For the digital tool only: What actions you know from analog paper did you want to perform that
were not possible?

During early experimentation, we realized that the quality of LLM-generated code was unreliable. Con-
sequently, we opted for a "hybrid" Wizard-of-Oz (Green & Wei-Haas, 1985) mode: participants first
generate code, execute it once, and if an error occurs or the behavior is not obvious within the first cou-
ple of seconds, we interrupt the session and an instructor repairs the code. We discuss the effect of this
approach in Subsection 5.2.

4.4. Results from Pilot Run
As a first pilot for the described study, we executed the setup with two of the co-authors as participants.
We briefly describe their approach to answering the prototyping prompt, challenges they encountered,
and their answers to the interview.

Baba Is You: Analog The participants first brainstormed interpretations of the "invert" word in com-
bination with other words from the original game. They used a single sheet of paper to document ideas
and refer to them later again. To create assets, they made use of a set of multi-colored chips and placed
them on a grid that they drew on a sheet of paper, see Figure 3. They drew icons or words on the chips
to differentiate them.

During play, the participants quickly realized obvious solutions to their puzzles, rolled back a couple of
steps, changed an aspect of the physical level or verbal rules, and tried again. The participants struggled
with a consistent interpretation of the "invert" rule throughout the session, as most often they fell back
on an interpretation as "not", for which they did not find interesting puzzles.

In the interview, the participants indicated that they kept struggling with the permanence of decisions
and that they had to remind themselves that they can always overwrite icons. They found it challenging
to quickly move arrangements of objects in their entirety, for instance, a prepared level, without it being
damaged in the process. At times, space on the grid they had prepared appeared tight; however, they
also noted that they appreciated the constraint to keep levels simple. In parts, it was difficult for them to
verify if they were complying with the verbally agreed-upon rules, especially when they were quickly
iterating different arrangements of levels.

On the other hand, they also appreciated that the material was not giving any hard constraints – if it
was obvious that a sequence of moves was valid, they could move Baba directly to a destination. They
expressed that the chips were useful for this prototyping prompt, as they were just heavy enough not to
fly around when interacting with the grid and adding new objects by labeling the chips was so quick that
they would often do so mid-play.

Baba Is You: Digital After the interview, the participants continued their prototyping session in the
digital space. They again started by taking notes, this time on a digital piece of "paper" in our tool.
Simultaneously, the other person already started quickly recreating the same tokens by drawing square
rectangles and drawing or writing on them.

PPIG 2024

www.ppig.org 14

Figure 3 – One analog prototype created for Baba is You.

The mode of asset creation and play were largely the same: participants tried out ideas they deemed
promising, adapted aspects mid-play, and discussed insights. When one participant was presenting a
new idea, the other participant often tended to look at the presenter’s laptop as opposed to their own,
even though the partner’s cursor positions were shown on both devices.

In the interview, the participants indicated that the pen/touch-mode initially led to one or two wrong
inputs but that they quickly adapted. Reliably pointing at small elements using the finger, however,
was sometimes challenging. Both participants indicated that there was slightly more friction to creating
elements: written text ended up larger and so space was running out more quickly or giving precise inputs
required more concentration. To make matters worse, one of the laptops used during the experiment was
running a screen recording software, which caused the framerate on that device to be very low. The
participants noted two fundamental issues: first, the limited viewports of the two laptops compared to
the physical table often made it difficult to see what the other person was working on or even what they
were looking at when talking about something specific, making communication more challenging. In
particular, shifting the viewport required interactions with the hand on the screen, whereas with analog
paper shifting the head or the focal point of the eyes was enough. Second, the participants described an
"uncanny valley" of interactions, where the limited set of interactions we constrained our tool to caused
some frustration, as they are used to operations like resizing or effortless duplication being available
in digital tools. To them, the medium did not evoke the impression of paper enough to remove these
expectations.

On the flip side, they praised the effortless creation of paper sheets in the digital tool, as well as the quick
selection of the pen color, both of which typically involve reaching across the table or using scissors. The
pen/touch-mode also worked very well, after the initial hurdle and aligned well with their expectations
from the physical world. In this way, arranging objects, which was the bulk of the session, worked well,
too.

In terms of actions they were missing from analog paper, they listed moving multiple things – which
was not supported using the pen/touch-mode. They also noted that resizing does work to an extent in the
analog world, simply by cutting off parts of a piece of paper. Lastly, rotation was also not well supported
in our tool.

Fruit Ninja: Analog The participants again started by sketching ideas on a piece of paper, this time
for four different interactions for collecting fruit. They quickly identified as their main challenge to
convey a similar feeling to the indirection of using a mouse: an attempt to quickly draw a line between
fruit previously drawn on a sheet was deemed too dissimilar; another attempt to tap fruit that the other
participant was moving around on the table led to arms getting in each other’s way; a third attempt where

PPIG 2024

www.ppig.org 15

another person was asked to close their eyes, sit down at the table, and move their finger to collect fruit
while another player was "drawing" directions on their back, to simulate the indirection of the mouse,
resulted in too high latency and inaccuracy. In a fourth attempt, the participants placed small sheets of
paper on the table and two players competed against one another to collect the most, which ended up not
feeling comparable to Fruit Ninja. Finally, the closest approximation was putting a table at an incline
and throwing chips at it, such that they sled back down while the player had to slice through them; this
created a similar feeling but was a better simulation of a touch screen than a mouse.

Consequently, the participants were dissatisfied with their progress, stating that they learned about the
prototyping medium but nothing about the prototyping prompt. The major challenges concerned creating
continuous, predictable movement, moving enough elements at once to present a challenge to the player,
and to move elements without getting into the player’s way. However, they also noted that they managed
to prototype five distinct ways to approximate the mouse-based interface in the half-hour time span. The
chips worked well again here, as they had the right size and weight to be thrown around.

Fruit Ninja: Digital In the final condition, the participants took two digital sheets of paper to sketch
their ideas and created a fruit and a bomb asset. They then added computational rules that started out
very simple, e.g., "move a shape from left to right on the screen" and gradually increased in complexity,
e.g., "slice a rectangle at high speed to remove it". After every generation, the participants made heavy
use of the constants to tweak intervals and velocities of elements to find the right feeling. Throughout,
the LLM generation failed, meaning that the session had to be interrupted five times for the instructor to
fix the code, before the session could resume, which took between 2 and 5 minutes each time. In the end,
they prototyped a tap-to-remove interaction and had started tweaking the rules of how a slice-to-remove
interaction should work.

In the interview, participants noted that they had wished for copying existing paper or coloring paper.
They also noted that the interruptions due to generation failures were jarring and it was difficult for them
to pick up where they had left. As the current version of our tool allows only one participant to interact
with computations, they had to effectively share one small laptop and one set of controls, even though
they saw great opportunity in tweaking constants while the other participant was playing. One aspect
that they were missing was the possibility to demonstrate the velocity or the arc of a movement through
motion, instead having to express it in text or tweak constants to achieve it.

The participants praised the automatic movement and the quick means to achieve it, allowing them to
now have arbitrary numbers of elements moving, without interference from another set of limbs, and
with precise and consistent control over movement. As a changed constant instantly made its effect
visible, they felt in control when it came to tweaking the behavior.

5. Discussion and Future Work
Here, we briefly discuss insights from the pilot on our study design and on our tool design.

5.1. Study Design
Overall, the prototyping prompts elicited the challenges we had anticipated well: the Baba Is You prompt
was quickly realized in both the analog and digital versions and the Fruit Ninja prompt posed a major
challenge in analog but was realizable in digital.

As our participants noted the challenge of making sense of the "invert" rule for Baba Is You we are
considering instead moving to simply asking participants to design an interesting Baba Is You level with
a predetermined set of words. As this was the main aspect that exercised the prototyping medium and
that worked well for the participants, we would reduce frustration while keeping relevant insights.

It is still unclear how to best address interruptions when LLM generation fails in the digital medium.
One method may be to remove the LLM and instead have a set of higher-level functions prepared that
the instructor can invoke. If the set of functions is well adapted to the prompt, it may allow faster cycles.

PPIG 2024

www.ppig.org 16

5.2. Digital Paper
While the digital paper lacked tactile properties and thus led to occasional erroneous inputs, we believe
that our approximation of paper prototyping was already mapped well for the prompts we tried. As
participants showed frustration that they did not have the functionality available they expected from
digital tools, we might consider allowing their use. In particular, they requested scaling and duplicating
shapes, which we had removed to better approximate what is possible in the real world. It remains to be
seen if the addition of the tools might also change the types of prototypes designers are building in the
tool. Whereas they might be inclined to go for a minimal set of elements without a duplicate function,
duplication might, perhaps unnecessarily, push them to consider more complex arrangements.

Concerning the computation element, participants were positive in terms of its intention but its execution
was challenging as part of the prototyping session. Interestingly, the participants slowed their own
progress significantly and introduced further interruptions by incrementally adding rules to supposedly
test the system’s limits. In practice, the generated code varied so wildly in quality that a previously
stable state could not be reliably built upon or even reproduced.

Errors included incorrect syntax (missing delimiters), incorrect use of language constructs (assignment
to const variables), hallucinated API methods, writing to internal properties that had been explicitly for-
bidden by the prompt, or logical errors (modifying a collection while iterating over it, not storing the
cursor position from the previous frame to calculate movement). The instructor addressed the issues ei-
ther by adding further hidden constraints to the prompt and regenerating the code, fixing them manually,
and sometimes even asking the participants not to generate code but implementing a change manually
when the change was small. In addition, the use of the passed in constants tended to change between
code versions, so, even though we kept values and units the same between generated code versions, the
behavior changed drastically and participants had to tweak the behavior anew.

An interesting avenue for future work is to explore opting for a full Wizard-of-Oz setup. To realize this,
we may consider preparing a set of high-level routines that will likely be of use during the prototyping
session. In addition, AI-assisted coding that merely autocompletes as opposed to generating an entire
program would give the instructor more control. It remains to be seen if changes can be realized quickly
enough this way to keep the participants’ attention. Alternatively, prior work has demonstrated the pos-
sibility of crowd-sourcing logic for a sketch in real-time (Lasecki et al., 2015). Other work points to the
possibility of pre-processing the user sketches to extract structure, which could support the translation
process (Li, Cao, Everitt, Dixon, & Landay, 2010).

6. Related Work
Low-fidelity prototypes such as paper prototyping are an essential part of the design process and an
essential aid in discovering good designs (Nielsen, 1995). In game design, where according to "the rule
of the loop" we want as many iterations as possible to improve our game, paper prototypes are especially
relevant for their fast iterations (Schell, 2019). Aside from traditional paper prototypes, other low-fidelity
prototypes with a similar essence are also used for game design. This includes physical prototypes,
sometimes called "bodystorming", where humans and their interactions are the main focus (Macklin &
Sharp, 2016).

Other approaches have combined aspects, or concepts of, paper prototyping with digital or mixed-media
tools. For instance, there are several tools such as Miro boards (Chan, Ho, & Tom, 2023) that allow
multiple people to collaborate digitally in a way that is similar to using paper and post-it notes. One
previous project prepared paper prototypes and manually converted them to digital prototypes in Power
Point (Uceta, Dixon, & Resnick, 1998). Even though the general style of the prototype stayed the same
and only links between slides were added, the feedback was more concise and focused compared to
using traditional paper prototypes because it was easier for testers to suspend their disbelief and not get
distracted by the prototype medium.

As our pilot test runs already revealed problems with the limited viewport of a 2D screen, a possibility

PPIG 2024

www.ppig.org 17

would be to consider moving to virtual or augmented reality. Previous work used AR to prototype
physical or spatial interfaces, e.g. the appearance of elements in cars (Porter, Marner, Smith, Zucco, &
Thomas, 2010). There is also a multitude of modeling or drawing tools for virtual and augmented reality,
some of which are also targeted at prototyping in particular or rapidly building complex systems in
general (Gasques, Johnson, Sharkey, & Weibel, 2019; Kang et al., 2019). The inverse also exists: There
are applications that can convert a basis made out of paper to simple VR applications for prototyping
purposes (Nebeling & Madier, 2019). In fields like VR where the viewport of the playtester can be
controlled, there are also approaches where the user interacts with the virtual environment while a human
support team instead of a purely automated environment moves physical objects accordingly (Cheng et
al., 2015).

A number of tools and systems facilitate programming interactive experiences like games.
Pronto (Krebs, Beckmann, Geier, Ramson, & Hirschfeld, n.d.) and Unreal Engine blueprints (Valcasara,
2015) are both visual approaches to formulating game logic, both of which may speed up iteration time
depending on the scenario. Block-based editors such as Scratch (Maloney, Resnick, Rusk, Silverman,
& Eastmond, 2010) or Snap (Harvey & Mönig, 2015) provide an environment focused on creating in-
teractive visual experiences that react instantly to changes in programming logic.

Finally, live programming methods are designed to bring faster feedback to programmers (Rein, Ram-
son, Lincke, Hirschfeld, & Pape, 2019). Some game engines, such as the Godot game engine, make it
possible for some changes to be applied live to the running game. In live coding (Blackwell & Collins,
2005), where code is used as a performance art, it is even specifically required to be able to improvise
changes over the course of seconds.

7. Conclusion
In this paper, we extracted what may approximate an essence of paper prototyping and translated it
to a digital equivalent. In the digital realm, we augmented this baseline with the ability to specify
computations to allow designers to create prototypes that react immediately to player reflexes.

In a pilot user study, we found that the digital tool was working similarly to analog paper for the pro-
totyping prompts we tried, but in addition enabled prototyping concepts involving player reflexes. Our
attempt to maintain the spontaneous flow of a prototyping session by letting designers formulate natural
language and having an LLM generate code turned out to require further work, as the quality of code
was highly unreliable.

8. References
Blackwell, A. F., & Collins, N. (2005). The programming language as a musical instrument. In

Proceedings of the 17th annual workshop of the psychology of programming interest group, PPIG
2005, brighton, uk, june 29 - july 1, 2005 (p. 11). Psychology of Programming Interest Group.
Retrieved from https://ppig.org/papers/2005-ppig-17th-blackwell/

Chan, T. A. C. H., Ho, J. M.-B., & Tom, M. (2023, March). Miro: Promoting collaboration through
online whiteboard interaction. RELC Journal, 003368822311650. Retrieved from http://
dx.doi.org/10.1177/00336882231165061 doi: 10.1177/00336882231165061

Cheng, L.-P., Roumen, T., Rantzsch, H., Köhler, S., Schmidt, P., Kovacs, R., . . . Baudisch, P.
(2015). Turkdeck: Physical virtual reality based on people. In Proceedings of the 28th an-
nual acm symposium on user interface software & technology (p. 417–426). New York, NY,
USA: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/
2807442.2807463 doi: 10.1145/2807442.2807463

Gasques, D., Johnson, J. G., Sharkey, T., & Weibel, N. (2019). What you sketch is what you get: Quick
and easy augmented reality prototyping with pintar. In Extended abstracts of the 2019 chi confer-
ence on human factors in computing systems (p. 1–6). New York, NY, USA: Association for Com-
puting Machinery. Retrieved from https://doi.org/10.1145/3290607.3312847
doi: 10.1145/3290607.3312847

PPIG 2024

www.ppig.org 18

Green, P., & Wei-Haas, L. (1985, October). The rapid development of user interfaces: Experience
with the wizard of oz method. Proceedings of the Human Factors Society Annual Meeting, 29(5),
470–474. Retrieved from http://dx.doi.org/10.1177/154193128502900515 doi:
10.1177/154193128502900515

Harvey, B., & Mönig, J. (2015, October). Lambda in blocks languages: Lessons learned. In 2015
IEEE blocks and beyond workshop (blocks and beyond) (p. 35-38). USA: IEEE. doi: 10.1109/
BLOCKS.2015.7368997

Kang, S., Norooz, L., Bonsignore, E., Byrne, V., Clegg, T., & Froehlich, J. E. (2019). Proto-
typar: Prototyping and simulating complex systems with paper craft and augmented reality.
In Proceedings of the 18th acm international conference on interaction design and children
(p. 253–266). New York, NY, USA: Association for Computing Machinery. Retrieved from
https://doi.org/10.1145/3311927.3323135 doi: 10.1145/3311927.3323135

Krebs, E., Beckmann, T., Geier, L., Ramson, S., & Hirschfeld, R. (n.d.). Pronto: Prototyping a proto-
typing tool for game mechanic prototyping. , 34th Annual Workshop, 157–168. Retrieved from
https://www.ppig.org/files/2023-PPIG-34th--proceedings.pdf

Lasecki, W. S., Kim, J., Rafter, N., Sen, O., Bigham, J. P., & Bernstein, M. S. (2015). Apparition:
Crowdsourced user interfaces that come to life as you sketch them. In Proceedings of the 33rd
annual acm conference on human factors in computing systems (p. 1925–1934). New York, NY,
USA: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/
2702123.2702565 doi: 10.1145/2702123.2702565

Li, Y., Cao, X., Everitt, K., Dixon, M., & Landay, J. A. (2010). Framewire: a tool for automatically ex-
tracting interaction logic from paper prototyping tests. In Proceedings of the sigchi conference on
human factors in computing systems (p. 503–512). New York, NY, USA: Association for Comput-
ing Machinery. Retrieved from https://doi.org/10.1145/1753326.1753401 doi:
10.1145/1753326.1753401

Macklin, C., & Sharp, J. (2016). Games, design and play. Boston, MA: Addison-Wesley Educational.
Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010, nov). The scratch pro-

gramming language and environment. ACM Trans. Comput. Educ., 10(4). Retrieved from
https://doi.org/10.1145/1868358.1868363 doi: 10.1145/1868358.1868363

Nebeling, M., & Madier, K. (2019). 360proto: Making interactive virtual reality & augmented reality
prototypes from paper. In Proceedings of the 2019 chi conference on human factors in computing
systems (p. 1–13). New York, NY, USA: Association for Computing Machinery. Retrieved from
https://doi.org/10.1145/3290605.3300826 doi: 10.1145/3290605.3300826

Nielsen, J. (1995). Using paper prototypes in home-page design. IEEE Software, 12(4), 88-89. doi:
10.1109/52.391840

Porter, S. R., Marner, M. R., Smith, R. T., Zucco, J. E., & Thomas, B. H. (2010). Validating spatial
augmented reality for interactive rapid prototyping. In 2010 ieee international symposium on
mixed and augmented reality (p. 265-266). doi: 10.1109/ISMAR.2010.5643599

Rein, P., Ramson, S., Lincke, J., Hirschfeld, R., & Pape, T. (2019). Exploratory and live, programming
and coding - A literature study comparing perspectives on liveness. Art Sci. Eng. Program.,
3(1), 1. Retrieved from https://doi.org/10.22152/programming-journal.org/
2019/3/1 doi: 10.22152/PROGRAMMING-JOURNAL.ORG/2019/3/1

Schell, J. (2019). The art of game design (3rd ed.). London, England: CRC Press.
Uceta, F. A., Dixon, M. A., & Resnick, M. L. (1998, October). Adding interactivity to paper prototypes.

Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 42(5), 506–510.
Retrieved from http://dx.doi.org/10.1177/154193129804200513 doi: 10.1177/
154193129804200513

Valcasara, N. (2015). Unreal engine game development blueprints. Packt Publishing Ltd.

PPIG 2024

www.ppig.org 19

Designing A Multi-modal IDE with Developers:
An Exploratory Study on Next-generation Programming Tool Assistance

Peng Kuang
Lund University

peng.kuang@cs.lth.se

Emma Söderberg
Lund University

emma.soderberg@cs.lth.se

Martin Höst
Malmö University

martin.host@mau.se

Abstract
Researchers have envisioned and pioneered data-driven programming assistance for developers based on
their interaction with the tools via multiple sensors such as eye trackers, microphones, and AI. However,
these new sensors gather sensitive data from programmers, to what extent users can accept them and in
what form they may work well are largely unclear. Meanwhile, developer tools such as static analyzers
have been criticized for poor usability and not involving end users enough during their development. To
make data-driven programming assistance design work, toolmakers need to partner with programmers.

In this paper, we adopt a design process under the guidance of Participatory Design (PD) which aims to
empower end users. Our design pipeline builds on a survey of 68 professional developers. The next stage
is a design workshop with five participants sketching out ideas for alleviating the pain points reported
from the survey. Based on these inputs, we then developed two types of tentative design representa-
tions consecutively – three conceptional designs and one low-fidelity prototype1. Lastly, we tested the
interactive digital prototype with five experienced programmers.

From the user test, we learned that developers have more interest in gaze-driven assistance than voice-
based assistance for reading and understanding code in an integrated development environment. Further,
we report our hands-on experience with involving developers from the beginning to the end of this design
process. This informs future work on using PD to study the development of developer tools.

1. Introduction
Data-driven techniques are making their way into developer tools. In the past decade, eye tracking
technology has matured significantly and eye trackers are now cheaper and more available. Laptop
manufacturers have started to embed eye trackers into their high-performance models for gamers (Tobii,
2023). Apple has introduced a three-dimensional interface with hands, eyes, and voice, alongside a bun-
dle of productivity tools on its VisionOS platform (Apple, 2023), which makes reading natural language
texts on a virtual screen foreseeable. We are also seeing early explorations of gaze-driven (Saranpää et
al., 2023; Cheng, Wang, Shen, Chen, & Dey, 2022; Santos, 2021; Shakil, Lutteroth, & Weber, 2019;
Radevski, Hata, & Matsumoto, 2016; Glücker, Raab, Echtler, & Wolff, 2014) and voice-based (Paudyal,
Creed, Frutos-Pascual, & Williams, 2020; Talon, 2024) assistance in development tools. Meanwhile,
we are in the middle of a shift toward AI programming (Liang, Yang, & Myers, 2024) or Autonomous
Software Engineering (Zhang, Ruan, Fan, & Roychoudhury, 2024; Yang et al., 2024; AI, 2024), where
Large Language Models (LLMs) trained on huge amounts of data are assisting developers with devel-
opment. These data-driven technologies, gathering data from sensors or code bases, have the potential
to enrich users’ experience and improve their productivity.

We see an opportunity to incorporate these technologies into building the next generation data-driven
developer tools, as some researchers have envisioned (Kuang, Söderberg, Niehorster, & Höst, 2023;
McCabe, Söderberg, Church, & Kuang, 2022) and pioneered (Saranpää et al., 2023; Cheng et al., 2022;
Hijazi et al., 2021). However, incorporating these new sensors implies gathering significantly more and
possibly sensitive data from programmers. Previous work demonstrates that programmers may have
concerns with such data collection (Kuang, Söderberg, & Höst, 2024). Further, how to encapsulate
these fancy new technologies into a good design that can be accepted by end users can be a challenge.

1A replication package is available at: https://doi.org/10.5281/zenodo.13853909

PPIG 2024

www.ppig.org 20

Taking AI as an example, it did not gain wide user acceptance until OpenAI captured it into the design of
ChatGPT. Exploratory gaze-based developer tools have primarily used eye-tracking for code navigation
on the interaction level and information generation about developers’ collaborative work such as code
review. As for voices, it has so far mainly been explored for accessibility improvement, for instance,
as an alternative input channel for developers with visual impairment (Paudyal et al., 2020). It seems
the exploration in this field is still in its infancy. There are possibly other user scenarios and developer
cohorts that may benefit from the integration of these emerging modalities as well. To make it work,
we believe developer tools need to be designed carefully, and the design process needs to partner with
programmers.

How do we involve developers in the design process? As an example, the community around Open
Source Software (OSS) is driven by programmers and there are many examples of successful projects
(e.g., Linux, Apache, and Mozilla Firefox). However, many OSS projects have been criticized for poor
usability or not being end-user friendly (Hellman, Cheng, & Guo, 2021). It is believed that devel-
opers tend to adopt a code-centric mindset and that this may create a gap between a human-centric
designer role and a developer role, along with the different training and skills associated with these two
roles (Maudet, Leiva, Beaudouin-Lafon, & Mackay, 2017). Even though developers who work with
developer tools seem to embody the user, the designer, and the developer, there are proven records that
the tools they make can still be poor to use because of this gap. To mitigate such a risk, we believe it
is necessary to involve users other than the toolmaker developers themselves in the design process. We
need a design process that reduces this gap.

Participatory Design (PD) emerged from Scandinavia to empower the workers to balance or counter
the insights of management in the workplace (Bannon, Bardzell, & Bødker, 2018; Schuler & Namioka,
1993; Ehn & Sandberg, 1979). PD roots in a strong commitment to democracy (Bødker, Dindler, &
Iversen, 2022), which can be translated into the paramount care for end users. It further pronounces that
the designer needs to partner with users in the design process to discover possibilities or alternatives for
a technology being imposed on them (Bødker et al., 2022). As an outcome of such a design process,
“mutual learning” for both sides is curated. What distinguishes PD from other design methods is that
it takes both a moral position and a pragmatic position (Carroll & Rosson, 2007) and that it emphasizes
“democratic empowerment” but not just “functional empowerment” (Clement, 1996). We think PD
may be a good fit for designing next generation data-driven programming tools with programmers.

In this paper, we explore participatory design through a series of design activities with professional
developers to rapidly prototype and test out data-driven programming tools powered by AI and other as-
sistive sensory technologies, e.g., eye tracking, that are novel to the current typical software development
environments. This work is in line with what Kuang et al. (Kuang et al., 2023) have proposed as a method
to study gaze-driven assistance. We focus on investigating the RQ: What do developers want the next
generation data-driven programming assistance to look like? Through the design pipeline, we gradually
capture developers’ needs and wants with the next-generation programming tool assistance via several
intermediate design representations and eventually actualize it into a tangible multi-modal Integrated De-
velopment Environment (IDE). The IDE contains four features: two gaze-driven, one voice-based, and
one AI-enabled. We have evaluated this interactive artifact with experienced programmers and learned
that there is greater interest from developers in gaze-driven assistance than voice-based assistance in the
case of reading and understanding code in an IDE.

This exploratory study reports our hands-on experience on how to practice participatory design in part-
nership with developers for developing new types of programming tool assistance. Our findings, through
the "mutual learning" between the designer and developers, provide insights into what modality may
work and not work well with developers for designing the next-generation programming assistance.
We hope that our reported experience, of end-to-end involvement of programmers throughout the PD
process, will aid other toolmakers interested in exploring this direction.

PPIG 2024

www.ppig.org 21

2. Related Work
In this section, we give a brief overview of related work in multi-modal developer tools and the use of
participatory design in the development of developer tools.

2.1. Multi-modal Developer Tools
A multi-modal interface usually supports the interaction means of gaze and voice, apart from the con-
ventional input means of keystroke, mouse, and touch through one’s hands (Benoit, Martin, Pelachaud,
Schomaker, & Suhm, 2000). Owing to the naturalness that it resembles human-human communication
and the expressiveness and adaptability that it provides (Oviatt & Cohen, 2000), multi-modal interface
has attracted significant interest from HCI researchers in recent decades. Especially in the current era of
AI, people are even more passionately envisioning and actualizing intelligent systems, also for developer
tools.

Since reading code constitutes a significant part of developers’ work, some researchers investigated
the feasibility of utilizing gaze for several software development tasks that were undermined by code
reading. Several studies have examined its suitability for code navigation (Santos, 2021; Shakil et al.,
2019; Glücker et al., 2014), while several others experimented with it for code review (Saranpää et al.,
2023; Cheng et al., 2022; Hijazi et al., 2021). The overall gaze behavior during software development
has also been inspected (Clark & Sharif, 2017). The modality of voice has been less studied but has been
piloted in the context of empowering developers with disabilities (e.g., visual (Paudyal et al., 2020) or
hand impairment (Talon, 2024)).

The above-mentioned studies share a human-factor motivation and usually contain a component of a user
study. However, they primarily focus on the introduction of implemented techniques, and the user studies
are almost all done post-implementation for testing the usability of the tools. As software development
is a high-cost activity, we think it is worth involving users from an early stage of the design process to
mitigate the risk of having (if not completely avoiding) implementations that do not fit into users’ needs.
Further, the multi-modal features presented in our design also cater to user scenarios different from the
ones investigated by the previous studies.

2.2. Participatory Design and Developer Tools
Participatory design is a well-known design method to software engineering researchers and gained
significant interest throughout the 1990s to 2010s. It is usually brought up along with user-centered
design when researchers discuss research questions pronouncing user involvement or end-user software
engineering.

Common developer tools emerge from the industry, the open-source community, and the scientific com-
munity. These three sources are not mutually exclusive as both companies and scientists can be members
of the OSS community. To provide a structure for reporting the use of PD in developing developer tools,
we group the related works into these three categories.

In the industrial context, some researchers (B. Johnson, Song, Murphy-Hill, & Bowdidge, 2013) have
adopted PD for eliciting non-verbal inputs from target users to improve the design of static analysis
tools. It seems that PD is used at surface level in this case or a conventional user study alike.

In the area of OSS, we did not find a study in the case of developing a developer tool explicitly saying that
they have used PD (this does not imply our search is exhaustive) although some well-known developer
tools such as Apache Maven are OSS. However, there are literature reviews (e.g., (Hull, 2021)) and
many case studies (e.g., (Hellman et al., 2021; Wubishet, Bygstad, & Tsiavos, 2013; Iivari, 2009;
Gumm, Janneck, & Finck, 2006)) on user participation in other types of computer systems that can
inform and perhaps extend to developer tools. These studies found that there are both technical and
social barriers (e.g., technical capability and social credibility (Mockus, Fielding, & Herbsleb, 2002),
documentation (Hull, 2021), subculture literacy (Iivari, 2009)) for developer users (who are usually the
first batch of users of OSS) to participate in and contribute to OSS development.

In scientific programming, a case study (Letondal & Mackay, 2004) shows that because the resources

PPIG 2024

www.ppig.org 22

Figure 1 – Overview of the method. The greyed box means the component is not directly reported
in this paper. It has been published separately but was done as a part of this study to inform the
remaining components of the design pipeline.

for new hiring are limited, developers working with scientific teams employed PD as a design method
to develop some intermediary tools to enable end-user scientists to perform some frequent but not-so-
difficult programming tasks. However, such tools are not the typical developer tools used by professional
developers for software development but are similar to business information systems.

To sum up, HCI methods (e.g., rapid prototyping, usability evaluation) are valued by researchers and
have been adopted as a practice in the industry (Myers, Ko, LaToza, & Yoon, 2016) for developing
programming tools. However, the explicit use of PD for such purposes seems to be rare, either in the
industry, the OSS community, or the scientific programming community.

3. Method
The design process consists of a survey with professional developers, a design workshop, conceptual de-
sign, prototyping, and the user test (Figure 1). We conducted a survey targeting professional developers
and received valid responses from 68 participants. In the workshop, we presented the pain points col-
lected from the survey for participants to design solutions for. To catalyze brainstorming and sketching,
we demonstrated a gaze-driven code review tool (Saranpää et al., 2023) as a data-driven programming
assistance example. We then used the outputs curated from the previous modules to develop conceptual
design ideas and create personas representing different types of prospective users. After that, we trans-
lated these design ideas into four features of a low-fidelity prototype. Lastly, we tested the interactive
prototype with five prospective users who are experienced programmers.

3.1. Survey
The survey received responses from 68 professional developers located in 12 countries. In the survey, we
asked developers about their experiences with current programming tool assistance and their perceptions
of programming tool assistance in the future. The survey (Kuang et al., 2024) has been published
separately and its preliminary results were leveraged in planning the design workshop.

3.2. Design Workshop
In the survey, there was a checkbox question for participants to indicate their interest in participating in
the workshop. 12 participants ticked the checkbox and provided their email address. We reached out
to these twelve potential participants who expressed their interest via email to poll their availability in
the upcoming weeks. Four of these potential participants accepted the invitation. Because there was no
single time slot that could accommodate all the participants, we chose the one that seemed to suit the
majority. Since some of these participants were slow with the response, we actively recruited some other
participants in person through our social circle to reduce the risk of no turn-out. Eventually, only one
from the online participant pool managed to attend the workshop due to their challenging availability or
large time difference. The rest were from the convenient recruitment in-person.

We organized a hybrid design workshop session, with one participant online and others onsite. Two
participants were Ph.D. students in Sweden but in different cities. One was in the field of Computer

PPIG 2024

www.ppig.org 23

Science and was familiar with specialized developer tools such as program analysis. The other had a
background in Electrical Engineering and worked with wearable devices and machine learning (ML).
Two other participants were research assistants who have been working as developers for two years in
the Department of Computer Science at Lund University. The host (a.k.a. the first author) also joined
and was counted as the fifth participant since we adopted a co-design formality. All participants were
given access to a digital collaborative tool called Box Canvas. The participants onsite were also provided
with markers and white papers. Participants were encouraged to choose whichever way they felt most
comfortable to output their design ideas.

The workshop followed the procedure of introduction, a demo of a screen-based eye-tracker, as well as
a code review tool with integrated gaze-analysis (Saranpää et al., 2023), brainstorming, and debriefing.
We included these two demos to lower the barrier for participants (as we are informed from the survey
that many developers do not know what a contemporary eye tracker looks like and how eye-tracking
has been experimented with software development) and to elicit ideas around it. However, since the
participants were new to this form of collaboration, we did not prescribe that the focus had to be eye-
tracking to get the best out of the workshop. Instead, we presented a list of pain points (e.g., code
comprehension, tool setup, dependency management) and we asked participants to select one or two
pain points as the problem of their interest. We asked them to brainstorm ideas to address the selected
pain points using but not limited to machine learning or eye-tracking.

The pain points we presented were those reported by the developers from the previously mentioned
survey. We suggested machine learning and eye-tracking as the potential underlying technologies for
the designs because the developers in the survey were positive toward the former and neutral toward the
latter. Other candidate technologies such as gamification toward which the developers from our survey
were negative were dropped.

3.3. Conceptual Design
Following up on the design workshop, the first author developed three conceptual designs in the form of
wireframes (Guilizzoni, n.d.). According to Johnson and Henderson, a conceptual design is a high-level
model that describes the major design metaphor or analogy (J. Johnson & Henderson, 2002). We also
developed personas (Rogers, Sharp, & Preece, 2011) to characterize prospective users. As Pruitt stated
(Pruitt & Grudin, 2003), persona suits early-stage PD very well as it can unearth sociopolitical issues
and is a great complement to other scenario-based usability methods. Our designs focus on leveraging
eye-tracking, speech/voice, and machine learning as a kind of support to alleviate the key pain point –
code comprehension that has been brought up during the design workshop for developers.

3.4. Prototyping
After internally discussing the designs within the author group, and with some colleagues with exper-
tise in interaction design, the first author created a low-fidelity prototype using the popular design tool
Figma (Figma, n.d.). According to Rogers et al. (Rogers et al., 2011), prototyping is a cheap way for
designers to actualize design ideas and conduct user tests to select from design options. The first and
second authors approached a few target users through their networks, some of these target users were
the same persons as those who had expressed an interest in attending the earlier design workshop but
missed it due to availability issues at the time.

3.5. User Test
The first author conducted user tests with five participants (referred to as PT1-PT5 later) via Zoom. Three
are PhD students from the same university as the first author, all with significant industrial programming
experience, and two external PhD students from a different university in Germany, with an academic
background in researching Human-Computer Interaction of programming tools. None of the participants
had participated in the earlier design workshop. We chose Zoom to conduct the user test even with the
participants who work at the same university as the first author because they may not be physically
in the same space on the same day and to capture their screens and the interviews. The first author
video-recorded the test sessions with the users’ consent.

PPIG 2024

www.ppig.org 24

The user tests followed the process of introduction, think-aloud testing, a semi-structured short interview,
and debriefing. The five users conducted the user tests separately with the first author. The sessions
started with the background of the study and instructions on how to adjust the size of the interface of the
online Figma prototype for later use, the remaining steps were carried out as outlined below. After the
user tests the recorded material was analyzed, also described below.

3.5.1. Think-aloud Testing
After that, the users were asked to explore the prototype think-aloud with the first author observing.
The first two participants were not given a specific task, because the first author was interested in learn-
ing about how they would discover the entries of the features. This was to partly mimic what would
happen after a new icon, for a new functionality, was introduced into a complex IDE. However, this
caused some disorientation for these two participants, so the first author prescribed a task of reading and
understanding the code for the later participants.

3.5.2. Semi-structured Interview
Next, the users were interviewed by the first author with structured questions as follows:

1. How would you describe your overall experience of using this prototype?
2. What did you like and dislike about the prototype?
3. Are there any parts confusing to you?
4. What parts would you change or remove?
5. Do you have any comments, particularly for any part of the prototype or the session?

The interviewer probed with spontaneous questions wherever there was an interest in further investiga-
tion or clarification.

3.5.3. Debriefing
Finally, the first author debriefed the user test session and prototype design to the participants. This
was especially needed for some of the participants who were new to such concepts or study methods
and artifacts. This also aligned with the "mutual learning" between the users and the designer that
participatory design promotes. The sessions lasted for 25 to 45 minutes.

3.5.4. Data Analysis
For the interviews during the user tests, we used Microsoft Word’s premium feature of auto-transcribing
to generate the transcripts. The first author, who was also the interviewer with the users, skimmed each
of them and marked the lines that were related to each of the features of the prototype. Based on this,
the first author summarized the points for each feature. And when there was anything unclear, the first
author re-consulted the videos.

3.6. Threats to Validity
We identify the following threats in our study:

Construct validity: For the design exploration, our approach may not authentically comply with how
it is prescribed to be done in the textbook. This is partly because participatory design is a rich theory
and overlaps with many neighboring design methods such as user-centered design, collaborative design,
and interaction design. It is a learning process for us to better understand it by practicing it. There
are also some components we adapted for the sake of participants or the process, e.g., we deliberately
used “co-design” instead of “participatory design” to communicate with our participants. In our view,
co-design is a simpler term and more self-explanatory. It conveys better the partnership and the action
required to our participants who do not necessarily know the design theories. As co-design is commonly
viewed as a branch of or an interchangeable, modern term for participatory design (Wikipedia, 2024),
we deem this impact minimal. Further, as the original contributors of participatory design stated, there
is no uniform way to practice this method (Schuler & Namioka, 1993).

Internal validity: The user test data was auto-transcribed so a complete coverage of the conversations
was ensured. Although the second and third authors did not read the transcripts themselves, the first

PPIG 2024

www.ppig.org 25

(a) Hard-copy sketch by participant PW1. (b) Hard-copy sketch by participant PW4.

Figure 2 – Design workshop output: Sketches from PW1 and PW4.

author located the corresponding paragraphs through keyword-matching and marked them to allow the
other two authors to cross-check when writing. Also, because the first author was the one who conducted
the interviews with the participants during the user test sessions, the hands-on experience helps reduce
the possibility of misinterpretation of the data.

External validity: For the design workshop and user test, our participants lean toward an academic
profile. This is because of the challenging availability of industrial practitioners and the timing of being
close to big holidays. The homogeneity of this aspect may bias the design outputs and findings from the
user test. Hence, their generalizability shall be interpreted with caution.

4. Results
We present the results from the design workshop, conceptual design, prototyping and user test. We refer
to participants in the workshop with the prefix "PW" and participants in the user test with the prefix
"PT".

4.1. Design Workshop
Four out of the five participants picked a pain point related to code comprehension, especially under-
standing the code written by others. As shown in Figure 2a, participant PW1 mentioned the scenario
of reviewing others’ code, proposing an AI-enabled, interactive chatbot that allows consecutive con-
versations with the programmer to better explain code with richer context information, e.g., the history
of changes and what has been attempted. Participant PW1 also touched upon tracking programmers’
gaze to pinpoint frustrations so as to introduce more "human" support. Participant PW4 (Figure 2b)
also selected the problem of "fully understand purpose & the code". The participant considered AI as
a viable solution to "detect confusion" of programmers and to "automating resources" to facilitate the
understanding of new code or libraries.

According to Figure 3, we can see participant PW2 also mentioned utilizing Large Language Models
to generate summaries or explanations for a code base or variables of interest and to retain context
within a time frame for debugging queries. PW3 wished for better support for finding bugs caused
by unknown knowledge which therefore is very difficult to fix. He verbally elaborated on an example
that was associated with changed dimensions and values of matrices during his composition of machine
learning models. The host PW5 also picked a problem related to code comprehension and suggested
several ways of providing gaze- and voice-based support to improve it. Participant PW3 reacted very
positively to the voice-based proposal.

4.2. Conceptual Design
Consolidating the ideas and discussion inputs from the design workshop, the first author translated a
selection of elements from the design workshop into three main conceptual designs, while taking into
account the feasibility of prototyping and implementation as well as finding a balance between truly good

PPIG 2024

www.ppig.org 26

Figure 3 – Design workshop output: Digital post-it notes on Box Canvas by participants PW2,
PW3, and the host PW5.

ideas and the research focus. The three conceptional designs are an individual view of the developer’s
gaze with personal work notes, a collective view of a developer team’s gaze, and a conversational code
explainer empowered by ML.

• The individual view (Figure 4a) mimics a text marker, which auto-highlights the code fragments
for a developer. These code fragments will be based on the developer’s gaze metrics, e.g., the top
3 code fragments with the longest dwell time. We also added a component of work notes to this
personalized space.

• The collective view (Figure 4b) metaphorizes a mirror that reflects or synthesizes a developer
team’s gaze behavior on a high level. For instance, for each file of a huge program, it will show
the top 5 code fragments that have been fixated by the team collectively for the longest time.

• The code explainer (Figure 4c) is conceptualized as similar to a tour guide working in a museum,
who is knowledgeable about all the items, e.g., historical artworks, to give as much information
as needed to the queries from visitors a.k.a. developers.

Lastly, we also developed personas (Figure 5) to capture the prominent profiles among the developers
we observed from the survey and design workshop. The three personas represent seasoned professional
developers, scientific programmers, and early-career junior developers, respectively.

4.3. User Test
The conceptual designs were translated into a low-fidelity prototype with four corresponding features.
Two features are related to gaze, one to voice, and one to AI. The individual and collective views
were converted into the gaze marker and gaze mirror. The voice notes resemble the work notes. The
code explainer becomes the conversational AI assistant. The concept of work notes was actualized
primarily in the voice notes feature but also partially as the filtered history of commands used in the
AI assistant feature. The latter design echoes the finding from a survey study that developers often
use ChatGPT for syntax recall (Liang et al., 2024). A demo of the prototype can be viewed here:
https://youtu.be/J9cGrK4oZ5U

We recruited five experienced programmers to participate in the user test. Each of them tested the
prototype in a think-aloud manner separately with the first author observing.

PPIG 2024

www.ppig.org 27

(a) Individual view of
a developer’s gaze and
work note.

(b) Collective view of
a team’s gaze.

(c) Code base ex-
plainer.

Figure 4 – Conceptual designs.

Figure 5 – Conceptual design output: Personas.

4.3.1. Individual View and Collective View
For the two gaze-related features (Figure 6a and Figure 6b), one out of the five users showed an evident
interest in them, while three indicated moderate interest in seeing alternatives. Although the participants
may not agree with the current visualization and/or the selection of the gaze data, they demonstrated
some extent of acceptance of the leverage of gaze data in a programming environment or certain software
development scenarios. Participant PT1 and PT2 somewhat agreed with its potential of being useful
in certain cases specifically tailored to them, while participant PT3 disagreed with the usefulness of
leveraging gaze data in the design. They explained:

Participant PT1: “I think I would be interested to see anyone’s trace just to get an under-
standing of what the data looks like right so.”

Participant PT2: “...but maybe if you’re like in a big project, there’s like some code that
never gets any love because nobody’s looking at, maybe that would make sense trying to
find stuff that nobody’s looking at.”

Participant PT3: “I don’t think it’s that useful, because yes, I probably looked at this line

PPIG 2024

www.ppig.org 28

of code the most for like three seconds or five seconds, but do I actually have to care about
that? Why should I care?”

In summary, participants perceived these two features as somewhat interesting in the way they reveal
programmers’ gaze behavior but had different opinions on what way it should reveal the gaze and to
what extent the gaze should be revealed to be recognized as useful. Participant PT1 was very interested
in seeing others’ individual gaze traces and defining their gaze traces for didactic purposes. Participant
PT2 thought that locating the least gazed code of a file would be more informative. Participant PT4
suggested it would be more interesting to mark the code that their co-workers looked but they missed
out. Participant PT5 was also interested in seeing others’ gaze traces but only of those of their interest.

4.3.2. Voice-based Work Notes
For the feature of voice notes (Figure 6c), it was received worse although some participants praised
this idea in the workshop and on another occasion. When it was presented as a tangible feature in a
prototype, it was less favored. Some factors were attributed to the limitations of the mock-up design
itself such as limited interactiveness and lack of accuracy. But primarily it was because the participants
were not convinced of the value it was proposing - to be an alternative for text comments or written
documentation. Participants had a very critical and practical eye when examining it as a concrete feature
of the prototype.

Participant PT3: “But then regarding the voice note, I think theoretically it provides an
alternative of not looking at the code by just hearing some voice explanation or summary
of the code. But I mean there will be some obstacles of really using this feature, because
first of all, why are you looking at the code? You do not bother the other colleagues or team
members in the same office, but if you want to play voice notes then you probably need to
plug in your headset.”

This kind of issue was escalated to how the voice notes get updated if the developer has changed the
code, what will happen if the code is pushed to a remote repository, and so on. These all are rather
reasonable and practical considerations. Nonetheless, participants PT2 and PT5 still saw its suitability
for some rarer cases. Participant PT2 stated the potential of using it to record “meta-commentary” for
the students instead of inserting “a giant comment in the middle of code”. Participant PT5 pointed
out that this kind of feature may be an enabler for “dyslexic” users or non-native speakers who prefer
listening to audio over reading texts for learning. We also proposed the user scenarios: when developers
reach fatigue from reading code, they can switch to this alternative; when their co-workers, e.g., who is
the original author of a critical method, are unavailable for consulting, this can be of help.

4.3.3. Conversational AI Code Assistant
Lastly, for the conversational AI-enabled code assistant (Figure 6d), the fact that the choice of exam-
ple conversation lacked a connection with the code presented in the editor led to some users’ strong
dissatisfaction with this feature.

Participant PT4: “I mean, this seems completely disconnected. It shows terminal com-
mands, it has nothing to do with the code. It says it’s a code assistant but it’s like my bash
history excerpts.”

The same perception of lack of relevance and thus low-value or valueless was shared by participants
PT3 and PT5. Participant PT5 stated,

Participant PT5: “I don’t really see how the assistant fits into the other features and I think
the product as such would be leaner without that.”

PPIG 2024

www.ppig.org 29

While participant PT3 held the same opinion as PT5 in the beginning, he shifted his attitude when the
interviewer probed with improvement or alternative ideas and he believed in the potential usefulness of
those propositions.

The participant’s view pivoted when a new design was proposed, for instance, participant PT3 reflected
as follows:

Participant PT3: “The last feature I mean, if it’s just general code assistant, they’re giving
some hints like, you know, when you usually when we usually start an idea like IntelliJ or
Eclipse. It will prompt up. It will pop up with some general...programming hints or some
short shortcuts that you might commonly use, but this kind of assistance [is] very general.
It has nothing to do with the code.”

When asked if an added action that would analyze the current code snippet or summarize the current
file, would be interesting, participant PT3 responded:

Participant PT3: “Yeah, definitely... I mean, that is something that I always looking at
... For example, if you review any code pretty much you don’t directly get into the code,
you will read the comment to the Java doc...the documentation for it first, try to understand
the what is the intention of this method. Or what they say, [the] intention of this class. So
regarding the particular method, what...the input value [and] output value in which format?
So I mean you have to get some kind of general sense what this class or this method is for
and if that information is provided by this code assistant, I would consider it’s useful.”

Participants PT1 and PT2 were more open to this feature in part merely because of the concept of having
an interactive code assistant. This might be influenced by their academic background and research
interest in human-computer interaction.

In addition, the filtered history of commands used also triggered feedback from some participants. PT1
and PT2 acknowledged the usefulness of the most frequently used commands. PT1 further commented
that rarely used commands might be more useful, as users tend to forget them due to their infrequent
use. On the other hand, PT4 did not think it would be very useful and suggested this problem could
be resolved by searching one’s command records, for example, on the Linux command line interface.
This part of the AI assistant feature did not receive any particular comments from the remaining two
participants.

Summary
The design process comprised a pipeline of different components each with its low-level focus
and staged goal. However, they curated learning together for the designers to better understand
the user needs and to construct or modify the design representations. On the other hand, the users
also became more aware of what the proposed and designed assistance would look like through
the designers’ idea pitches and their hands-on experiences interacting with the tangible artifacts.
Specifically, from the user test, we found participants are interested in the gaze-related features
because of the novelty of the underlying technology, the interest in inspecting self’s and others’
gaze and their deviations, and the potential they see that it can be applied to other scenarios
such as pedagogical and accessibility use cases. The voice notes and AI code assistant received
less interest because some participants were concerned with the practical use (the former) or
distracted by the surface-level usability weaknesses (the latter) of the feature.

5. Discussion
In this section, we draw on the high-level results to revisit the RQ. We examine the connection be-
tween our study and related work. We also reflect on the method and share the future work that we
contemplated.

PPIG 2024

www.ppig.org 30

(a) Prototype feature 1: individual view of de-
veloper’s gaze (gaze marker).

(b) Prototype feature 2: collective view of a
developer team’s gaze (gaze mirror).

(c) Prototype feature 3: voice explanation
(tour guide).

(d) Prototype feature 4: AI code assistant
(tour guide & personalized work notes).

Figure 6 – Prototyping output: Screenshots of the four features of the prototype.

The answer to the RQ “What do developers want the next-gen programming assistance to look like?”
is multi-layered. The layers correspond to the components of the design pipeline. From the survey, we
learned that developers are positive toward AI and unsure about eye-tracking as the enabling technology
for future programming tool assistance. For the novel sensor eye-tracking, they did express privacy
concerns. During the design workshop, participants exhibited varying degrees of motivation or interest
in utilizing AI/ML, gaze, and voice to sketch solutions for the pain points that the current programming
tools seemingly failed to address. These selections were later conceptualized as different functionalities
alleviating a common pain point – code comprehension. Incorporating these functionalities gave birth
to a prototype of a multi-modal IDE which reflects the designers’ interpretation of what the developers
desired.

From the user tests with this prototype, we learned that experienced programmers want different pro-
gramming tool assistance, but share a common perception that the design must be of practical use in
helping them understand code more efficiently or effectively. Although the designs of the features that
we prototyped are different from what we saw in related works, they did not gain particular favor from
experienced programmers. We believe this implies that the underlying technology may have the po-
tential to support developers, but finding the best shape of design encapsulating it may be challenging.
However, compared with the voice-based feature, the gaze-based features appeared to have attracted
more interest from the participants. This may be due to the efficiency of producing and consuming voice
content. For instance, the effort needed to design the content for a useful voice note and to organize
it well verbally (e.g., in terms of fluency, clarity, and tone variation) may surpass the effort needed for
writing the documentation in some cases. Furthermore, although the question about privacy was not
directly asked during the design workshop and user test, the participants never brought up the concerns

PPIG 2024

www.ppig.org 31

either. There seems to be a discrepancy between the concerns written in the survey and the ones ex-
pressed in the hands-on and face-to-face sessions. This seems to resemble what researchers said about
consumers on using AI (Siau & Wang, 2020). That is, users may “pay lip service” to privacy issues but
are pragmatic in their behavior.

5.1. Reflection on the Method in the Study
The design workshop is one of the most challenging parts of this study. Recruitment of human partici-
pants is usually expensive. We assume this is partly attributed to the limited availability of practitioners
during work days. While filling out a survey takes 10 to 15 minutes, attending a workshop with active
involvement is more demanding and usually requires 45 to 60 minutes. Further, we speculate that par-
ticipation in a research study during a workday might be perceived as unethical by some practitioners
who work in the industry if not in the context that the researchers are collaborating with their employ-
ers. This explains that the participants who expressed interest in attending and made it to attend our
workshop were mostly from academia.

For the user tests, our participants have an academic background or a background of having recently
shifted their career from industry to academia. With capable experienced programmers, we advise re-
searchers to use as realistic code as possible and with reasonable complexity and cognitive load. Educa-
tional code snippets such as data structure manipulation and algorithms may still be perceived as simple
by some practitioners. In addition, we recommend giving participants a concrete task that they are used
to or can relate to such as finding errors/bugs in the code even though the main goal is to test out the use-
fulness and usability of the design. This together elevates the realism of the user scenario and immersion
of the task which in turn helps elicit more realistic reactions from participants and thus more useful data.
Researchers also need to take care of the link between the features designed and the code presented.
Participants tend to expect some coherency between them rather than treating them separately. Letting
participants use the features with a connection to the code presented can avoid distracting them from the
main task.

5.2. Directions for Future Research
For future work, we plan to select gaze-driven assistance as the primary feature for iterations and re-
finements as it receives the most interest and positive reactions or beliefs from participants in the user
test sessions. We will revise the design of the gaze feature with the inputs and implement a high-fidelity
prototype, either in the form of a custom IDE/code editor or a plugin published in one of the mainstream
IDEs.

Reflecting on the design process, we learned that the junior developer persona (which shares character-
istics with novice programmers to a large extent) may be the most beneficial programmer cohort for us
to work with. First, we think experienced programmers or experts tend to have well-established pro-
gramming tool preferences, e.g., a specific tool or debugging method such as the simple but effective
print statement. Some of such programmers involved in our design process demonstrated a more critical
and skeptical attitude toward the new enabling technologies that we proposed (it is even more prominent
in the survey component/study (Kuang et al., 2024)). This implies that perhaps they are less enthusi-
astic about or open to novel programming tool assistance. Additionally, they are deemed to be rather
resourceful and capable of helping themselves. Hence, there is less room for this type of design to be
useful to them.

Second, with the scientific programmer persona, we observe the problems that they deal with are inclined
to be data- and ML-centric. This demands domain-specific tool support that embeds deep knowledge
of such problems. We see our design as a less fit for this goal as we envisioned it to be independent
of the actual functionality of the code, that is, to be at the presentation layer but not the logic layer of
the code. Lastly, we believe there are scenarios where early-career junior developers and prospective
professional developers such as novice programmers are outstandingly goal-driven to deliver the results,
for instance, to push the first pull request in their new job or get the group assignment done on time.
They are potentially more open to diverse forms of support, especially given the fact that how they

PPIG 2024

www.ppig.org 32

learn programming is drastically different from early generations of programmers, e.g., via ChatGPT or
Co-pilot nowadays. In particular, we want to assist them with reading and understanding a code base
for the first time. Studies (Green et al., 2023) report that it can take new software engineers 3 to 5
months to familiarize themselves with a new code base to be productive. Similar challenges may surface
for prospective professional developers when collaborating on pre-scaffolded group assignments and
contributing to open-source projects.

We further want to explicitly evaluate the PD method in a systematic way as per the recommendations
from a survey on the use of PD (Bossen, Dindler, & Iversen, 2016) and a comprehensive review of this
method in a related field (Spinuzzi, 2005). We wish to derive some representative quantitative criteria
with developers to triangulate the benefits and gains of the use of PD, together with the qualitative data
that we have partly reported in this paper. Lastly, we will also keep an eye on whether there is room for
adopting AI/ML to enhance the gaze-driven assistance that we are going to realize.

6. Conclusions
In conclusion, we followed a design process that involved developers from the beginning to the end under
the guidance of Participatory Design. We first surveyed professional developers about the pain points in
their work and their attitude toward new technologies. Next, we organized a design workshop with five
participants (including the host) to brainstorm and sketch out what programming tool assistance they
wanted with the enabling technologies AI/ML and eye-tracking (toward which the developers from our
survey have indicated positive or neutral attitudes). We then translated these inputs into three conceptual
designs and developed three personas to capture the profiles that emerged from the previous modules.
We further prototyped these designs as four features of a low-fidelity, multi-modal IDE. Finally, we
tested this digital, interactive prototype with five experienced programmers.

From the discussions and interviews with these prospective users, we found that developers are open to
new types of assistance powered by new and novel technologies. However, for them to be useful, their
assistance must increase developers’ efficiency or productivity. More specifically, developers from the
user test recognize greater potential in gaze-driven assistance than in voice-based assistance facilitating
code comprehension in an IDE.

7. Acknowledgements
We thank all the participants who took part in any component of the design process. We thank them for
their curiosity, enthusiasm, creativity, and insights.

We would further like to thank the following funders who partly funded this work: the Swedish strategic
research environment ELLIIT, the Swedish Foundation for Strategic Research (grant nbr. FFL18-0231),
the Swedish Research Council (grant nbr. 2019-05658), and the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

8. References
AI, C. (2024, 3). SWE-bench technical report. (Retrieved 4 Apr, 2024 from https://www

.cognition-labs.com/post/swe-bench-technical-report)

Apple. (2023, 10). The Home View on Apple Vision Pro. Retrieved from https://www.apple
.com/newsroom/2023/06/introducing-apple-vision-pro/

Bannon, L., Bardzell, J., & Bødker, S. (2018, feb). Introduction: Reimagining participatory de-
sign—emerging voices. ACM Trans. Comput.-Hum. Interact., 25(1). Retrieved from https://
doi.org/10.1145/3177794 doi: 10.1145/3177794

Benoit, C., Martin, J.-C., Pelachaud, C., Schomaker, L., & Suhm, B. (2000). Audio-visual and mul-
timodal speech systems. Handbook of Standards and Resources for Spoken Language Systems-
Supplement, 500, 1–95.

Bossen, C., Dindler, C., & Iversen, O. S. (2016). Evaluation in participatory design: a literature
survey. In Proceedings of the 14th participatory design conference: Full papers - volume 1

PPIG 2024

www.ppig.org 33

(p. 151–160). New York, NY, USA: Association for Computing Machinery. Retrieved from
https://doi.org/10.1145/2940299.2940303 doi: 10.1145/2940299.2940303

Bødker, S., Dindler, C., & Iversen, O. S. (2022). Participatory design. Springer Nature.
Carroll, J. M., & Rosson, M. B. (2007). Participatory design in community informatics. Design studies,

28(3), 243–261.
Cheng, S., Wang, J., Shen, X., Chen, Y., & Dey, A. (2022, 06). Collaborative eye tracking based

code review through real-time shared gaze visualization. Frontiers of Computer Science, 16. doi:
10.1007/s11704-020-0422-1

Clark, B., & Sharif, B. (2017). itracevis: Visualizing eye movement data within eclipse. In 2017 ieee
working conference on software visualization (vissoft) (p. 22-32). doi: 10.1109/VISSOFT.2017
.30

Clement, A. (1996). Computing at work: empowering action by “low-level users”. Computerization
and controversy: value conflicts and social choices, 383.

Ehn, P., & Sandberg, Å. (1979). Företagsstyrning och löntagarmakt: planering, datorer, organisation
och fackligt utredningsarbete. Prisma i samarbete med Arbetslivscentrum.

Figma. (n.d.). Figma: The collaborative interface design tool. Retrieved from https://www.figma
.com/

Glücker, H., Raab, F., Echtler, F., & Wolff, C. (2014). Eyede: gaze-enhanced software development
environments. In Chi’14 extended abstracts on human factors in computing systems (pp. 1555–
1560).

Green, C., Jaspan, C., Hodges, M., He, L., Shen, D., & Zhang, N. (2023). Developer productivity
for humans, part 5: Onboarding and ramp-up. IEEE Software, 40(5), 13-19. doi: 10.1109/
MS.2023.3291158

Guilizzoni, P. (n.d.). What are Wireframes? . Retrieved from https://balsamiq.com/learn/
articles/what-are-wireframes/

Gumm, D. C., Janneck, M., & Finck, M. (2006). Distributed participatory design–a case study. In
Proceedings of the dpd workshop at nordichi (Vol. 2).

Hellman, J., Cheng, J., & Guo, J. L. (2021). Facilitating asynchronous participatory design of open
source software: Bringing end users into the loop. In Extended abstracts of the 2021 chi confer-
ence on human factors in computing systems (pp. 1–7).

Hijazi, H., Cruz, J., Castelhano, J., Couceiro, R., Castelo-Branco, M., de Carvalho, P., & Madeira, H.
(2021). ireview: an intelligent code review evaluation tool using biofeedback. In 2021 ieee 32nd
international symposium on software reliability engineering (issre) (p. 476-485). doi: 10.1109/
ISSRE52982.2021.00056

Hull, M. F. (2021). The role of technical communicators in open-source software: A systematic review.
Iivari, N. (2009). “constructing the users” in open source software development: An interpretive case

study of user participation. Information Technology & People, 22(2), 132–156.
Johnson, B., Song, Y., Murphy-Hill, E., & Bowdidge, R. (2013). Why don’t software developers use

static analysis tools to find bugs? In 2013 35th international conference on software engineering
(icse) (p. 672-681). doi: 10.1109/ICSE.2013.6606613

Johnson, J., & Henderson, A. (2002, jan). Conceptual models: begin by designing what to design.
Interactions, 9(1), 25–32. Retrieved from https://doi.org/10.1145/503355.503366
doi: 10.1145/503355.503366

Kuang, P., Söderberg, E., & Höst, M. (2024). Developers’ perspective on today’s and tomorrow’s
programming tool assistance: A survey. In 10th edition of the programming experience workshop,
px/24.

Kuang, P., Söderberg, E., Niehorster, D. C., & Höst, M. (2023). Toward gaze-assisted developer tools. In
2023 ieee/acm 45th international conference on software engineering: New ideas and emerging
results (icse-nier) (p. 49-54). doi: 10.1109/ICSE-NIER58687.2023.00015

Letondal, C., & Mackay, W. E. (2004). Participatory programming and the scope of mutual respon-
sibility: balancing scientific, design and software commitment. In (p. 31–41). New York, NY,

PPIG 2024

www.ppig.org 34

USA: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/
1011870.1011875 doi: 10.1145/1011870.1011875

Liang, J. T., Yang, C., & Myers, B. A. (2024, apr). A large-scale survey on the usability of ai pro-
gramming assistants: Successes and challenges. In 2024 ieee/acm 46th international conference
on software engineering (icse) (p. 605-617). Los Alamitos, CA, USA: IEEE Computer Society.
Retrieved from https://doi.ieeecomputersociety.org/

Maudet, N., Leiva, G., Beaudouin-Lafon, M., & Mackay, W. (2017). Design breakdowns: Designer-
developer gaps in representing and interpreting interactive systems. In Proceedings of the 2017
acm conference on computer supported cooperative work and social computing (p. 630–641).
New York, NY, USA: Association for Computing Machinery. Retrieved from https://doi
.org/10.1145/2998181.2998190 doi: 10.1145/2998181.2998190

McCabe, A. T., Söderberg, E., Church, L., & Kuang, P. (2022). Visual cues in compiler conversations. In
S. Holland, M. Petre, L. Church, & M. Marasoiu (Eds.), Proceedings of the 33rd annual workshop
of the psychology of programming interest group, PPIG 2022, the open university, milton keynes,
UK & online, september 5-9, 2022 (pp. 25–38). Psychology of Programming Interest Group.
Retrieved from https://ppig.org/papers/2022-ppig-33rd-mccabe/

Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2002). Two case studies of open source software
development: Apache and mozilla. ACM Transactions on Software Engineering and Methodology
(TOSEM), 11(3), 309–346.

Myers, B. A., Ko, A. J., LaToza, T. D., & Yoon, Y. (2016). Programmers are users too: Human-centered
methods for improving programming tools. Computer, 49(7), 44-52. doi: 10.1109/MC.2016.200

Oviatt, S., & Cohen, P. (2000). Perceptual user interfaces: multimodal interfaces that process what
comes naturally. Communications of the ACM, 43(3), 45–53.

Paudyal, B., Creed, C., Frutos-Pascual, M., & Williams, I. (2020). Voiceye: A multimodal inclusive de-
velopment environment. In Proceedings of the 2020 acm designing interactive systems conference
(pp. 21–33).

Pruitt, J., & Grudin, J. (2003). Personas: practice and theory. In (p. 1–15). New York, NY,
USA: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/
997078.997089 doi: 10.1145/997078.997089

Radevski, S., Hata, H., & Matsumoto, K. (2016). Eyenav: Gaze-based code navigation. In Proceedings
of the 9th nordic conference on human-computer interaction. New York, NY, USA: Associa-
tion for Computing Machinery. Retrieved from https://doi.org/10.1145/2971485
.2996724 doi: 10.1145/2971485.2996724

Rogers, Y., Sharp, H., & Preece, J. (2011). Interaction Design: Beyond Human-Computer Interaction.
Retrieved from http://discovery.ucl.ac.uk/1326236/

Santos, A. L. (2021). Javardeye: Gaze input for cursor control in a structured editor. In Companion
proceedings of the 5th international conference on the art, science, and engineering of program-
ming (p. 31–35). New York, NY, USA: Association for Computing Machinery. Retrieved from
https://doi.org/10.1145/3464432.3464435 doi: 10.1145/3464432.3464435

Saranpää, W., Apell Skjutar, F., Heander, J., Söderberg, E., Niehorster, D. C., Mattsson, O., . . . Church,
L. (2023). Gander: a platform for exploration of gaze-driven assistance in code review. In
Proceedings of the 2023 symposium on eye tracking research and applications. New York, NY,
USA: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/
3588015.3589191 doi: 10.1145/3588015.3589191

Schuler, D., & Namioka, A. (1993). Participatory design.
Shakil, A., Lutteroth, C., & Weber, G. (2019). Codegazer: Making code navigation easy and natural

with gaze input. In Proceedings of the 2019 chi conference on human factors in computing sys-
tems (p. 1–12). New York, NY, USA: Association for Computing Machinery. Retrieved from
https://doi.org/10.1145/3290605.3300306 doi: 10.1145/3290605.3300306

Siau, K., & Wang, W. (2020). Artificial intelligence (ai) ethics: ethics of ai and ethical ai. Journal of
Database Management (JDM), 31(2), 74–87.

PPIG 2024

www.ppig.org 35

Spinuzzi, C. (2005). The methodology of participatory design. Technical communication, 52(2), 163–
174.

Talon. (2024). Talon: Powerful Hands-free Input. (Retrieved 3 Apr, 2024 from https://
talonvoice.com/)

Tobii. (2023). Eye tracking fully integrated and baked right into the very latest high performance gam-
ing devices from alienware, acer and msi. (https://gaming.tobii.com/products/
laptops/ (Feb 15, 2023))

Wikipedia. (2024, 5). Participatory design. Retrieved from https://en.wikipedia.org/
wiki/Participatory_design

Wubishet, Z. S., Bygstad, B., & Tsiavos, P. (2013). A participation paradox: Seeking the missing link
between free/open source software and participatory design. Journal of Advances in Information
Technology, 4(4), 181–193.

Yang, J., Jimenez, C. E., Wettig, A., Yao, S., Narasimhan, K., & Press, O. (2024). Swe-agent: Agent
computer interfaces enable software engineering language models.

Zhang, Y., Ruan, H., Fan, Z., & Roychoudhury, A. (2024). Autocoderover: Autonomous program
improvement.

PPIG 2024

www.ppig.org 36

Assessing Consensus of Developers’ Views on Code Readability

Agnia Sergeyuk, Olga Lvova, Sergey Titov,
Anastasiia Serova, Farid Bagirov, Timofey Bryksin

JetBrains Research
{agnia.sergeyuk, olga.lvova, sergey.titov}@jetbrains.com

{anastasiia.serova, farid.bagirov, timofey.bryksin}@jetbrains.com

Abstract
The rapid rise of Large Language Models (LLMs) has changed software development, with tools like
Copilot, JetBrains AI Assistant, and others boosting developers’ productivity. However, developers now
spend more time reviewing code than writing it, highlighting the importance of Code Readability for
code comprehension. Our previous research found that existing Code Readability models were inaccu-
rate in representing developers’ notions and revealed a low consensus among developers, highlighting a
need for further investigations in this field.

Building on this, we surveyed 10 Java developers with similar coding experience to evaluate their con-
sensus on Code Readability assessments and related aspects. We found significant agreement among
developers on Code Readability evaluations and identified specific code aspects strongly correlated with
Code Readability. Overall, our study sheds light on Code Readability within LLM contexts, offering
insights into how these models can align with developers’ perceptions of Code Readability, enhancing
software development in the AI era.

1. INTRODUCTION
Large Language Models (LLMs) have seen rapid advancement, particularly in software development ap-
plications, where they serve as coding assistants and power tools like Copilot1, JetBrains AI Assistant2,
Codeium3, and others.

The evolution of AI-supported programming tools is reshaping software development practices —
while AI enhances productivity, developers spend more time reviewing code than writing it (Mozannar,
Bansal, Fourney, & Horvitz, 2023). Given that code comprehension time is generally related to Code
Readability—the easier the code is to read, the less time it takes for the developer to comprehend it—
optimizing the programmer’s workflow involves providing suggestions from an LLM that align with
developers’ understanding of Code Readability.

In academia, Code Readability is defined as a subjective, mostly implicit human judgment of how easy
the code is to understand (Posnett, Hindle, & Devanbu, 2011; Buse & Weimer, 2008; Scalabrino,
Linares-Vasquez, Poshyvanyk, & Oliveto, 2016). However, aligning LLMs with developers’ under-
standing of Code Readability necessitates an explication of developers’ notion of what is readable code.

In our previous research (Sergeyuk et al., 2024), we studied if existing predictive models of Code
Readability (Posnett et al., 2011; Scalabrino, Linares-Vásquez, Oliveto, & Poshyvanyk, 2018; Dorn,
2012; Mi, Hao, Ou, & Ma, 2022) may be a proxy of developers’ Code Readability notion. This
study, in addition to defining 12 Code Readability-related aspects obtained via the Repertory Grid Tech-
nique (Edwards, McDonald, & Michelle Young, 2009), revealed a weak correlation between current
Code Readability models and developer evaluations, pointing to a significant gap in these models’ abil-
ity to reflect developers’ perspectives on Code Readability. It underscored the need for developing more
accurate Code Readability metrics and models. We also found that developers’ evaluations of Code
Readability were not always consistently aligned with one another. We hypothesize that these results are
dictated by the subjectivity of Code Readability and its aspects, along with other confounding variables.

1Copilot https://github.com/features/copilot
2JetBrains AI Assistant https://plugins.jetbrains.com/plugin/22282-jetbrains-ai-assistant
3Codeium https://codeium.com/

PPIG 2024

www.ppig.org 37

Therefore, we present a work that builds on top of the previous study, presenting the results of a survey
we executed to delve deeper into developers’ agreement level on Code Readability and its aspects.

We conducted a survey involving 10 Java developers from the same company, all with similar coding
experience. Our aim was to assess whether a group of developers with similar backgrounds would
reach a consensus on Code Readability assessments and related aspects, and which of those aspects
are correlated the most with Code Readability. Each developer evaluated the same set of 30 Java code
snippets using a 5-point Likert scale, rating code across 13 Code Readability-related dimensions.

The results of the study indicate a statistically significant intraclass correlation on Code Readability and
several related metrics. This suggests that there is a degree of agreement among developers regarding
what constitutes Code Readability. We also found a significant correlation of 12 Code Readability-
related aspects evaluations with an assessment of Code Readability itself. It implies that LLMs could be
tailored to Code Readability notion by adjusting metrics that are stable among developers and strongly
related to Code Readability.

Overall, our work represents an approach to a deeper and at the time more explicit understanding of
Code Readability concept among developers, which is instrumental in the present rapidly evolving AI-
centered world of software development.

2. BACKGROUND
The development of code-fluent LLMs as coding assistants has fundamentally transformed the coding
experience. Several research studies were conducted to examine how humans and AI interact in-depth
and to understand how LLMs influence programmer behavior during coding activities, e.g., (Mozannar
et al., 2023; Liang, Yang, & Myers, 2023; Vaithilingam, Zhang, & Glassman, 2022; Barke, James, &
Polikarpova, 2023).

A comprehensive study conducted by researchers from Cambridge and Microsoft informed the under-
standing of how developers interact with AI tools and how to improve this experience (Mozannar et
al., 2023). Mozannar and colleagues studied the impact of GitHub Copilot on programmers’ behavior
during coding sessions. As a result, they identified 12 common programmer activities related to AI code
completion systems. The researchers found that developers spend more time reviewing code than writ-
ing it. Indeed, approximately 50% of a programmer’s coding time involved interactions with the model,
with 35% dedicated to double-checking suggestions.

The investigation by Carnegie Mellon University researchers underscored the challenges encountered
by developers while working with AI coding assistants (Liang et al., 2023). Their survey results suggest
that developers mainly use these tools to save time, reduce keystrokes, and recall syntax. However,
according to the same survey’s results, the generated code is limited in meeting both functional and
non-functional requirements. Additionally, developers struggle to comprehend the outputs of LLM due
to the code being too long to read quickly.

Previous studies highlighted the importance of aligning Code Readability models with human notions,
reducing coders’ time and mental effort to comprehend AI coding assistants’ suggestions. Developers
need to quickly comprehend the code proposed by an AI coding assistant before integrating it into a
project and implementing any changes. A critical aspect of this process is what is commonly referred
to as Code Readability — the ease with which developers can read and understand code. In this no-
tion, Code Readability forms a perceived barrier to comprehension that developers must overcome to
efficiently work with code (Posnett et al., 2011; Buse & Weimer, 2008; Scalabrino et al., 2018).

Addressing developers’ expectations regarding the readability of model-suggested code may involve
various fine-tuning methods. Specifically, in addition to the fine-tuning process itself, when the devel-
oper modifies the model’s weights and parameters, contrastive (Le-Khac, Healy, & Smeaton, 2020) and
reinforcement (Lambert, Castricato, von Werra, & Havrilla, 2022) learning are valuable tools for this
purpose. Implementing these methods encompasses the definition of a learning objective — informa-

2

PPIG 2024

www.ppig.org 38

tion about what output is “desirable” and what is not. Frequently, this objective is formed by annotating
the models’ outputs or by formulating rules that indicate users’ satisfaction with the produced code.

Our previous research (Sergeyuk et al., 2024) explored the potential of existing state-of-the-art Code
Readability models (Posnett et al., 2011; Dorn, 2012; Scalabrino et al., 2018, 2016; Mi, Keung, Xiao,
Mensah, & Gao, 2018; Mi et al., 2022) to be learning objectives to guide the process of fine-tuning.

Posnett et al.’s Model. Posnett, Hindle, and Devanbu introduced a Simpler Model of Code Readability
based on three features: Halstead volume, token entropy, and line count, surpassing the performance of
Buse and Weimer’s earlier model (Posnett et al., 2011). They employed forward stepwise refinement
for feature selection, manually incorporating features driven by intuition and familiarity with Halstead’s
software metrics.

Dorn’s Model. Dorn developed a General Software Readability Model, expanding beyond Java to
include multiple programming languages (Dorn, 2012). Dorn’s approach extended beyond syntactic
analysis to include structural patterns, visual perception, alignment, and natural language elements,
transformed into numerical vectors. This model also outperformed the retrained Buse and Weimer’s
model, emphasizing the value of using a wider range of code characteristics in readability assessments.

Scalabrino et al.’s Model. Scalabrino, Linares-Vasquez, and Oliveto proposed a Comprehensive Model
integrating syntactic, visual, structural, and textual elements of code (Scalabrino et al., 2018). Their
binary Code Readability classifier with 104 features surpassed previous models, emphasizing the benefit
of textual alongside structural and syntactic features.

Mi et al.’s Model. Mi, Hao, Ou, and Ma introduced a deep-learning-based Code Readability model
leveraging visual, semantic, and structural code representations (Mi et al., 2022). This model outper-
formed traditional machine learning models on a combined dataset, showcasing the potential of deep
learning in automating Code Readability evaluation.

In our previous study, we utilized the Repertory Grid technique (Kelly, 2003) to establish a user-centric
understanding of aspects related to Code Readability. This understanding served as a proxy for a uni-
fied perception of Code Readability among the developers who participated in the consequent survey.
During this survey, they assessed code snippets on various readability-related aspects and provided an
overall judgment on whether the presented snippet was readable or not. The data from the survey was
then used to assess the agreement between the models described above and human evaluations of Code
Readability. Overall, we found 12 readability-related bi-polar code aspects presented in Table 1.

Our research uncovered discrepancies in the correlation between existing Code Readability models and
its human evaluations. While Scalabrino’s model (Scalabrino et al., 2018) showed a moderate correla-
tion with human assessments, other models like Posnett et al.’s (Posnett et al., 2011), Dorn’s (Dorn,
2012), and Mi et al.’s (Mi et al., 2022) demonstrated weaker correlations. This variation suggests that
using these Code Readability models as learning objectives to fine-tune code-fluent LLMs for improved
readability might not be optimal. A more precise model is needed to guide this adjustment process.

Additionally, we found that developers assess Code Readability inconsistently, highlighting the need for
more standardized and validated definitions of Code Readability.

To address these findings, our current study aims to investigate if confounding variables contributed to
the previously observed inconsistency in Code Readability assessments by developers and if agreement
on Code Readability is achievable. We also seek to identify stable aspects of Code Readability that
could serve as a foundation for defining Code Readability and forming learning objectives for future
LLM adjustments. Specifically, our research questions are as follows:

RQ 1. Do Java developers with similar backgrounds consistently assess Code Readability and its related
aspects?

RQ 2. Do previously elicited code aspects represent Code Readability?

3

PPIG 2024

www.ppig.org 39

Readable pole Unreadable pole

Code is concise Code is too long
Code reads well from top to bottom While reading, the eyes jump from top

to bottom and back up again
*Code is not sufficiently explained and needs
additional info to understand what it does

Code is overexplained

The goal of the code is clear The goal of the code is not clear
Code uses basic, known code patterns Code looks unfamiliar, non-standard
Functionality is separated logically Code needs refactoring
Code is flat and linear Code is overly nested
There is one action per line of code There are multiple actions on one line
Code uses named constants Code uses “magic numbers”
Naming clarifies code functionality Naming is confusing
Code conforms to style guides Code is poorly formatted
There is balance in the color blocks There are huge chunks of color blocks

that stand out in a distracting way

*This characteristic forms a continuum, being “Readable” in the middle and “Unreadable” at the extremes.

Table 1 – Code Readability Aspects

3. METHODOLOGY
3.1. Sample
The sample was gathered by sending the survey link to the internal channels of JetBrains with the
invitation to Java programmers to participate in the study on Code Readability.

Based on preliminary power analysis, the sample was designed to consist of 10 Java programmers with
varying experience levels. Despite their different experience levels, we assume that they share the same
understanding of functional and non-functional requirements, as they have actively participated in de-
veloping a shared codebase.

All participants in our study are proficient Java developers. We assessed their experience using both
subjective and objective measures. Six participants self-assessed as “Advanced”, indicating extensive
experience and high proficiency in Java programming. Four participants self-assessed as “Intermediate”,
signifying a strong understanding and ability to work on complex projects. The distribution of objective
experience measures is presented in Table 2.

Experience Frequency

More than 10 years 4
9–10 years 2
5–6 years 1
3–4 years 1
1–2 years 2

Table 2 – Distribution of Years of Experience

3.2. Materials
In the current survey, we employed materials gathered in the previous study (Sergeyuk et al., 2024) — a
set of 30 AI-generated Java code snippets and a rating list of 12 Code Readability aspects. We justified
the reuse of these materials to retest our previous approach and investigate if our data collection and
analysis methodology might have influenced the earlier results on the agreement of code readability
assessment by humans. Therefore, we maintained consistency by using the same approach and materials
but with greater attention to confounding variables and data analysis.

The code snippets represented the readability of outputs generated by LLMs, which is important for us

4

PPIG 2024

www.ppig.org 40

due to the fact that the overarching goal of this research is to enhance the Human-AI Experience. To
create snippets, we selected tasks from the Code Golf game4 as prompts for ChatGPT 3.5 Turbo (due to
the timing of the study) to generate Java language solutions for these tasks. Subsequently, we ensured
that the snippets were meaningful and executable, adhering to a length limit of 50 lines, as defined by
previous Code Readability models examined in prior research.

The primary aim of the list of Code Readability-related aspects (see Table 1), which we formulated from
in-depth interviews using the Repertory Grid technique, was to offer consistent guidance to respondents
during the evaluation of Code Readability. This aimed to ensure that developers assessed code uniformly
and focused on key aspects related to readability.

3.3. Data Collection
On the greeting page of the survey, participants gave their consent and professional background informa-
tion. After that, they were presented with a random sequence of the same set of 30 Java code snippets.
Participants evaluated Code Readability of the snippet using the list of 12 bipolar characteristics and
Code Readability itself with a five-point Likert scale measuring how much the code leans to the read-
able or unreadable pole. Participants could take breaks while completing the task, leading to completion
times ranging from 40 minutes to 5 hours. Therefore, we believe that the random presentation of tasks
and the flexible break schedule mitigated the effects of fatigue on the evaluations.

3.4. Data Analysis
To answer RQ 1, we calculated the intraclass correlation coefficient (ICC) to assess the agreement level
of developers evaluating Code Readability and its aspects (Liljequist, Elfving, & Skavberg, 2019).

Additionally, to answer RQ 2, we calculated the Pearson’s correlation coefficient (Cohen et al., 2009) of
Code Readability-related aspects evaluations with overall Code Readability scores to see what metrics
are related to Code Readability.

4. FINDINGS
RQ 1. Do Java developers with similar backgrounds consistently assess Code Readability and its
related aspects?

The agreement level on assessments of Code Readability and related code aspects was found to be mostly
from moderate to good (Koo & Li, 2016). The numerical values of ICC with corresponding Medians are
presented in Table 3. The results of our study support the idea that developers of similar backgrounds
would agree on evaluations of Code Readability and its related aspects.

Prior Code Readability studies show that human annotators exhibited imperfect agreement, with a cor-
relation around .5 with the mean readability score (Buse & Weimer, 2008; Dorn, 2012). In our previous
study (Sergeyuk et al., 2024), we did not find even this level of agreement. This discrepancy with the
current results might be accounted for by the developers’ shared backgrounds. In the current study,
developers had similar backgrounds, all having experience consistently contributing to a specific code-
base. Therefore, their views on some programming conventions are closed. In contrast, the developers
in our previous study had a wide range of years of experience and worked at vastly different companies.
Additionally, it might be the case that using Kripendorf’s alpha with many missing values affected our
previous findings, and that effect was mitigated by our data gathering this time. Namely, we avoid miss-
ing values in our study by presenting a fixed set of the same snippets to a fixed number of nonrandom
raters and calculating ICC on that data.

Findings from the current study support the possibility of aligning LLMs’ outputs with users’ notions of
readability. However, such alignment may be uniquely achievable within a specific company or among
a group of developers with close views on various coding practices.

It is also noteworthy that not all Code Readability-related aspects have received a significant level of

4Code Golf game https://code.golf/

5

PPIG 2024

www.ppig.org 41

Code Aspect Poles (if represented numerically — from 2 to -2) ICC Median

Readability Readable / Unreadable 0.78 1

Code Structure Functionality is separated logically / Code needs refactoring 0.81 1
Nesting Code is flat and linear / Code is overly nested 0.80 2
Understandable
Goal

The goal of the code is clear / The goal of the code is not clear 0.79 2

Code Length Code is concise / Code is too long 0.78 2
Inline Actions There is one action per line of code / There are multiple actions on one

line
0.76 2

Reading Flow Code reads well from top to bottom / While reading, the eyes jump
from top to bottom and back up again

0.75 2

Sufficient
Contextual Info

Code is not sufficiently explained and needs additional info to under-
stand what it does / Code is overexplained

0.74 0

Code Style Code conforms to style guides / Code is poorly formatted 0.70 1
Magic Numbers Code uses named constants / Code uses "magic numbers" 0.69 0
Naming Naming clarifies code functionality / Naming is confusing 0.67 1
Code Patterns Code uses basic, known code patterns / Code looks unfamiliar, non-

standard
0.53 2

Visual
Organization

There is balance in the color blocks / There are huge chunks of color
blocks that stand out in a distracting way

-0.03 0

Significant ICC values (p < 0.05) are highlighted in bold.

Table 3 – Agreement on Code Readability

agreement between developers. Visual Organization scale, which represents the balance between color
blocks in the code snippets, e.g., several lines of comments or big arrays, has a nonsignificant level of
agreement. Having nonformal feedback from participants, we hypothesize that the wording and concept
of this scale were unclear for developers and should be refined in future studies.

RQ 2. Do previously elicited code aspects represent Code Readability?

The results indicate that aspects of Code Readability correlate moderately to strongly with the Code
Readability itself. We present a heatmap of statistically significant correlations in Figure 1.

Code aspects from our study, which we identified through in-depth interviews using the Repertory Grids
Technique with developers, align with prior research and models of Code Readability. This align-
ment, along with the way these aspects were elicited, provides some grounds to hypothesize that they
are indeed connected with Code Readability. Characteristics from our study resemble the combina-
tion of structural characteristics with visual, textual, and linguistic features as proposed by later Code
Readability models (Dorn, 2012; Scalabrino et al., 2018; Mi et al., 2022). Moreover, Fakhoury et al.
(Fakhoury, Roy, Hassan, & Arnaoudova, 2019) investigated commits that were explicitly aimed at Code
Readability-enhancement and observed notable changes in Complexity, Documentation, and Size met-
rics that resemble Code Structure, Nesting, Sufficient Contextual Info, and Code Length metrics from
our list. In the study of Fakhoury et al., it was also noted that Code Style and Magic Numbers Usage
are the aspects where improvements in Code Readability-related commits are prominent. In another
study, Peitek et al. (Peitek, Apel, Parnin, Brechmann, & Siegmund, 2021) examined 41 complexity
metrics and their influence on program comprehension, discovering that factors such as Textual Length
and Vocabulary Size increase cognitive load and working memory demand for programmers.

Further evidence supporting the idea that the code aspects we elicited in our previous study represent
developers’ notion of Code Readability is the statistically significant correlation between the entire list
of 12 Code Readability-related aspects and evaluations of Code Readability itself. However, there are
some differences in the strength of these correlations. The strongest correlation of Code Readability
evaluation is with Naming, Code Length, Understandable Goal, and Reading Flow metrics. Combined

6

PPIG 2024

www.ppig.org 42

Figure 1 – Correlations of Code Readability-related aspects

with the fact that Code Length and Understandable Goal are also metrics that gained a good level of
agreement among developers who assessed snippets, we can hypothesize that these two code aspects are
most representative of Code Readability and could be used as guidance for LLMs alignment.

5. CONCLUSION AND FUTURE WORK
This study explored the possibility of agreement among developers on Code Readability evaluations,
with the aim of potentially utilizing Code Readability as a learning objective for LLMs. Our findings
indicate that developers with similar professional backgrounds tend to exhibit a good level of agreement
in Code Readability evaluations. Additionally, certain code aspects related to Code Readability, i.e.,
Code Length and Understandable Goal, demonstrate promising potential as representatives of the key
scales influencing Code Readability.

With this supporting evidence in hand, our future endeavors will focus on further exploration of Code
Readability aspects and their potential representations for LLM adjustment with the overarching objec-
tive of enhancing user experience with AI assistants in programming.

6. References
Barke, S., James, M. B., & Polikarpova, N. (2023, apr). Grounded copilot: How programmers interact

with code-generating models. Proc. ACM Program. Lang., 7(OOPSLA1).
Buse, R. P., & Weimer, W. R. (2008). A metric for software readability. In Proceedings of the 2008

international symposium on software testing and analysis (p. 121–130). Association for Comput-
ing Machinery. Retrieved from https://doi.org/10.1145/1390630.1390647 doi:
10.1145/1390630.1390647

Cohen, I., Huang, Y., Chen, J., Benesty, J., Benesty, J., Chen, J., . . . Cohen, I. (2009). Pearson correlation
coefficient. Noise reduction in speech processing, 1–4.

7

PPIG 2024

www.ppig.org 43

Dorn, J. (2012). A general software readability model. Retrieved from http://www.cs.virginia
.edu/weimer/students/dorn-mcs-paper.pdf

Edwards, H. M., McDonald, S., & Michelle Young, S. (2009). The repertory grid technique: Its place
in empirical software engineering research. Information and Software Technology, 51(4), 785-
798. Retrieved from https://www.sciencedirect.com/science/article/pii/
S0950584908001298 doi: https://doi.org/10.1016/j.infsof.2008.08.008

Fakhoury, S., Roy, D., Hassan, A., & Arnaoudova, V. (2019). Improving source code readability: Theory
and practice. In Proceedings of the 27th international conference on program comprehension
(p. 2-12). IEEE. Retrieved from https://doi.org/10.1109/ICPC.2019.00014 doi:
10.1109/ICPC.2019.00014

Kelly, G. (2003). The psychology of personal constructs: Volume two: Clinical diagnosis and psy-
chotherapy. Routledge.

Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients
for reliability research. Journal of chiropractic medicine, 15(2), 155–163.

Lambert, N., Castricato, L., von Werra, L., & Havrilla, A. (2022). Illustrating reinforcement learning
from human feedback (rlhf). Hugging Face Blog. (https://huggingface.co/blog/rlhf)

Le-Khac, P. H., Healy, G., & Smeaton, A. F. (2020). Contrastive representation learning: A framework
and review. IEEE Access, 8, 193907-193934. doi: 10.1109/ACCESS.2020.3031549

Liang, J. T., Yang, C., & Myers, B. A. (2023). Understanding the usability of ai programming assistants.
Liljequist, D., Elfving, B., & Skavberg, K. (2019). Intraclass correlation–a discussion and demonstration

of basic features. PloS one, 14(7), e0219854.
Mi, Q., Hao, Y., Ou, L., & Ma, W. (2022). Towards using visual, semantic and structural features to

improve code readability classification. Journal of Systems and Software, 193(C). Retrieved from
https://doi.org/10.1016/j.jss.2022.111454 doi: 10.1016/j.jss.2022.111454

Mi, Q., Keung, J., Xiao, Y., Mensah, S., & Gao, Y. (2018). Improving code readability classifi-
cation using convolutional neural networks. Information and Software Technology, 104, 60-
71. Retrieved from https://www.sciencedirect.com/science/article/pii/
S0950584918301496 doi: https://doi.org/10.1016/j.infsof.2018.07.006

Mozannar, H., Bansal, G., Fourney, A., & Horvitz, E. (2023). Reading between the lines: Modeling
user behavior and costs in ai-assisted programming.

Peitek, N., Apel, S., Parnin, C., Brechmann, A., & Siegmund, J. (2021). Program comprehension
and code complexity metrics: An fmri study. In 2021 ieee/acm 43rd international conference on
software engineering (icse) (p. 524-536). doi: 10.1109/ICSE43902.2021.00056

Posnett, D., Hindle, A., & Devanbu, P. (2011). A simpler model of software readability. In Proceedings
of the 8th working conference on mining software repositories (p. 73–82). Association for Com-
puting Machinery. Retrieved from https://doi.org/10.1145/1985441.1985454
doi: 10.1145/1985441.1985454

Scalabrino, S., Linares-Vásquez, M., Oliveto, R., & Poshyvanyk, D. (2018). A comprehensive model
for code readability. Journal of Software: Evolution and Process, 30(6), e1958. Retrieved from
https://doi.org/10.1002/smr.1958 doi: 10.1002/smr.1958

Scalabrino, S., Linares-Vasquez, M., Poshyvanyk, D., & Oliveto, R. (2016). Improving code readability
models with textual features. In 2016 ieee 24th international conference on program comprehen-
sion (icpc) (p. 1-10). IEEE. doi: 10.1109/ICPC.2016.7503707

Sergeyuk, A., Lvova, O., Titov, S., Serova, A., Bagirov, F., Kirillova, E., & Bryksin, T. (2024). Re-
assessing java code readability models with a human-centered approach.

Vaithilingam, P., Zhang, T., & Glassman, E. L. (2022). Expectation vs. experience: Evaluating the
usability of code generation tools powered by large language models. In Extended abstracts of the
2022 chi conference on human factors in computing systems (p. 1-7). Association for Computing
Machinery. Retrieved from https://doi.org/10.1145/3491101.3519665 doi: 10
.1145/3491101.3519665

8

PPIG 2024

www.ppig.org 44

For Modeling Programmers as Readers with Cognitive Literary Science

Rijul Jain
Williams College

rijul.jain@williams.edu

Abstract
The prevalent text-based form of human-generative AI interactions has blurred the lines between code
and prose. I argue that understanding the cognitive effects of these interactions by modeling users not
only as programmers, but as readers, will inform the design of better tools to bolster human agency in
generative AI interactions. I hope to begin a conversation around the uses of cognitive literary science
for the study of the psychology of programming.

Reflections
The analogy between the “complexity of a large and thoughtful literary novel” and that of “a large
computer program” holds because both literature and computer programs deal in “sophisticated
information representations” (Blackwell, 2023). The forms of these representations change—especially
now, as using natural language to interact with generative AI in increasingly formalized ways (or,
prompt programming) has created a new way to conceive the forms that programming can take.
Whether they have ever written code or not, users of generative AI interfaces are therefore often
programming in some respect—but they are simultaneously put in the position of readers, reacting to
and being acted upon by the varied, sometimes surprising outputs given by, for example, ChatGPT,
while also directing the series of interactions to write the narrative of the exchange.

Questions of improving human agency with respect to new programming notations and generative AI
have therefore never been more keenly related to developing and learning from cognitive models not
only of programmers, but of readers working upon and being worked upon by texts. At PPIG 2023,
Lewis (2023) indirectly took up these concerns by inquiring whether the “psychology of natural
semantics” would “become a central part of the psychology of programming,” with a renewed focus on
studying end-user programming with LLMs. Yet these issues bear on expert programmers, too—Floyd
et al. (2017) find in an fMRI study of programmers’ brains that experts “treat code and prose more
similarly at a neural activation level” than non-experts.

Hermans et al. (2017) frame programming and writing as closely related. To understand generative AI
users as programmers even more comprehensively, it will also prove fruitful to model them as readers
by attending to cognitive literary science—research using cognitive psychology and neuroscience to
explicate the mental processes and the corner cases of reading. Gerrig et al. (2003) lay out readers’
processes of continually updating mental representations of narrative experiences—their work shows
literature to be a fertile ground for throwing into relief cognitive processes relevant to the psychology
of programming. In particular, Bergs’ (2017) research on coercion, or “the resolution of formal
mismatch,” uses examples from literature to illustrate and complement neuroscience work on a
fundamental cognitive phenomenon—one crucial to understanding how users react to unassimilably
and unrectifiably anomalous output from generative AI.

More generally, modeling programmers as readers will advance research directions aimed at designing
for diverse programming notations and bolstering human agency. Crichton et al. (2021), for example,
draw from cognitive psychology—evaluating the load on programmers’ working memory during
program tracing—to inform conclusions about programming tool design. Following this approach with
cognitive literary science to understand the cognitive effects of programmers’ higher-level, often
narrativized generative AI interactions may similarly reveal patterns and pitfalls to inform better design
for generative AI tools. Doing so even more broadly will also improve computational creativity—e.g.
Chandra et al., (2023) who create a new framework for animation in part by modeling their audience
with cognitive-science-informed narrative theory. Efforts at computational creativity going forward
must be attuned at a cognitive level to the ways people experience the arts.

PPIG 2024

www.ppig.org 45

Current forms of text-based interaction with generative AI systems have blurred the lines between code
and prose. As their forms of representation tend toward convergence, and if indeed “AI is a branch of
literature,” (Blackwell, 2023) understanding and evaluating how programmers-as-readers interact with
speech in this generative AI context will propel the development of more reliable and usable technical
notation than natural language alone. Insights from cognitive literary science may then yield a fuller
picture of the possibilities of enabling human agency with respect to programming.

References
Bergs, A. (2017). Under Pressure: Norms, Rules, and Coercion in Linguistic Analyses and Literary

Readings. In Burke, M., and Troscianko, M. T. (eds), Cognitive Literary Science: Dialogues
between Literature and Cognition, (Oxford: Oxford University Press).

Blackwell, A.F. (2023). Chapter 14: Re-imagining AI to invent more Moral Codes. Retrieved from:
https://moralcodes.pubpub.org/pub/chapter-12/release/4

Chandra, K., Li, T., Tenenbaum, J. & Ragan-Kelley, J. (2023). Acting as Inverse Inverse Planning. In
ACM SIGGRAPH 2023 Conference Proceedings (SIGGRAPH '23), 7, 1–12.
https://doi.org/10.1145/3588432.3591510

Crichton, W., Agrawala, M., & Hanrahan, P. (2021). The Role of Working Memory in Program Tracing.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI
'21), 56, 1–13. https://doi.org/10.1145/3411764.3445257

Floyd, B., Santander, T., & Weimer, W. (2017). Decoding the Representation of Code in the Brain: An
fMRI Study of Code Review and Expertise. 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE), (175-186). doi: 10.1109/ICSE.2017.24.

Gerrig, R. J., & Egidi, G. (2003). Cognitive psychological foundations of narrative experiences. In D.
Herman (Ed.), Narrative theory and the cognitive sciences, 33–55. Center for the Study of
Language and Information.

Hermans, F. & Aldewereld, M. (2017). Programming is Writing is Programming. In Companion
Proceedings of the 1st International Conference on the Art, Science, and Engineering of
Programming (Programming '17), 33, 1–8. https://doi.org/10.1145/3079368.3079413

Lewis, C. (2023). Large Language Models and the Psychology of Programming. In Proceedings of the
34th Annual Conference of the Psychology of Programming Interest Group (PPIG 2023), 77-
95.

PPIG 2024

www.ppig.org 46

Predictability of identifier naming with Copilot:
A case study for mixed-initiative programming tools

Michael Jing Long Lee
Computer Laboratory

University of Cambridge
mjll2@cam.ac.uk

Advait Sarkar
Microsoft Research

advait@microsoft.com

Alan F. Blackwell
Computer Laboratory

University of Cambridge
Alan.Blackwell@cl.cam.ac.uk

Abstract
Studies show that predictive text entry systems make writing faster, but written content more predictable.
We consider if these trade-offs extend to code synthesis tools such as GitHub Copilot. While Copilot
can make developers produce code faster, it may also affect how they choose identifiers for methods and
classes. This may have non-trivial effects on the activity of programming, because identifier names are a
primary semantic signal in code, and play important roles in authoring, debugging, and developer com-
munication. In a controlled, within-subjects experiment (n=12), we compared identifiers chosen in the
presence and absence of Copilot suggestions. We find that identifiers chosen in the presence of Copilot
suggestions were significantly more predictable (have lower mean entropy), even when suggestions were
only visible and could not be automatically accepted. These results imply that mixed-initiative systems
can take an active role in shaping programmer intentions and potentially impact their sense of agency.
We consider whether an increased convergence towards predictable names is an asset or a liability for
the practice of programming, and suggest design opportunities for surfacing surprising identifiers and
conceptual refactoring tools.

1. Introduction
Code synthesis tools based on generative Large Language Models (LLMs), such as GitHub Copilot
(hence Copilot), have been widely adopted by developers and firms (Dohmke, 2023). In February 2023,
Copilot was estimated to produce 46% of code across all programming languages, a percentage that had
doubled over the previous year (Zhao, 2023). Unlike traditional code-completion tools, Copilot has the
ability to suggest multiple lines of code at once, and to recommend potential identifiers (Ziegler et al.,
2022). It has been found to increase productivity – both actual (Mozannar et al., 2023), and perceived
(Peng et al., 2023; Ziegler et al., 2022).

We consider these programmer aids from the perspective of mixed-initiative interaction, in which either
the user or the tool might take the next action. This means that the system must make judgments on how

Figure 1 – An example study task as seen by participants, with a suggestion by Copilot highlighted
in pink. Participants were more likely to accept identifier suggestions (in this case, Movable), than
to generate original names (e.g., TakesSingleStep or Move).

1

PPIG 2024

www.ppig.org 47

well it understands the user’s goals, and on when it might be appropriate to interrupt the user with an
offer of assistance (Horvitz, 1999).

In the case of programming tools such as Copilot, the utility function for mixed initiative interaction is
less easily calculated, because the only explicit “goal” of a working programmer is the system specifi-
cation, itself often ambiguous or incomplete. More tractably, the programmer’s goal from moment to
moment is simply to refine their understanding of the problem domain and of the required execution
behaviour (Naur, 1985), expressing that developing model with conceptual clarity and economy, for
example by well-chosen identifier names.

In this paper, we specifically consider the choice of identifier names as a valuable case study through
which to understand the nature of interaction with Copilot from a mixed initiative perspective. Choosing
good names for identifiers is a key skill of the working programmer (McConnell, 1993). For example, the
name of an abstract type often reflects basic concepts in an application domain, a function name should
succinctly describe the operation that will be performed, and a field in a database schema might express
an important feature of a customer relationship. For programmers developing reusable frameworks,
libraries and APIs, the name of each element is critical to the usability of the whole (Furnas et al., 1987).

As a result, defining, reviewing and updating identifier names is an essential conceptual element of
programming work, in which the programmer both refines and communicates their understanding of the
software engineering problem in a way that will be understandable by other programmers (Schankin
et al., 2018).

Mixed-initiative interaction when choosing identifier names can be considered as a trade-off in attention
investment (Blackwell, 2002). Mixed-initiative interaction and the attention investment model are both
fundamentally about the cost-benefit tradeoff of automation (Williams et al., 2020). In this case, Copilot
might suggest a conventional identifier name at relatively low attentional cost, but the programmer could
alternatively invest attention in making the name more informative and specific to a distinctive context
they are working in (Blackwell, 2022).

We relate this to prior work, showing that in certain cases, intelligent user interfaces that streamline
processes to be more efficient can also make content more generically predictable (Arnold et al., 2020),
and therefore less informative (Shannon, 1948). A common situation in machine learning-based code
assistants is that the system may propose a conventional name based on its training corpus. This works
well in highly standardised programming tasks such as student coding exercises, and also in very rou-
tine or conventional programming work where a single correct name might be highly predictable. The
challenge that we address here comes in situations where a programming task is not standardised, per-
haps in a new domain or involving an original approach. In those cases where the best name cannot be
straightforwardly predicted from prior code, reuse of conventional identifiers could easily misrepresent
the programmer’s intention and be subtly incorrect. Our investigation therefore focuses on this tradeoff
between originality and predictability, recognising that each has its place in good quality code.

We adapt the experimental paradigm developed by Arnold et al. (2020) for study of predictive text,
applying their approach in the context of source code identifiers. The authors of that study take care
to note that their conclusions did not necessarily extend to tasks involving conceptual exposition. In
contrast, the creation of identifiers, which describe the properties of abstract objects, is exactly the task
of conceptual exposition. Our controlled, within-subjects experiment (n=12) compared identifier naming
with and without Copilot support, including a condition where suggestions were only visible, but not
available as automated actions.

The main contribution of this work is to demonstrate a statistically reliable effect, that the visible pres-
ence of Copilot suggestions results in more predictable identifiers, which may sometimes be desirable,
but not in more novel domains or coding tasks. We consider the consequences of this phenomenon in
relation to attention investment for mixed-initiative programming tools, and suggest design strategies
that might mitigate the problems that can result where predictable or conventional code is not a primary

PPIG 2024

www.ppig.org 48

quality objective.

2. Related Work
2.1. Predictability of AI-assisted work and critical integration
The theory of critical integration (Sarkar, 2023b) is a general account of the nature of generative AI-
assisted knowledge workflows. According to this, as the work of material production (e.g., the physical
typing of text or code, or creation of images) is increasingly delegated to AI, the role of the user is to
critically evaluate and integrate AI output into their broader workflow. However, the workflow itself and
the user’s objectives can be affected through interaction with AI output.

For example, models of interaction with predictive text systems (Bhat et al., 2023) have identified spe-
cific cognitive processes (Hayes, 2012) that are influenced by suggestions. Notably, the writer’s respect
for the system affects the degree to which suggestions are accepted. Additionally, suggestions shape
Working Memory State. Therefore, they impact not only syntactic choices, but sentence structure and
semantic content. Suggestions have even been found to influence authors’ topic choices and opinions
(Jakesch et al., 2023; Poddar et al., 2023).

Arnold et al. (2020)’s work is theoretically grounded in Rational Speech Act (RSA), a goal-oriented
model of communication. Under RSA, speakers choose phrases by balancing utility and cost (Goodman
& Frank, 2016). If words are chosen whilst writing (MacArthur et al., 2016), reducing the cost of a
predictable word can prompt users to choose less informative phrases.

Buschek et al. (2021) and Singh et al. (2023) show how such findings may be operationalised, by design-
ing predictive text interfaces that leverage cognitive impacts to aid ideation. Proposals generally involve
encouraging users to critically integrate suggestions. They include surfacing multiple suggestions at
once, and forcing explicit integration of suggestions rather than automatic acceptance.

2.2. Attention Investment
Good identifier names involve an attention investment (Blackwell, 2003): by investing immediate at-
tention, programmers may choose a distinctive name that accurately summarises hundreds of lines of
original code. In doing so, there is a pay-off : future attentional cost savings, since they or others may
efficiently surmise the nature of the abstract object by its name. However, there is also a risk that no
pay-off accrues, which varies depending on the nature of the task.

The attention investment problem is especially acute in settings where identifier names are hard to con-
ceptualise but have the potential to be very informative (cf: Section 4.1). As identified by Blackwell
(2022), such settings include

1. Naming concepts that are frequently reused, potentially in different settings,

2. Naming concepts that are related, for example, in API design, where related methods chain to
form a language, and

3. Naming refactored concepts, where updated requirements or semantics are reflected in subtle
changes to names (Blackwell, 2023).

2.3. Studies of GitHub Copilot
A systematic review of research on GitHub Copilot identified developer productivity, code quality, code
security, and education as primary themes (Ani et al., 2023). Evaluation of Copilot as a mixed-initiative
system tends to define utility in terms of productivity impact (Mozannar et al., 2023; Peng et al., 2023).
While the effect of Copilot on identifier choice has not been considered, results show that Copilot in-
creases productivity. However, as Buschek et al. (2021) found, ideation and efficiency are often in ten-
sion, so greater volume of code production may be associated with more conventional or homogeneous
names.

PPIG 2024

www.ppig.org 49

Multiple evaluations of Copilot have found that while it is useful in some situations, it requires the pro-
grammer to still exercise algorithmic thinking, program comprehension, debugging and communication
skills, and can prove a liability for non-expert programmers (Dakhel et al., 2023; Fajkovic & Rundberg,
2023; Imai, 2022; Zhang et al., 2023b). These have led researchers to caution against indiscriminate
use of AI assistance in programming education settings (Puryear & Sprint, 2022; Wermelinger, 2023).
Moreover, while the complexity and readability of Copilot-generated code is comparable to that written
by humans, eye-tracking data suggests that programmers pay less visual attention to AI-generated code
(Al Madi, 2022), corresponding to studies of agency in mixed-initiative interaction where users are less
critical of automated suggestions when they perceive the machine as having greater agency (Yu et al.,
2021).

Benchmark tests show that performance of GitHub Copilot, OpenAI ChatGPT, and Amazon CodeWhis-
perer can approach human level, but varies depending on the target language (Nguyen & Nadi, 2022;
Yetistiren et al., 2022; Yetiştiren et al., 2024). Inappropriate sensitivity to the prompting language is also
a challenge; in one study Copilot generated different code results for semantically equivalent natural
language prompts in approximately 46% of the test cases (Mastropaolo et al., 2023). Moreover, while
Copilot can be prompted in multiple natural languages, it is not equally performant, with one study
finding that performance with Chinese language prompts was significantly worse than with English
(Koyanagi et al., 2024).

Studies on developers’ subjective experience (Kalliamvakou, 2023; Sarkar et al., 2022; Vaithilingam et
al., 2022; Vasconcelos et al., 2023; Zhang et al., 2023a; Zhou et al., 2023) and mental models (Mozannar
et al., 2022) have additionally found that Copilot reduces perceived mental effort and that users often
accept suggestions without verification, which they defer to some future point. Such deferrals, as well as
the introduction of suboptimal solutions or unaddressed issues which can interfere with future software
development, can contribute to technical debt (OBrien et al., 2024). Tools such as Copilot can be used
to facilitate the authoring of code when programmer intent is clear, but also to aid exploration and
discovery (Barke et al., 2023; Sarkar et al., 2022). While Copilot can improve efficiency, it can come
at the cost of code comprehension and autonomy or control (Bird et al., 2022). An analysis of a corpus
of software developers’ tweets about GitHub Copilot found that programmers’ negative emotions can
become more positive when the capabilities of the AI tools are linked to their identity work (Eshraghian
et al., 2023). When considered in the framework of attention investment, these both hint at less attention
being invested into identifier names.

3. Research Questions
We aim to understand how developers are influenced by the identifiers suggested by Copilot. If de-
velopers tend to accept Copilot’s suggestions, this may result in more predictable identifier names (the
assumption being that Copilot produces more predictable names, an assumption which we discuss in
Section 6). We also consider whether making it more effortful to accept suggestions, by disabling key-
board shortcuts for easy acceptance, can affect the influence of Copilot on identifier names (and thereby
programmer agency). Our research questions are:

RQ1: To what extent are identifiers more predictably named in the presence of Copilot suggestions?

RQ2: To what extent do results differ if keyboard shortcuts for accepting suggestions are disabled?

4. Study Design
To evaluate the effect of Copilot suggestions on identifier choice, we conducted a within-subjects exper-
iment in which participants completed short Java programming tasks (Section 4.1) under different levels
of access to Copilot suggestions (Section 4.2). The 12 participants were computer science undergradu-
ates at our institution, recruited via convenience sampling. All participants had prior knowledge of Java
interfaces and experience in practical Java programming through undergraduate-level coursework.

PPIG 2024

www.ppig.org 50

Expression Definition Interpretation
C A set of common concepts

named by participants
NA

names(c, t) The names given to concept c
under treatment t

NA

Hnames(c, t) The entropy of names(c, t) The unpredictability of the names given to
a specific c under t

{Hnames(c, t) | c ∈
C}

The set of all Hnames(c, t) in a
given treatment t

Assuming Hnames(c, t) is independent of c,
this estimates the distribution of Hnames(t)

⟨Hnames(t)⟩ The mean of {Hnames(c, t) | c ∈
C}

The predictability of the names given to an
arbitrary c under t

Table 1 – Collated Definitions

4.1. Tasks
Using IntelliJ IDEA, participants defined Java interfaces based on natural language prompts. Three tasks
were developed, each with the aim of reflecting a context where distinctive original names are useful,
but hard to conceptualise.

Task 1 involved defining interfaces that form a pipeline for working with data. Participants had to
consider the relationships between interfaces, and methods that could be reused in a variety of contexts.
For example, a method for checking data could be called by a process writing to, or reading from, a
database. The checks could differ in the two cases.

Task 2 involved defining interfaces for a game, where characters could move around a grid, and rotate
in-place. Careful naming was required to capture the relationships between interfaces, for example,
methods to move right and to rotate right might clarify if the motion is relative or absolute.

Task 3 involved participants developing a structure for managing custom user settings. Participants were
asked to imagine that this was originally a command line tool, that was being replaced by a GUI. This
refactoring task encouraged participants to consider how the changing context updates requirements,
and how these updates may be reflected in changes to existing names.

The prompts were designed to avoid priming participants to pick certain identifier names adopting the
method described in Liu and Sarkar, et al. (Liu et al., 2023). Tasks were described in verbose and indirect
ways, encouraging participants to make new identifier choices rather than reuse vocabulary from the task
descriptions.

In the original study of predictive text by Arnold et al. (2020), the experimental task involved writing
image captions. The predictive text system was allowed to consider the image prompt as part of the
context when generating suggestions. By analogy to that study, we included the prompt stimulus text in
comment blocks so that it was visible to Copilot. Copilot may also consider content in other open files.
To ensure all participants saw the same initial suggestions, the set of open files was controlled.

A full listing of our experimental tasks and prompts is given in Appendix A.

4.2. Treatments
We manipulate the visibility of suggestions and the mechanism for accepting suggestions, resulting in
three conditions:

1. ON: Copilot is enabled, with keyboard shortcuts for accepting suggestions.

2. VIEW: Copilot is enabled, but keyboard shortcuts were disabled. Users could view the suggestion,
but could only incorporate it in their code by manually typing it out.

PPIG 2024

www.ppig.org 51

3. OFF: Copilot is disabled, and no suggestions were shown.

Many IDEs, including IntelliJ IDEA, have native (non-AI based) code completion tools that are widely
used in practice. These tools offer autocomplete so that programmers can repeatedly reference identifiers
already present in the codebase. Because the autocomplete functionality acts as a confounding factor
in this setting and interfere with programmer’s attention towards Copilot suggestions, code completion
was disabled for all three treatments to preserve internal validity. This comes at a slight cost to external
validity, but as Intellij IDEA’s native code completion tool does not suggest potential new identifiers,
and our tasks did not require participants to reference the same identifier multiple times, its absence is
unlikely to have been detrimental.

4.3. Protocol
The study was carried out in-person. All 12 participants declared that they were familiar with pro-
gramming in Java, and read and signed a statement of informed consent. Participation in the study was
voluntary and participants were not directly compensated. Our study protocol was approved by our
institution’s ethics committee.

Participants were first asked to read a description of the study, which explained that they would be asked
to define interfaces under three different treatments, and that the experiment was a study of Copilot.
We did not explicitly draw attention to identifiers, but asked participants to consider the readability and
maintainability of their code.

Before attempting any of the tasks, participants were first given a tutorial, where they familiarised them-
selves with defining interfaces and working with Copilot. Participants then completed each of the three
tasks in turn. The assignments of tasks to conditions was counterbalanced, so that each task was com-
pleted by 4 participants each in the ON, OFF, and VIEW conditions respectively. The study sessions
lasted between 45-60 minutes.

ds : An interface for reading and writing data
t ∈ T

t = ON t = VIEW t = OFF

names(ds, t)

DataSource, DataSource, Datum,
DataSource, DataSource, GetAndSet,
DataSource, DataSource, Manipulator,
DataSource DataSource QueryData

H(·) 0 0 2

Table 2 – Example Computation of Hnames(ds, t). Hnames(ds, t) is the entropy of the distribution of
names (each column) given to ds under treatment t ∈ T ..

4.4. Measures
Since all participants were given the same three task descriptions, all participants were creating names
relating to the described set of concepts C.1 As a running example, consider one such concept described
in Task 1 — ds: an interface that reads and writes to some source of data. As shown in Table. 2, we con-
sider names(ds, t): the bag of names given by participants to ds under treatment t ∈ {ON, VIEW, OFF}.

To measure predictability, we employ Shannon Entropy, an information theoretic model for quantifying
the average amount of information communicated by a source (Shannon, 1948). By measuring average
surprisal, entropy quantifies unpredictability.

We ask: “What did programmer X name concept ds under treatment t?”. Hnames(ds, t) quantifies the
uncertainty of the answer. Mathematically, it is the entropy of the empirical distribution of the bag. If

1Some concepts were not named by all participants. In particular, participants disagreed on how to encode inputs to
functions, with some choosing not to specify them at all. These concepts were excluded.

PPIG 2024

www.ppig.org 52

the bag has only one unique element, the name can be predicted with certainty; the entropy is 0. In
general, an entropy of n can be interpreted as the uncertainty associated with predicting the name from
one of 2n equiprobable candidates. This increases as predictability decreases.

To generalise from a single concept ds to the effect of a treatment t on an arbitrary concept c, we make
the simplifying assumption that Hnames(c, t) is independent of c (not generally the case, but reflecting our
experimental tasks). Hence, each Hnames(c, t) is an observation of the same random variable, Hnames(t),
and {Hnames(c, t) | c∈C} is a sample from the underlying distribution. Let ⟨Hnames(t)⟩ denote the sample
mean. This is the expected unpredictability of an identifier under t, regardless of the concept it names.
These definitions are collated in Table 1.

This analysis was repeated at the word level: Hwords(ds, t). This was to investigate whether Copilot en-
courages multiword identifiers that reshuffle words drawn from a smaller vocabulary. Finally, we noted
cases where participants changed their first choice, effectively renaming the identifier, since revisiting a
previous decision represents additional investment of attention by the namer.

We analysed the effect of each treatment on predictability. Two levels of granularity were considered:
a fine-grained comparison of entropy distributions was reinforced by a coarse-grained comparison of
means. 95% confidence intervals were estimated by bootstrap re-sampling with replacement (1000
iterations).

5. Results
5.1. Predictability
Fig. 2 plots histograms of the sample {H(c, t) | c ∈ C} for each treatment t, as an estimate of the
underlying distribution of H(t).

[0, 0.5] [0.5, 1] [1, 1.5] [1.5, 2]
Entropy

0.0

0.2

0.4

0.6

0.8

Empirical Distribution of Entropy (names)
Distributions computed across treatments

On View Off

[0, 1] [1, 2] [2, 3]
Entropy

0.0

0.2

0.4

0.6

0.8

Empirical Distribution of Entropy (words)
Distributions computed across treatments

On View Off

Figure 2 – Treating each H(c, t)as an observation of H(t), these histograms estimate the underlying
distribution of H(t) for each treatment t. Left: Hnames(t) and Right: Hwords(t) 2

2Bin sizes were chosen for interpretability.

PPIG 2024

www.ppig.org 53

Fig. 3 illustrates the sample mean ⟨H(t)⟩ for each treatment t ∈ T . 3 Fig. 4 illustrates, for pairs of
treatments (t1, t2) ∈ T ×T , the pairwise difference ⟨H(t1)⟩−⟨H(t2)⟩.

On View Off
Treatment

M
ea

n
En

tr
op

y
/b

its

Mean Entropy
Of names (left) and words (right), across treatments.
95% Confidence Interval

On View Off
Treatment

0

0.5

1

1.5

2

2.5

Figure 3 – Mean entropy ⟨H(t)⟩ for each
treatment t. This is the mean of H(c, t) (Table
2) over all concepts c under the same treat-
ment t. Left: ⟨Hnames(t)⟩. Right: ⟨Hwords(t)⟩.

View - On Off - View Off - On

Treatment Pair

Pa
irw

is
e

Di
ffe

re
nc

e
/b

its

Pairwise Differences of Mean Entropy
Of names (left) and words (right), across treatments.
95% Confidence Interval

View - On Off - View Off - On

Treatment Pair

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 4 – Difference in mean entropy
⟨H(t1)⟩ − ⟨H(t2)⟩ for pairs of treatments
(t1, t2). Left: name level. Right: word level.

At the name level, the mean entropy was 1.04 bits higher when Copilot was OFF compared to the ON

treatment (CI: [0.81,1.19]), and 0.90 bits higher than the VIEW treatment (CI: [0.69,1.09]).

Fisher’s Exact Test confirmed this to be a statistically significant difference. Under the null hypothesis

H0 : ⟨Hnames(OFF)⟩= ⟨Hnames(VIEW)⟩

H0 was rejected at the p = 0.01 level (p = 0.001).

At the name level, the mean entropy was 0.15 bits higher under the VIEW treatment as compared to the
ON treatment (CI: [−0.13,0.36]). This is not statistically significant at the 0.01 level (p = 0.18).

Analysis at the word level revealed similar results. The mean entropy of words was 0.85 bits higher
when Copilot was OFF compared to the ON treatment, (CI: [0.65, 1.05]), and 0.73 bits higher than the
VIEW treatment. (CI: [0.51, 0.96]). The mean entropy under the VIEW treatment was 0.12 bits higher
than under the OFF treatment. Symmetric to the name level results, this difference between ON and OFF

was significant at the p = 0.01 level (p = 0.001) but the difference between VIEW and OFF was not
(p = 0.26).

Table 3 presents the same data in terms of predictability rather than entropy. Given an arbitrary concept
c, Fig. 3 tabulates the probability that c is more unpredictably named under the OFF treatment than
the ON and VIEW treatments. More precisely, this is the probability that for some fixed concept c,
Hnames(c,OFF) > Hnames(c, t), t ∈ {ON, VIEW}. If given a random concept c, it is likely that c is more
unpredictably named under the OFF treatment than under the ON (p = 0.91, CI: [0.82,1.00]) or VIEW

treatments (p = 0.85, CI: [0.73,0.97]).

5.1.1. Probability of Renaming
When Copilot was OFF, participants renamed their “initial” identifier – defined as the first identifier
they typed – with probability 0.26. Under the VIEW and OFF treatments, where the “initial identifier”
is defined as Copilot’s suggestion, the probability of renaming dropped to 0.20 and 0.11 respectively
(Table 4). While the difference in probability between the OFF and ON treatments is significant at the
α = 0.05 level (p = 0.04), the difference between OFF and VIEW treatments is not (p = 0.06).

3Mean entropy is higher for words than names because each name is counted as multiple words. Hence, an outlier name
can be counted as three or four outlier words.

PPIG 2024

www.ppig.org 54

t P(H(c,OFF)> H(c, t)) 95% CI
ON 0.909 [0.818,1.000]
VIEW 0.848 [0.727,0.970]

Table 3 – Probability that a randomly drawn concept is more predictably named under the ON

and VIEW treatment than under the OFF treatment, with 95% CI. (Unpredictability quantified by
entropy of the empirical set of names).

t P(renamed|t) 95% CI
ON 0.106 [0.061,0.160]
VIEW 0.197 [0.129,0.267]
OFF 0.258 [0.182,0.333]

Table 4 – Probability that a participant re-named the “initial” name for a concept under treatment
t. If t ∈ {ON, VIEW}, the “initial” name is Copilot’s suggestion. If t = OFF, the “initial” name is
the first name typed by participants.

5.1.2. Interfaces vs. Methods
Our experimental tasks required participants to name two distinct types of concepts: interfaces and
methods. Fig. 5 compares the distribution of entropy for interfaces, Hnames(i, t), with the distribution of
entropy for methods, Hnames(m, t). Under the ON treatment, the mean entropy of interface names is 0.39
bits higher than for method names. However, this is not statistically significant (p = 0.06). Under the
VIEW treatment, the difference between the entropy of interfaces and methods is −0.01 bits, and under
the OFF treatment, the difference between the entropy of interfaces and methods is 0.08 bits.

6. Discussion
We find that, regardless of the mechanism for accepting suggestions (RQ2), names are significantly
more predictable in the presence of Copilot suggestions (RQ1). Under the ON and VIEW treatments,
for more than 67% of concepts, less than 1 bit of information was needed to determine the chosen
name. This means that concepts were more predictably named than if all participants were given the
same two names, and asked to pick one at random. Under the OFF treatment, for more than 90% of
concepts, Hnames(c,OFF) was greater than 1.5 bits. As only four participants named each concept under
each treatment, the maximum possible entropy is 2 bits (4 unique names), i.e., the empirically observed
diversity in the OFF condition approaches the theoretical limit.

Our quantitative and qualitative data support the interpretation that participants experienced an attention
investment trade-off in identifier naming with Copilot. Three participants indicated that they felt they
could have improved on Copilot’s suggestions, but “it just wasn’t worth the effort” (P2, P6, P10). This
suggests that participants felt that the marginal attentional cost of improving on Copilot’s suggestion was
higher than that of improving on one’s own candidate name. This is corroborated by the experimental
data, which showed that participants were more than twice as likely to re-name their initially chosen
identifiers when Copilot was OFF than the suggested identifier when Copilot was ON.

However, this is not a complete explanation, as the difference in the probability of re-naming under the
OFF and VIEW treatments was not significant. This could be attributed to two factors. First, the process
of typing out Copilot’s suggestion reduced the marginal cost of thinking up a better name. Second, we
underestimated the frequency of renaming under the OFF treatment, by assuming that the first identifier
written down by participants was the first candidate name considered. Hence, if participants considered
several names before typing out an identifier, which they did not later edit, this was not counted as a re-
naming. In contrast, under the VIEW and OFF treatments, the frequency of re-naming could be measured
much more accurately.

PPIG 2024

www.ppig.org 55

[0, 0.5] [0.5, 1] [1, 1.5] [1.5, 2]
Entropy

0.0

0.2

0.4

0.6

0.8

Distribution of Entropy (Methods)
Distributions computed across treatments

On View Off

[0, 0.5] [0.5, 1] [1, 1.5] [1.5, 2]
Entropy

0.0

0.2

0.4

0.6

0.8

Distribution of Entropy (Methods)
Distributions computed across treatments

On View Off

Figure 5 – Left: Distributions of entropy that only consider interfaces and ignore methods:
Hnames(i, t). Right: Distributions of entropy that only consider methods and ignore interfaces:
Hnames(m, t).

6.1. Mixed-initiative systems, agency, and mechanised convergence
These results have implications for our understanding of how contemporary mixed-initiative program-
ming tools can introduce much broader concerns than the traditional narrow focus on task completion. In
particular, our findings suggest that there may be implications for mixed-initiative interaction on agency
as well as the convergence (homogeneity) of output.

For example, one participant who stated that they “care a lot” (P2) about naming noted that program-
ming with Copilot ON was harder than with it OFF, as they felt like they were “fighting to break free” of
the names suggested by Copilot. Yu et al. (2021) showed that mixed-initiative systems can cause users to
feel a loss of agency, which may increase cognitive load. Darvishi et al. (2024) found that AI assistance
impacts the agency of students, causing them to rely on rather than learn from AI. While Kalliamvakou
(2023) posits that Copilot reduces cognitive load by automating mundane tasks, our results suggest that
should developers decide to invest attention into a task, such as choosing a good name, Copilot may
decrease feelings of agency and thus increase cognitive load. The perception of agency is an important
aspect of the user experience in interacting with intelligent text assistants (Yu et al., 2023), and conver-
gence to Copilot naming might reduce the overall agency and ownership perceived by the programmer.
Sarkar (2023a) observes that in generative AI-assisted end-user programming, the traditional attention
investment trade-off (between the costs of automation, the time saved, and the risks of failing to build a
useful automation) may well be subsumed by considerations of agency and trust in automation.

The second challenge posed by our findings is to the idea that mixed-initiative systems neutrally progress
users towards achieving their goals. When the goal is broad and admits a variety of solutions (as in the
case of identifier naming), the system may actually influence the goal rather than just infer it. This may
or may not be inappropriate – in cases where the programmer should be using a standardised solution
or algorithm, but has not recognised this, substitution of a more conventional, predictable, identifier
could improve their solution. However, in aspects of software development that relate to contextual and

PPIG 2024

www.ppig.org 56

domain understanding, standardised solutions may be worse.

Consider the mixed-initiative nature of traditional code completion tools (Mărăs, oiu et al., 2015), and
paradigms such as programming by demonstration (Cypher & Halbert, 1993) or programming by ex-
ample (Lieberman, 2001), and compare their properties to Copilot. Previous work has largely focused
on the technical challenge of inferring the user’s goals, over which the user is assumed to have com-
plete autonomy. In contrast, here we observe that the mixed-initiative system is taking an active role in
goal-shaping. And the particular form of goal-shaping we have observed in our study corresponds to the
phenomenon of mechanised convergence (Sarkar, 2023b).

Mechanised convergence is a general principle positing that automation has a standardisation effect,
reducing the frequency of outliers. For example, a study of consultants at Boston Consulting Group
found that ideas generated with AI assistance had a “marked reduction in ... variability ... compared to
those not using AI. ... it might lead to more homogenized outputs” (Dell’Acqua et al., 2023). Similarly,
Anderson et al. (2024) found that “different users tended to produce less semantically distinct ideas with
ChatGPT” and further, that this could impact agency: “ChatGPT users ... felt less responsible for the
ideas they generated”.

In the context of creating identifier names, the principle of mechanised convergence suggests that as
names become more predictable, this reduces the frequency of very bad names, but also the frequency
of very good ones. One researcher informally analysed the identifiers authored during the study for
informativeness. With Copilot OFF, there were more extremely informative, and extremely uninfor-
mative identifiers. For example, consider the task where participants were asked to name a character
that can move around a grid, one square at a time. With Copilot ON, most participants chose the name
Movable – this is moderately informative as it states what can be done with the character but contains
no information about the one-square constraint. With Copilot OFF, the quality of names ranged from
Move (very bad) to TakesSingleStep (very good). Move is uninformative, as the vocative case of
the verb “to move” is more appropriate for a function that causes the character to move, and the noun
form indicating a specific instance of a motion (i.e., in the sense of “a dance move”) is more appropriate
for an object that records a move instance. Both senses of Move fail to describe the character’s ability
(unlike the adjective Movable), and also fail to capture the one-square constraint. On the other hand,
TakesSingleStep is extremely informative, uses an appropriate grammatical form, and captures the
one-square constraint. A full listing of identifiers written by our participants by task and condition is
given in Appendix B.

Is mechanised convergence, per se, an asset or a liability for the practice of programming? Even if
Copilot’s suggested identifiers cannot match the quality or informativeness of those written by the best
programmers, they only need to be better than those written by most programmers for the aggregate
benefits of naming-by-Copilot to outweigh the negatives. However, programmers do not experience
the practice of programming in aggregate (Bergström & Blackwell, 2016), and individual programmers
almost certainly vary in their naming skill at different times and in different contexts. Moreover, we
must also consider not simply the quality of the final identifier, but also the cognitive challenges and
benefits of inventing it. The process of naming a concept itself might induce changes or insights. For
example, one craft practice of programming holds that if a function is hard to name, this is probably an
indication that one is doing too much or too little in that function (Blackwell et al., 2008).

When Copilot suggestions were enabled, suggestions for method names were more readily accepted
by participants than suggestions for interface names. Participants occasionally thought of names for
interfaces while reading the problem description, before seeing Copilot’s suggestion, but this was rare
for methods. Even without Copilot suggestions, the predictability of names may vary between concepts.
Concepts for which strong conventions exist – for example, getters, setters, and common algorithms
like QuickSort – might be named more predictably than bespoke methods or interfaces. However, in
all treatments the mean entropy for interfaces does not differ significantly from the mean entropy for
methods. Hence, there is insufficient evidence to suggest that interfaces are more, or less, predictably

PPIG 2024

www.ppig.org 57

named than methods.

6.2. Implications for design and developer practice
While Github Copilot may boost developer productivity, it also results in significantly more predictable
identifiers. This may be because Copilot suggestions increase the attentional costs of improving on a
suggested identifier.

These findings offer suggestions for developer workflows that increasingly require “critical integration”
(Sarkar, 2023b) of Copilot-generated code.

First, consider settings where good names are costly, but important. For example, when establishing
a new set of naming conventions for a codebase. Given that appropriate names suggested by Copilot
increase the marginal cost of investing attention, the converse might also hold: inappropriate suggestions
may decrease this cost, and encourage programmers to think more carefully about names, a similar
strategy to Wilson et al. (2003)’s Surprise-Explain-Reward model, in which the user’s attention is drawn
toward features of the code that they didn’t expect.

Second, consider settings where good names are not as critical. For example, when an established con-
vention already exists, and predictable names are informative within the context. In these cases, Copilot
may help developers follow existing conventions in predictable ways. In turn, this may help create a
setting where unpredictable names draw attention more effectively. When the predictability of a set
of names increases, an outlier is more surprising. Hence, when most names are predictable, deliber-
ate breaks from convention can more effectively emphasise subtle differences and direct developers’
attention.

We can also draw on the observations from this empirical study to suggest several design opportunities
for mixed-initiative features that could result in improved quality of identifier names.

First, it is important to note that in some cases, the predictable names suggested by Copilot might
sometimes be better names than more idiosyncratic alternatives created by the programmer. This may
be because the programmer’s suggestion reflects a misunderstanding of the problem, or perhaps a lack
of knowledge of standard approaches. In these cases, it could be beneficial to the programmer to invest
more attention, thinking again about the reason for their name choice. Wilson et al. (2003)’s Surprise-
Explain-Reward design pattern can help here, alerting the programmer to the unconventional name they
have chosen, and giving them the opportunity to investigate why this is the case.

A second design opportunity could be to optimise investment of attention with better understanding of
contextual factors that are relevant to naming, such as distinguishing between a) throw-away program-
ming “sketches” where the code will be discarded immediately after execution; b) systems intended to
have a long maintained lifetime that will involve intermittent attention from many different program-
mers; or c) API libraries and frameworks where thousands of programmers will eventually need to
understand the implications of the identifiers chosen. In cases where the choice of identifier names has
especially costly implications, a programming assistance tool would be able to take this into account by
collecting information about the eventual audience and context of use, encoding that contextual infor-
mation as additional prompts to the LLM during code generation.

A third design opportunity is to consider a new kind of software development / maintenance tool that
might be described as “conceptual refactoring”, which makes no changes to the function or semantics
of the source code, but simply modifies identifier names. During incremental and iterative software
development, it is not unusual for programmers to improve their understanding of the system such
that they see opportunities to improve on the identifier names that were initially chosen. A conceptual
refactoring tool, by focusing only on identifier names, could improve the overall clarity and coherence of
that name space. Technical strategies that might achieve this through the use of LLMs could include use
of summarising approaches to extract and clarify the variety of identifiers that have been used in a large
code base, then reconsidering individual identifiers in terms of their role within that overall structure.
Such a tool could be implemented as direct interaction with a symbol table or data dictionary, or by

PPIG 2024

www.ppig.org 58

using chat dialog prompts such as “Please include in your response a list of identifiers you’ve used, with
the reasons for your choices” (Lewis, 2024).

6.3. Limitations and Future Work
Sample Size. While the results we have observed are statistically significant, it is also possible (given
the upper bound on the entropy), that the effect size has been underestimated. Supplemental analyses
that increase the sample size might find an even larger effect.

Assumption of Independence. The simplifying assumption that the predictability of an identifier de-
pends only on the treatment, not the concept, may be loosened. While we took preliminary steps in this
direction - broadly dividing concepts between interfaces and methods - further work could consider finer
granularity in these subdivisions. As suggested, Copilot might have a smaller effect on the predictability
of getter and setter names than other methods.

External Validity. The decision to disable IntelliJ IDEA’s code completion tool could be revisited. The
presence of IntelliJ IDEA’s code completion tool could have been manipulated as an independent factor,
resulting in three more treatments. While this was not feasible due to resource constraints, it represents
a natural extension to the study.

Mechanised Convergence. A surface-level survey of the names finds results consistent with the phe-
nomenon of “mechanised convergence”. However, a more thorough analysis requires considering not
only changes to the predictability of names, but quality of names, including cases where the best quality
name would be a very predictable one (for example when implementing a standard algorithm such as
quicksort). Analysis might involve multiple raters ranking names by quality in context, with consistency
achieved by employing set-wise comparison (Sarkar et al., 2016).

Sample Homogeneity. We only studied CS undergraduates at one University. Undergraduates are, in
general, less than experienced software engineers. They may find it more difficult to choose good names,
and be more susceptible to authoritative suggestions. Programmers in industry may be trained to respect
certain company-specific conventions, or constraints, in naming. Future work may consider whether the
effects generalize to samples of professional programmers.

Language Effects. This study considered the effect of Copilot on identifier names in Java specifically.
Different programming languages are used by different types of programmer, and for different purposes,
which may bring different implications for attention investment. As a result, distinct languages often
have distinct conventions for identifiers. Future work might consider if and how the effect on identifier
choice varies between languages. For languages with larger training corpora, e.g., popular languages
such as Python and JavaScript, identifiers that follow conventions may be assigned higher probabilities
by the language model, and so the effect size is unlikely to vary.

7. Conclusion
This study explored how AI code generation tools like GitHub Copilot influence the conceptual task
of choosing identifiers during programming. Selecting descriptive names for classes, methods, and
variables is a crucial activity that shapes code readability and communicates intent. Yet developers may
face tensions between investing sufficient attention for informative naming versus prioritizing efficiency.

We conducted a controlled experiment where 12 participants defined Java interfaces both with and with-
out the presence of Copilot’s identifier suggestions. Across three coding tasks carefully designed to
require subjective naming decisions, identifiers chosen under Copilot’s influence were found to have
significantly lower entropy – that is, they were more predictable and less informative. Strikingly, this
tendency towards predictable names occurred even when Copilot merely displayed suggestions without
allowing auto-completion.

We find that generative AI problematizes the traditional task-oriented narrative of mixed-initative sys-
tems. Mixed-initiative systems can have an impact on programmer agency as well as their goals. While
predictable names promote consistency, overly deferring to AI suggestions could deprioritise investing

PPIG 2024

www.ppig.org 59

the human attention required to craft identifiers that are specifically tailored to the nuances of the current
context and requirements.

To mitigate risks of AI prematurely narrowing programmers’ perspectives, we propose AI tools that sur-
face surprising or unconventional alternatives, counterbalancing predictable suggestions. Incorporating
conceptual refactoring aids could also encourage revising identifiers as the programmer’s understanding
evolves.

As AI’s role in programming extends beyond just accelerating tasks, this work underscores the need
to thoughtfully steer AI-assisted workflows. Simply optimizing for productivity could inadvertently
discourage essential cognitive activities that underpin coding quality. Balancing AI assistance with
preserving key human skills like intentional naming will be crucial.

Acknowledgments
Thanks to our participants for their valuable time.

References
Al Madi, N. (2022). How readable is model-generated code? examining readability and visual inspection of github copilot.

Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering, 1–5.
Anderson, B. R., Shah, J. H., & Kreminski, M. (2024). Homogenization effects of large language models on human creative

ideation.
Ani, Z. C., Hamid, Z. A., & Zhamri, N. N. (2023). The recent trends of research on github copilot: A systematic review.

International Conference on Computing and Informatics, 355–366.
Arnold, K. C., Chauncey, K., & Gajos, K. Z. (2020). Predictive text encourages predictable writing. IUI ’20: Proceedings of

the 25th International Conference on Intelligent User Interfaces. https://doi.org/10.1145/3377325
.3377523

Barke, S., James, M. B., & Polikarpova, N. (2023). Grounded copilot: How programmers interact with code-generating models.
Proceedings of the ACM on Programming Languages, 7(OOPSLA1), 85–111.

Bergström, I., & Blackwell, A. F. (2016). The practices of programming. 2016 ieee symposium on visual languages and
human-centric computing (vl/hcc), 190–198.

Bhat, A., Agashe, S., Oberoi, P., Mohile, N., Jangir, R., & Joshi, A. (2023). Interacting with next-phrase suggestions: How sug-
gestion systems aid and influence the cognitive processes of writing. IUI ’23: Proceedings of the 28th International
Conference on Intelligent User Interfaces. https://doi.org/10.1145/3581641.3584060

Bird, C., Ford, D., Zimmermann, T., Forsgren, N., Kalliamvakou, E., Lowdermilk, T., & Gazit, I. (2022). Taking flight with
copilot: Early insights and opportunities of ai-powered pair-programming tools. Queue, 20(6), 35–57.

Blackwell, A. F. (2002). First steps in programming: A rationale for attention investment models. Proceedings IEEE 2002
Symposia on Human Centric Computing Languages and Environments, 2–10.

Blackwell, A. F. (2003). First steps in programming: A rationale for attention investment models. IEEE. https://doi
.org/10.1109/hcc.2002.1046334

Blackwell, A. F. (2022, September). Chapter 10: The craft of coding [https://moralcodes.pubpub.org/pub/chapter-9]. In Moral
Codes. MIT Press.

Blackwell, A. F. (2023, June). Chapter 11: How can stochastic parrots help us code?
[https://moralcodes.pubpub.org/pub/1osz744d]. In Moral Codes. MIT Press.

Blackwell, A. F., Church, L., & Green, T. R. (2008). The abstract is an enemy: Alternative perspectives to computational
thinking. PPIG, 5.

Buschek, D., Zürn, M., & Eiband, M. (2021). The impact of multiple parallel phrase suggestions on email input and com-
position behaviour of native and non-native english writers. CHI ’21: Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems. https://doi.org/10.1145/3411764.3445372

Cypher, A., & Halbert, D. C. (1993). Watch what i do: Programming by demonstration. MIT press.
Dakhel, A. M., Majdinasab, V., Nikanjam, A., Khomh, F., Desmarais, M. C., & Jiang, Z. M. J. (2023). Github copilot ai pair

programmer: Asset or liability? Journal of Systems and Software, 203, 111734.
Darvishi, A., Khosravi, H., Sadiq, S., Gašević, D., & Siemens, G. (2024). Impact of ai assistance on student agency. Computers

Education, 210, 104967. https://doi .org/https://doi .org/10 .1016/j .compedu .2023
.104967

Dell’Acqua, F., McFowland III, E., Mollick, E. R., Lifshitz-Assaf, H., Kellogg, K., Rajendran, S., Krayer, L., Candelon, F., &
Lakhani, K. R. (2023, September). Navigating the jagged technological frontier: Field experimental evidence of the
effects of ai on knowledge worker productivity and quality (Working Paper No. 24-013). Harvard Business School
Technology Operations Mgt. Unit. https://doi.org/10.2139/ssrn.4573321

Dohmke, T. (2023, June). The economic impact of the ai-powered developer lifecycle and lessons from github copilot - the
github blog. https://github.blog/2023-06-27-the-economic-impact-of-the-ai-powered
-developer-lifecycle-and-lessons-from-github-copilot/

PPIG 2024

www.ppig.org 60

Eshraghian, F., Hafezieh, N., Farivar, F., & De Cesare, S. (2023). Dynamics of emotions towards ai-powered technologies: A
study of github copilot. Academy of Management (AOM) Annual Meeting 2023.

Fajkovic, E., & Rundberg, E. (2023). The impact of ai-generated code on web development: A comparative study of chatgpt
and github copilot.

Furnas, G. W., Landauer, T. K., Gomez, L. M., & Dumais, S. T. (1987). The vocabulary problem in human-system communi-
cation. Communications of the ACM, 30(11), 964–971.

Goodman, N. D., & Frank, M. C. (2016). Pragmatic language interpretation as probabilistic inference. Trends in Cognitive
Sciences, 20(11), 818–829. https://doi.org/10.1016/j.tics.2016.08.005

Hayes, J. R. (2012). Modeling and remodeling writing. Written Communication, 29(3), 369–388. https://doi.org/10
.1177/0741088312451260

Horvitz, E. (1999). Principles of mixed-initiative user interfaces. Proceedings of the SIGCHI conference on Human Factors in
Computing Systems, 159–166.

Imai, S. (2022). Is github copilot a substitute for human pair-programming? an empirical study. Proceedings of the ACM/IEEE
44th International Conference on Software Engineering: Companion Proceedings, 319–321.

Jakesch, M., Bhat, A., Buschek, D., Zalmanson, L., &, (2023). Co-writing with opinionated language models affects users’
views. CHI ’23: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. https:
//doi.org/10.1145/3544548.3581196

Kalliamvakou, E. (2023, September). Research: Quantifying github copilot’s impact on developer productivity and happi-
ness - the github blog. https://github .blog/2022 -09 -07 -research -quantifying -github
-copilots-impact-on-developer-productivity-and-happiness/

Koyanagi, K., Wang, D., Noguchi, K., Kondo, M., Serebrenik, A., Kamei, Y., & Ubayashi, N. (2024). Exploring the effect of
multiple natural languages on code suggestion using github copilot. arXiv preprint arXiv:2402.01438.

Lewis, C. (2024).
Lieberman, H. (2001). Your wish is my command: Programming by example. Morgan Kaufmann.
Liu, M. X., Sarkar, A., Negreanu, C., Zorn, B., Williams, J., Toronto, N., & Gordon, A. D. (2023). “what it wants me to say”:

Bridging the abstraction gap between end-user programmers and code-generating large language models. CHI ’23:
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. https://doi.org/10
.1145/3544548.3580817

MacArthur, C. A., Graham, S., & Fitzgerald, J. (2016, October). Handbook of writing research, second edition. Guilford
Publications.

Mărăs, oiu, M., Church, L., & Blackwell, A. F. (2015). An empirical investigation of code completion usage by professional
software developers. Proceedings of the 26th Annual Workshop of the Psychology of Programming Interest Group.

Mastropaolo, A., Pascarella, L., Guglielmi, E., Ciniselli, M., Scalabrino, S., Oliveto, R., & Bavota, G. (2023). On the robustness
of code generation techniques: An empirical study on github copilot. 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE), 2149–2160.

McConnell, S. (1993, May). Code complete: A practical handbook of software construction. http://ci.nii.ac.jp/
ncid/BA26593422

Mozannar, H., Bansal, G., Fourney, A., & Horvitz, E. (2022). Reading between the lines: Modeling user behavior and costs in
ai-assisted programming. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2210.14306

Mozannar, H., Bansal, G., Fourney, A., & Horvitz, E. (2023). When to show a suggestion? integrating human feedback in
ai-assisted programming. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2306.04930

Naur, P. (1985). Programming as theory building. Microprocessing and microprogramming, 15(5), 253–261.
Nguyen, N., & Nadi, S. (2022). An empirical evaluation of github copilot’s code suggestions. Proceedings of the 19th Interna-

tional Conference on Mining Software Repositories, 1–5.
OBrien, D., Biswas, S., Imtiaz, S., Abdalkareem, R., Shihab, E., & Rajan, H. (2024). Are prompt engineering and todo com-

ments friends or foes? an evaluation on github copilot. 2024 IEEE/ACM 46th International Conference on Software
Engineering (ICSE), 1003–1003.

Peng, S., Kalliamvakou, E., Cihon, P., & Demirer, M. (2023). The impact of ai on developer productivity: Evidence from
github copilot. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2302.06590

Poddar, R., Sinha, R., & Jakesch, M. (2023). Ai writing assistants influence topic choice in self-presentation. CHI EA ’23:
Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems. https://doi.org/
10.1145/3544549.3585893

Puryear, B., & Sprint, G. (2022). Github copilot in the classroom: Learning to code with ai assistance. Journal of Computing
Sciences in Colleges, 38(1), 37–47.

Sarkar, A. (2023a). Will code remain a relevant user interface for end-user programming with generative ai models? Pro-
ceedings of the 2023 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software, 153–167. https://doi.org/10.1145/3622758.3622882

Sarkar, A. (2023b). Exploring perspectives on the impact of artificial intelligence on the creativity of knowledge work: Be-
yond mechanised plagiarism and stochastic parrots. CHIWORK ’23: Proceedings of the 2nd Annual Meeting of the
Symposium on Human-Computer Interaction for Work. https://doi.org/10.1145/3596671.3597650

Sarkar, A., Gordon, A. D., Negreanu, C., Poelitz, C., Srinivasa Ragavan, S., & Zorn, B. (2022). What is it like to program with
artificial intelligence? Proceedings of the 33rd Annual Conference of the Psychology of Programming Interest Group
(PPIG 2022).

PPIG 2024

www.ppig.org 61

Sarkar, A., Morrison, C., Dorn, J. F., Bedi, R., Steinheimer, S., Boisvert, J., Burggraaff, J., D’Souza, M., Kontschieder, P.,
Bulò, S. R., Walsh, L., Kamm, C. P., Zaykov, Y., Sellen, A., & Lindley, S. (2016). Setwise comparison. CHI ’16:
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. https://doi.org/10
.1145/2858036.2858199

Schankin, A., Berger, A., Holt, D. V., Hofmeister, J. C., Riedel, T., & Beigl, M. (2018). Descriptive compound identifier names
improve source code comprehension. 2018 ACM/IEEE 26th International Conference on Program Comprehension.
https://doi.org/10.1145/3196321.3196332

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423. https:
//doi.org/10.1002/j.1538-7305.1948.tb01338.x

Singh, N., Bernal, G., Savchenko, D., & Glassman, E. L. (2023). Where to hide a stolen elephant: Leaps in creative writing
with multimodal machine intelligence. ACM Transactions on Computer-Human Interaction, 30(5), 1–57. https:
//doi.org/10.1145/3511599

Vaithilingam, P., Zhang, T., & Glassman, E. L. (2022). Expectation vs. experience: Evaluating the usability of code genera-
tion tools powered by large language models. CHI Conference on Human Factors in Computing Systems Extended
Abstracts. https://doi.org/10.1145/3491101.3519665

Vasconcelos, M. H., Bansal, G., Fourney, A., Liao, Q. V., & Vaughan, J. (2023). Generation probabilities are not enough:
Exploring the effectiveness of uncertainty highlighting in ai-powered code completions. arXiv (Cornell University).
https://doi.org/10.48550/arxiv.2302.07248

Wermelinger, M. (2023). Using github copilot to solve simple programming problems, 172–178. https://doi.org/10
.1145/3545945.3569830

Williams, J., Negreanu, C., Gordon, A. D., & Sarkar, A. (2020). Understanding and inferring units in spreadsheets. 2020
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 1–9. https://doi.org/10
.1109/VL/HCC50065.2020.9127254

Wilson, A., Burnett, M., Beckwith, L., Granatir, O., Casburn, L., Cook, C. R., Durham, M. D., & Rothermel, G. (2003).
Harnessing curiosity to increase correctness in end-user programming. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. https://doi.org/10.1145/642611.642665

Yetistiren, B., Ozsoy, I., & Tuzun, E. (2022). Assessing the quality of github copilot’s code generation. Proceedings of the 18th
international conference on predictive models and data analytics in software engineering, 62–71.

Yetiştiren, B., Özsoy, I., Ayerdem, M., & Tüzün, E. (2024). Evaluating the code quality of ai-assisted code generation tools:
An empirical study on github copilot, amazon codewhisperer, and chatgpt. arxiv preprint arxiv: 230410778. 2023.
arXiv preprint arXiv:2304.10778.

Yu, C. G., Blackwell, A. F., & Cross, I. (2021). Perception of rhythmic agency for conversational labeling. Human-Computer
Interaction, 38(1), 25–48. https://doi.org/10.1080/07370024.2021.1877541

Yu, C. G., Blackwell, A. F., & Cross, I. (2023). Perception of rhythmic agency for conversational labeling. Human–Computer
Interaction, 38(1), 25–48.

Zhang, B., Liang, P., Zhou, X., Ahmad, A., & Waseem, M. (2023a). Demystifying practices, challenges and expected features
of using github copilot. arXiv preprint arXiv:2309.05687.

Zhang, B., Liang, P., Zhou, X., Ahmad, A., & Waseem, M. (2023b). Practices and challenges of using github copilot: An
empirical study. arXiv preprint arXiv:2303.08733.

Zhao, S. (2023, February). Github copilot now has a better ai model and new capabilities - the github blog. https://
github .blog/2023 -02 -14 -github -copilot -now -has -a -better -ai -model -and -new
-capabilities/

Zhou, X., Liang, P., Zhang, B., Li, Z., Ahmad, A., Shahin, M., & Waseem, M. (2023). On the concerns of developers when
using github copilot. arXiv preprint arXiv:2311.01020.

Ziegler, A., Kalliamvakou, E., Li, X. A., Rice, A. S., Rifkin, D., Simister, S., Sittampalam, G., & Aftandilian, E. (2022). Pro-
ductivity assessment of neural code completion. MAPS 2022: Proceedings of the 6th ACM SIGPLAN International
Symposium on Machine Programming. https://doi.org/10.1145/3520312.3534864

Appendices

A. Experimental Prompts and Tasks
A.1. Prompts
This experiment is interested in how programmer style is influenced by the use of CoPilot.

It will comprise three tasks. Each task will require you to define one or more interfaces or abstract
classes.

Unless explicitly told otherwise, you will not need to implement the interfaces, nor implement any of
the methods in the abstract classes. In essence, the focus of task is on the interface/class signatures, not

PPIG 2024

www.ppig.org 62

on the logic.

Each task will be in its own .java file, with a comment explaining the nature of the task. Points where
you are expected to write code are explicitly flagged with TODO.

Each task will have a different CoPilot configuration. There are three configurations:

1. One where CoPilot is turned on,

2. One where you can see CoPilot’s suggestions, but you can’t automatically accept them (you have
to type them out), and

3. one where CoPilot is off.

The researcher will adjust the settings for each of the tasks. Please do not modify them.

When you are done with the task, please indicate to the researcher that you are happy with your submis-
sion, at which point the researcher will change the CoPilot settings, and allow you to move to the next
task.

If you have any questions, please indicate them to the researcher at this point.

A.2. Tasks
A.2.1. Warmup

1 interface TwoDimPoint {
2 int getX();
3 int getY();
4 void setX(int v);
5 void setY(int v);
6 }
7

8 // TODO: Extend this interface to obtain a ThreeDimPoint interface.

A.2.2. Task 1
1 public class Task1 {
2 // A data pipeline is a series of steps for working with data. This typically
3 // involves reading, extracting, transforming, manipulating, validating,
4 // checking, visualising, storing, plotting, and many other steps.
5

6 // You are tasked with designing three interfaces that, if implemented,
7 // form a very basic pipeline for working with data.
8

9 // First, an interface that is able to ask some source, or knowledge object,
10 // or database for some datum or data. Further, it should be able to take some
11 // datum or data and ask the source/object/database/knowledge base to store it.
12 // When this interface is given a datum or data to store, it should
13 // automatically assume that the datum or data is valid. Further, you can
14 // assume that any singular piece of datum or data will be encoded as a string

.
15 // TODO
16

17 // We have the data from the source, or to be written into the source.
18 // What’s next? Well, we want an interface that makes sure we’re not doing
19 // anything silly. The interface should have some signal that can call on when
20 // the checks have failed. This ought to be an exception. Now, we assume all
21 // users are internal, so throwing this checked exception shouldn’t crash the
22 // program, but instead be caught and handled. This means we want checked
23 // exceptions to be thrown. Your job is to define some checked exception that
24 // is thrown when the second interface catches some mangled or nasty data.
25 // TODO
26

27 // Now we are ready to define the second interface.

PPIG 2024

www.ppig.org 63

28 // This interface should have two roles.
29 // Its first role is to take a datum or data that the first interface has
30 // returned, and check it for faults.
31 // These flaws could be mistakes, or corruption, or garbled data. While not
32 // important, potential sources of corruption could be faults in the hardware,
33 // problems in transmission over the wire, etcetera. Its second role is that
34 // it should have a method that checks if the data that the user gives to the
35 // first interface is valid. So this treats data going in the other direction.
36 // The causes of the potential mistakes/corruption are different in this case,
37 // as the user could have made a mistake, by encoding some flawed data, or by
38 // calling a buggy encoding method.
39 // TODO
40

41 // Now we are ready to define the third interface.
42 // The final task is to give clients something that they can actually use.
43 // So far we’ve only been working with data encoded as strings.
44 // Clients don’t actually want the strings, but they want something that’s
45 // easier to play around with. This involves molding or reshaping the data
46 // into something they can actually use. We don’t want to rely on the clients
47 // building proper decoders, so it makes sense to define a couple of defaults
48 // that they can call on to manipulate the data into the form that they
49 // actually plan on using. We’ve done some studies, and we’ve narrowed down
50 // the three most commonly used formats to be:
51 // json,
52 // byte64, and
53 // a Map object
54 // Hence, the interface should expose three methods, one for each format.
55 // TODO
56 }

A.2.3. Task 2
1 public class Task2 {
2 // I am building a board game that will be populated by characters.
3

4 // First, it’s important that some characters can move around the board.
5 // Different characters can move in different ways, following different
6 // constraints. The interface should describe characters that can move
7 // one square up, one square down, one square left, and one square right.
8 // These characters aren’t allowed to move multiple squares at once, or
9 // diagonally.

10 // TODO
11

12 // Sometimes we care about allowing the characters to move, and other
13 // times we care about allowing the characters to perform more complex
14 // motions, like spinning. In order to build something like spinning, we
15 // need to allow characters to rotate. Here, we only care about characters
16 // that can turn left with respect to the direction that they are facing,
17 // and right with respect to the direction that they are facing. The arc
18 // of rotation should be a quarter-circle, that is, increments of 90 degrees,
19 // or pi/2 radians.
20 // TODO
21

22 // Third, some characters will have an inventory.
23 // An inventory is a collection of items that a character can carry around
24 // with them. We care about characters that are able to take a single item
25 // from their surroundings, and put it into their inventory. After they do
26 // so, they will be able to carry these items around with them.
27 // Characters should also be able to retrieve stuff from the inventory, to
28 // use it or discard it in some manner. Characters should operate on singular
29 // items, that is, there won’t be a method to put many things into the
30 // inventory, or take many things out of it, in just a single go.
31 // TODO
32

PPIG 2024

www.ppig.org 64

33 // Fourth, some characters will be able to throw things.
34 // When a character throws something, they will throw it in the direction
35 // that they are facing, rather than in any arbitrary direction. This means
36 // that they can only throw things in the direction they are facing. In
37 // addition, characters need to throw something. They can’t just throw nothing.
38 // Further, characters that implement this interface should throw things
39 // exactly 5 squares. To recap: characters can throw things 5 squares in the
40 // direction that they are facing.
41 // TODO
42

43 // As a test, build a Character interface that extends each of the previous
44 // interfaces
45 // TODO
46

47 // Build a dodge method that moves a character. Assume that the character is
48 // facing the up direction.You want to move it in a zig-zag motion in the up
49 // direction. The character should turn to face the direction of motion and
50 // moving in some interesting pattern. The signature of the method should be
51 // void dodge(Character c)
52 // TODO
53

54 // Build an attack method: get a stone from the inventory, throw it, walk 5
55 // steps, and get the stone back. The signature of the method should be
56 // void attack(Character c)
57 // TODO
58

59 // Finally, build an interface for characters that can move 5 squares up,
60 // down, left, and right. They shouldn’t be able to move in increments of
61 // less than 5.
62 // TODO
63 }

A.2.4. Task 3
1 public class Task3 {
2 /*
3 We have a user-facing command line system.
4 Users can personalise the system, for example, changing the time zone,

language, and font size.
5

6 There are also some global settings, or defaults. These global settings /
defaults kick in

7 when the user has not specified any personal settings. For example, when the
user is a new user.

8 In some sense these settings are pre-installed or pre-defined by the company,
though once the

9 software has shipped, users (be they people or companies) can change these
global or default settings

10 to their liking.
11

12 Currently, the mechanism for changing settings, both global and local, is by
setting feature flags.

13 A feature flag is a single bit, indicating if the feature is on, or off.
14 The code will query these feature flags to determine methods to execute, or

items to display.
15 This means that the system will operate differently depending on if a feature

flag is on, or off.
16 Specifically, this is done via a command line tool, called, flg. There are 5

ways to use flg
17

18 flg 0 is a getter, that returns the user’s custom settings. For example, if
the user settings are

19 "1011", then flg 0 will return "1011" for that user. Different users will get
different results.

PPIG 2024

www.ppig.org 65

20

21 flg 0[sequence] acts as a setter for the user’s private, personal, custom
settings.

22 The sequence is used to determine what settings ought to be set.
23 For example, flg 011001 turns feature flag 0 on, feature flag 1 on, feature

flag 2 off, feature flag 3 off,
24 and feature flag 4 on.
25

26 flg 1 is a getter, and it gets the global or universal settings. For example,
if the global settings are 0000, then

27 flg 1 will return 0000.
28

29 flg 1[sequence] changes the global settings (for everyone). The sequence is
used to determine what the new

30 global settings ought to be. For example, flg 10111 will turn feature flag 1,
feature flag 2, and feature flag 3 on,

31 and it will turn feature flag 0 off. It does not delete any custom settings.
That is, if the user already has

32 feature flag 0 on, they will not notice a change.
33

34 flg 2 deletes all custom settings, effectively resets all custom settings to
the global default. So for example,

35 if there are 3 users, users A, B, and C, and they each have custom settings,
and the global setting is 0000, then

36 after we call flg 2, all 3 users will have 0000 as their settings.
37

38 The company has decided to move to a system with a GUI.
39 You have been asked to refactor flg into an abstract class (no implementation

required, all methods should be stubs).
40 This class will not be exposed to the user via a command line interface.
41 This means there is no need for backwards compatibility, and you only need to

preserve the functionality, not
42 the exact syntax, or the exact mechanisms that supply the functionality.
43 Indeed, you have been advised to define one method for each possible different

way to use flg.
44 Your abstract class should store the global settings as a static list of

integers.
45 You abstract class should also store the user’s custom settings as a static

dictionary from user ID (string) to a list of integers.
46 */
47 // TODO
48

49 }

B. Participant Responses
Tasks are named Tn::Im::Mk, as in Task n, Java Interface m, Java Method k.

T1::I1
DataSource DataSource ManipulateData

DataSource DataStore GetAndSettable

DataSource DataSource SourceQuery

DataSource DataSource Datum

T1::I1::M1
query read getData

read getData get

read read retrieve

read read getDatum

T1::I1::M2
store store storeData

write storeData set

write store store

write write storeDatum

T1::I2::E1
DataValidationException DataIntegrityException CheckedException

DataException DataHandlerException SillyData

ON VIEW OFF

Continued on next page

PPIG 2024

www.ppig.org 66

DataException DataException SourceException

DataException DataException MangledDataException

T1::I2::E2
DataValidationException DataConsistencyException CheckedException

DataException DataHandlerException SillyData

DataException DataException SourceException

DataException DataException MangledDataException

T1::I3
Validator DataChecker CheckData

DataChecker DataHandler DataChecker

DataChecker DataValidater SourceVerifier

DataChecker DataChecker DataChecker

T1::I3::M1
validate checkRead checkDataOutput

checkRead checkDataReturn checkRetrievedData

checkRead sourceValidate checkForFaults

checkRead checkRead checkReturnedData

T1::I3::M2
validate checkWrite checkDataInput

checkWrite checkDataInput checkInputData

checkWrite userValidate checkForFaults

checkWrite checkWrite checkInputData

T1::I4
Decoder DataTransformer convertData

DataTransformer DataDecoder Decoder

DataTransformer DataDecoder Decoder

DataTransformer DataTransformer DataManipulator

T1::I4::M1
decodeJson toJson jsonData

json asJson toJson

json json toJson

json json dataToJson

T1::I4::M2
decodeBase64 toBase64 byte64Data

byte64 asByte64 toBase64

byte64 byte64 toByte64

byte64 byte64 dataToByte64

T1::I4::M3
decodeMap toMap mapData

map asMap toMap

map map toMap

map map dataToMap

T2::I1
Movable TakesSingleStep Movable

Movable CharacterTranslations Movable

Movable CharacterMove MovableCharacter

Movable Move MovingCharacter

T2::I1::M1
moveUp movesOneSquareUp moveUp

moveUp moveUp moveUp

moveUp moveUp moveUp

moveUp up moveUp

T2::I1::M2
moveDown movesOneSquareDown moveDown

moveDown moveDown moveDown

moveDown moveDown moveDown

moveDown down moveDown

T2::I1::M3
moveLeft movesOneSquareLeft moveLeft

moveLeft moveLeft moveLeft

moveLeft moveLeft moveLeft

moveLeft left moveLeft

T2::I1::M4
moveRight movesOneSquareRight moveRight

moveRight moveRight moveRight

moveRight moveRight moveRight

moveRight right moveRight

T2::I2
Rotatable AbleToRotate Rotatable

Rotatable CharacterRotations Rotatable

Rotatable CharacterRotate RotatableCharacter

Rotatable Rotate SpinningCharacter

T2::I2::M1
rotateClockwise turnsLeft90Degrees rotateLeft

rotateLeft rotateLeft rotateLeft

rotateLeft rotateCW rotateLeft

ON VIEW OFF

Continued on next page

PPIG 2024

www.ppig.org 67

rotateLeft rotateLeft rotateLeft

T2::I2::M2
rotateAntiClockwise turnsRight90Degrees rotateRight

rotateRight rotateRight rotateRight

rotateRight rotateACW rotateRight

rotateRight rotateRight rotateRight

T2::I3
Inventory HasInventory Inventory

Inventory CharacterInventory Inventory

Inventory CharacterInventory CharacterWithInventory

Inventory Inventory InventoryCharacter

T2::I3::M1
storeItem storeItem takeItem

takeItem store takeItem

takeItem store takeItem

storeItem put takeItem

T2::I3::M2
retrieveItem retrieveItem retrieveItem

retrieveItem retrieve retrieveItem

retrieveItem retrieve retrieveItem

retrieveItem retrieve retrieveItem

T2::I4
Throwable AbleToThrow Thrower

Thrower CharacterThrow Thrower

Thrower CharacterThrow CharacterThatThrows

Thrower Throw ThrowingCharacter

T2::I4::M1
throwItem throwForwardFiveSquares throwItem

throwItem throwFive throwItem

throwItem throwFive throwItemFiveSquares

throwItem throwItem throwItem

T3::I1
FeatureFlags Flg Flg

FeatureFlag Flg Settings

Flg Flg Flg

Flg Flg Flg

T3::I1::A1
defaultFlags globalSettings globalSettings

global globalSettings globalSettings

globalFlags globalSettings globalSettings

globalSettings globalSettings globalSettings

T3::I1::A2
userFlags customSettings customSettings

custom userSettings customSettings

userFlags customSettings userSettings

custom customSettings customSettings

T3::I1::M1
setDefault getGlobalSettings getGlobalSettings

getGlobal getGlobalSettings getGlobalSettings

flg1 getCustomSettings getUserSettings

flg0Get getCustomSettings getGlobalSettings

T3::I1::M2
getDefault setGlobalSettings setGlobalSettings

setGlobal setGlobalSettings setGlobalSettings

flg1 setCustomSettings setUserSettings

flg0Set setCustomSettings setGlobalSettings

T3::I1::M3
setUser getCustomSettings getCustomSettings

getCustom getUserSettings getCustomSettings

flg0 getGlobalSettings getGlobalSettings

flg1Get getGlobalSettings getCustomSettings

T3::I1::M4
getUser setCustomSettings setCustomSettings

setCustom setUserSettings setCustomSettings

flg0 setGlobalSettings setGlobalSettings

flg1Set setGlobalSettings setCustomSettings

T3::I1::M5
clear reset reset

deleteAllCustom reset resetToGlobalSettings

flg2 reset resetUserSettings

flg2Del reset deleteCustomSettings

ON VIEW OFF

Table 5 – Participant Responses

PPIG 2024

www.ppig.org 68

Further Evaluations of a Didactic CPU Visual Simulator (CPUVSIM)

Renato Cortinovis

Freelance Researcher

Italy

rmcortinovis@gmail.c

om

Tamer Mohamed

Abdellatif

Canadian University

Dubai, United Arab

Emirates

tamer.mohamed@cu

d.ac.ae

Devender Goyal

Raytheon

Technologies,

USA

dg1998@gmail.com

Luiz Fernando

Capretz

Western University

Canada

lcapretz@uwo.ca

Abstract
This paper discusses further evaluations of the educational effectiveness of an existing CPU visual

simulator (CPUVSIM). The CPUVSIM, as an Open Educational Resource, has been iteratively

improved over a number of years following an Open Pedagogy approach, and was designed to enhance

novices’ understanding of computer operation and mapping from high-level code to assembly language.

The literature reports previous evaluations of the simulator, at K12 and undergraduate level, conducted

from the perspectives of both developers and students, albeit with a limited sample size and primarily

through qualitative methods. This paper describes additional evaluation activities designed to provide

a more comprehensive assessment, across diverse educational settings: an action research pilot study

recently carried out in Singapore and the planning of a more quantitative-oriented study in Dubai, with

a larger sample size. Results from the pilot study in Singapore confirm the effectiveness and high level

of appreciation of the tool, alongside a few identified challenges, which inform the planning of the more

comprehensive evaluation in Dubai.

1. Introduction
Numerous CPU visual simulators have emerged over time with the primary objective of enhancing the

understanding of computer operation (Nikolic et al., 2009). These simulators cater to various levels of

expertise and often specialize in specific facets of computer science, such as computer security (Imai et

al., 2013) or pipelining (Zhang and Adams III, 1997). Among this diverse array of simulators, a small

subset addresses a well-recognized issue: that students – despite studying both high-level programming

languages and computer architecture fundamentals – frequently struggle to grasp how high-level code

actually executes on computer hardware (Evangelidis et al., 2021; Miura et al., 2003). These concepts

are considered fundamental in computer science and software engineering education and training: the

Software Engineering Body of Knowledge (Bourque and Fairley, 2022), for example, reports that

“software engineers are expected to know how high-level programming languages are translated into

machine languages”.

In this context, the CPUVSIM (Cortinovis, 2021) – an Open Educational Resource available from

Merlot and OER Commons – supports novices in comprehending the fundamental components of a

simplified CPU, and in understanding the mapping from high-level control structures to low-level code,

i.e. assembly and machine code. This is achieved through detailed animations that illustrate the

execution of instructions, and empowering learners to write meaningful programs using a minimalist

yet representative assembly language.

Figure 1 shows a screenshot of the CPUVSIM running in a browser, with a simple program loaded in

RAM. The user can execute the program one instruction or micro-instruction at a time, at the desired

speed. The user can interactively modify, at any time, the content of the RAM, or any register in the

CPU. While the execution is animated, a voice over explains what is happening – in English, Spanish,

or Italian.

As detailed by Cortinovis (2021), the development of CPUVSIM sought to address limitations observed

in existing applications. While some simulators, such as LMC (Higginson, 2014), were deemed overly

simplistic, others were considered unnecessarily complex. CPUVSIM, on the other hand, was honed

through iterative improvements and extensions, building upon the foundation of an already popular

visual simulator known as PIPPIN (Decker and Hirshfield, 1998). Its development process followed a

PPIG 2024

www.ppig.org 69

sustainable Open Pedagogy approach (Wiley and Hilton, 2018) in the form of non-disposable

assignments to computer science students over multiple years.

Figure 1 - A screenshot of the CPUVSIM

The CPUVSIM has previously undergone evaluations of its educational effectiveness, albeit with

limited sample size and primarily through qualitative methods. These evaluations were conducted from

the perspectives of both its developers and students who engaged with it in different contexts. In this

paper, we describe an evaluation recently conducted in Singapore and also describe an evaluation

planned to be conducted in Dubai. These studies outline additional evaluation activities designed to

provide a more comprehensive assessment of the CPUVSIM. Our efforts encompass diverse settings,

employing as far as possible complementary approaches.

Following the general introduction in this section, Section 2 reports on the evaluation of CPU simulators

in the literature, Section 3 describes our Action Research pilot evaluation recently carried out in

Singapore and its findings. Section 4 describes the planning of the evaluation to be conducted at a

University in Dubai with a larger number of students, utilizing again Action Research but

complemented with elements of a quantitative-oriented experimental approach. Finally, Section 5

presents our conclusions.

2. CPU simulators evaluation strategies
As mentioned earlier, the CPUVSIM has already undergone some limited and mainly qualitative

evaluations. Cortinovis (2021) describes its informal qualitative evaluation from the developers’ point

of view, who deeply appreciated, in particular, the opportunity to work on a real problem in a real

context, and the opportunity to contribute to the common good. Cortinovis and Rajan (2022) describe

the evaluation from the students’ point of view, both in two specialized technical schools in Italy (K12

and lifelong adult education) and in a first and a second-year undergraduate computer architecture

courses in Colorado (USA). The students who used the simulator provided very positive feedback,

which was analysed with a qualitative thematic content analysis, and was then used to further improve

and extend the latest version of the simulator.

Nikolic et al. (2009), evaluate a rich set of existing CPU simulators, but only on the basis of

characteristics identified from the documentation. Some of the criteria they used, such as level of

coverage of the topics included in standard curricula, are not considered fully relevant in this context:

the CPUVSIM is meant to support a firm grasp of the fundamental mechanisms, but at a relatively high

level of abstraction, without dwelling too much in details.

Imai et al. (2013) evaluated the correlation between tests carried out on their simulator and the course

final exam results. The strong correlation they reported is interesting, but to demonstrate the

PPIG 2024

www.ppig.org 70

effectiveness of their simulator, it is necessary to compare it with an alternative tool or a comparable

teaching method. Indeed, in subsequent works (Imai et al., 2018), they adopted a qualitative approach

alone with a simple questionnaire.

Chalk (2002) and Mustafa (2010) both used a mixed qualitative and quantitative strategy. The

quantitative approach, in particular, makes use of a quasi-experimental schema, with experimental and

control groups, and pre and post knowledge tests. Although the experimental strategy is instrumental in

collecting supporting evidence about the effectiveness of the tool, and while pre- and post- knowledge

tests can demonstrate the improvements of students’ knowledge using the simulator, this approach does

not provide information about its effectiveness against alternative strategies. Chalk (2002)

demonstrates, in particular, the importance of referring to precisely formulated learning objectives, to

test results against.

3. CPUVSIM pilot evaluation in Singapore
We planned and executed a first pilot evaluation of the simulator, on a small scale (13 students in total),

in two undergraduate courses at the Yale-NUS College in Singapore: a course on C Programming and

a course on Software Verification and Validation. The simulator was used in the first course to help

students understand the mapping between C control structures and assembly code. It was used in the

second course to test programs at machine language level. Considering the limited number of students,

and the limited possibilities to control the many factors involved (different classes, different teachers,

etc.), we considered it appropriate to adopt a socially-oriented, situational Action Research

methodology, preferring a more postmodernist-oriented approach over a strictly positivist one (Kemmis

and McTaggart, 2000).

Given the overall goal of grasping how code written in high-level language is actually executed on the

hardware of a computer, we outlined first, as recommended by Chalk (2002), the learning objectives:

• Understand the role of the key components of a CPU.

• Understand the mapping from high-level to low-level control structures (assembly and

machine) code.

• Code meaningful high-level programs with a minimalist but representative assembly language.

More specifically:

• Describe typical assembly instructions supported by a CPU.

• Explain the fundamental steps carried out by the main subcomponents of a CPU, to execute a

given assembly instruction.

• Identify the information transferred on the Data bus, Address bus, and Control bus during each

step of every instruction.

• Apply the suitable numeric/immediate and direct addressing modalities.

• Exemplify the use of the CPU flags through simple examples.

• Translate a program in C with a single control structure to assembly code.

According to the adopted research methodology, we defined an action plan for the proposed

intervention, including specific pedagogical activities as well as “Data analysis and critical reflection”,

and “Refinement of the planned intervention for future courses”.

In particular, we foresaw a first activity to present in class the CPUVSIM and its associated e-book (1.5

hours), follow-up students’ activities to be started in class and completed at home (a couple of hours to

familiarize individually with the CPUVSIM and related educational material), plus an additional hour

to complete the graded activities. These included:

Briefly explain the differences between conditional and non-conditional jump.

Briefly list/describe the steps carried out by the main sub-components of a CPU, to execute the

instructions ADD #20 and ADD 20 (immediate and direct addressing).

Identify the missing instruction in the following translation of an IF-THEN-ELSE control

structure to assembly:

PPIG 2024

www.ppig.org 71

IF SUM == 2

 THEN SUM=3

 ELSE SUM=5

ENDIF

 LOD SUM

 CMP #2

 JNZ ELSE

 LOD #3

 // MISSING CODE?

ELSE: LOD #5

ENDIF: STO SUM

 HALT

SUM: 0

The second course on software verification and validation included the following additional

assignments:

Use the Simulator to test if the translation of the following high-level control structures to

Assembler are correct or not […]; explain your answer.

Discuss Specific Testing Strategies for Assembly code.

We finally specified a survey with Likert type questions and open questions (Mustafa, 2010; Cortinovis

and Rajan, 2022), to collect feedback about the CPUVSIM and the learning experience, such as:

What ameliorations could be made to the simulator and/or related e-book to improve your

learning experience?

The final assignment was graded and analysed with psychometric Classical Test Theory (Novick,

1996). Taking into account the limited number of students, the Likert-type questions in the survey were

analysed with basic descriptive statistics (Mustafa, 2010), the open questions in the survey were

analysed with thematic content analysis (Cortinovis and Rajan, 2022).

Finally, we carried out a critical reflection on the effectiveness of the intervention to derive the

recommendations for planning the subsequent intervention – according to the iterative nature of Action

Research, and to the goal of a pilot.

3.1 Pilot Results
The data extracted from the survey (Table 1) on 13 students shows that the CPUVSIM was definitely

appreciated, especially for understanding how C control structures actually get executed on a computer,

which was the main goal.

Questions

Strongly
Agree +

Agree (%)

Strongly
Disagree +

Disagree (%)

Neutral (%)

The simulator and related e-book
were motivating and interesting.

77% (10) 0% 23% (3)

The simulator and related e-book
were useful for understanding how C
control structures actually get
executed on a computer.

85% (11) 0% 15% (2)

I found the simulator too complicated
to understand and use effectively.

23% (3) 46% (6) 31% (4)

Table 1 – Sample extracted from the survey in Singapore.

Interestingly, a relevant number (23%) of students stated that the simulator was not easy to understand

and use effectively: this was probably due to the limited time devoted to its presentation (just 1.5 hours

in total). Indeed, a first student who found the simulator too complicated suggested having “more hand

holding in class”; a second student considered that “the lecture included too much”. A student found

that the simulator was too fast: “It was challenging keeping up with its fast-pace while still

understanding newly introduced concepts”. Obviously, this student did not notice the possibility to

control the speed, which was explicitly appreciated by other students.

Despite these problems, the students’ answers on the assignments demonstrated a remarkable grasp of

the targeted key concepts. There were no incorrect solutions to the assignments, even if there were

omissions of relevant details in a few of them – notably from a student who found the use of the

simulator somewhat complicated.

PPIG 2024

www.ppig.org 72

These overall positive outcomes were strongly correlated with the students’ self-perceptions: one of

them, for example, stated that she reached “a solid understanding of how high-level code runs on

hardware”, while another one found it “really eye-opening to see how it actually works at the base

level”. The number of students involved in this pilot was limited, yet the evaluation results confirm

previous results available in the literature (Cortinovis and Rajan, 2022). The main lesson learned for

future deliveries of the course, is the need to dedicate more time to coaching the students in the use of

the simulator, so that all of them can get the most from it.

4. CPUVSIM planned evaluation in Dubai
In Dubai we aim to improve the previous evaluations addressing two potentially weak aspects of action

research: generalizability and rigor. Concerning generalizability, we are evaluating the simulator in

different contexts, that is, different courses, multiple classes, and different countries. To improve the

rigor of the evaluation process, we take advantage of the larger sample size available (120+ students),

enriching the qualitative-oriented action research design used in Singapore, with a quantitative-oriented

experimental approach.

Drawing lessons from the pilot evaluation conducted in Singapore, we will allocate additional time to

ensure that every student gains complete mastery over the utilization of CPUVSIM and its

accompanying documentation. First, we will dedicate a decent time to our lab instructors to train on and

master the simulator. This is planned to take place during the pre-semester preparation period of two

weeks. During this period, the course instructors, with the support of the lab instructors, will work on

integrating the simulator within the course syllabi and preparing the simulator-based assessment tasks.

Accordingly, full two lab sessions (2 hours each) will be dedicated to the students’ training on the

simulator. The first lab session (2 hours) will be dedicated to introducing the simulator’s built-in CPU

instructions in addition to the education supporting features, such as the instructions execution simulator

and the simulator e-book. After finishing this lab session, the students will be left with a simulator-

based homework. In the second lab session (2 hours), the students will be provided with time dedicated

to homework discussion and one-by-one coaching on the answer of each of the homework tasks using

the simulator. This way, the students will acquire a fair understanding level of the simulator’s

functionality before proceeding with more challenging tasks.

Furthermore, we will include the following additional learning objective:

• Translate a program in a high-level language with multiple control structures, both sequenced

and nested, to assembly code.

Therefore, beyond the exercises proposed in Singapore, we will conduct a more comprehensive

assessment of students' proficiency in translating high-level constructs, such as loops, logic operators,

and arithmetic operations, into assembly language. For example:

• write an assembly program that determines whether the value stored in a variable “var1” is odd

or even;

• write an assembly program that performs a comparison between two signed variables.

Var1=7Fh and Var2=80h. Then saves the highest and the lowest variables in HIGH and LOW

variables respectively;

• write an assembly program that determines whether a given positive integer number satisfies

the Collatz conjecture.

4.1 Experimental Design and Population
We have a total of 120+ students that will be partitioned into two groups. The first one will follow the

traditional educational path of the previous years, which did not use a simulator but was based on

theoretical lessons and paper-based exercises. The second one will follow an educational path modified

with the new intervention, using the CPUVSIM. The students, who have Python and Java programming

background, will have different lab instructors and teaching assistants.

4.2 Quantitative Data Collection and Analysis
We will gather quantitative data through the following assessment setups:

PPIG 2024

www.ppig.org 73

• Exercises under an invigilated environment: for this setup, students will be asked to answer the

assessments at the lab using our learning management system (LMS). The students will have

no access to the internet. The assessment will have a specified time limit and the LMS system

will record the time taken by the student to complete each task (completing the task in less time

will lead to collecting more marks). We plan to conduct this assessment setup twice within the

course timeline.

• Group-based exercises carried out in the lab: this kind of assessment will allow the students in

small sub-groups (3-4 students) to hone their assembly level programming and benefit from

each other. In case of any needed support from the instructor, the students will be asked to

submit their inquiries via the LMS system.

• Written exams: this includes both graded mid-term and final exams. Both students’ grades and

specific mistakes will be gathered for this kind of assessment setup.

Therefore, in addition to the students’ grades, we will gather other quantitative data such as the time

needed to finish the assessment, number of students’ mistakes, types/categories of the students’

mistakes (for instance, whether due to incorrect understanding of the logic of jump instructions or to

incorrect understanding of the mapping between high level programming and assembly code logic), and

the Grade Point Average of each group member. Furthermore, each assessment’s activity/question will

be mapped to a certain learning objective. This allows us to evaluate the effectiveness of using the

simulator on improving the students’ knowledge for each of our learning objectives, in addition to the

overall impact on the students’ performance along course(s).

We will adopt ANOVA variance analysis statistical test to verify whether the results for the two main

student groups show an overall statistically significant difference based on the use of CPUVSIM

according to the sample size at hand. In addition, we plan to apply the Tukey’s Honestly Significant

Difference (HSD) statistical test to figure out which group of data parameters is impacted the most by

using the CPUVSIM based on the sample at hand. Examples of data parameters that can be studied by

HSD are: time needed to finish the task, number of mistakes.

4.3 Qualitative Data Collection and Analysis
Qualitative data will be collected using a survey with both Likert-type questions and open questions

similar to the ones adopted in the pilot study. Here, however, we plan to extend our qualitative data by

collecting feedback from teachers too. Therefore, the survey questions for the teachers will include, for

example: How does the CPUVSIM impact on the students’ understanding of the assembly language

structure? How does it impact related explanations? Would you recommend making use of the

CPUVSIM, and how?

We plan to interview all the course instructors as well as one student from each student-focused sub-

group. To analyse these qualitative data, both thematic and narrative analysis will be adopted. Thematic

analysis will help in identifying and interpreting the patterns from our survey results, while narrative

analysis will provide a better understanding of the motivation behind the feedback provided by the

interviewees.

Finally, we will also run a longitudinal study, because we suspect that the students with hands-on

experience with the simulator might better retain over time the competences acquired, compared to the

students who followed the more traditional path. Therefore, we will retest the students of both groups

after 12 months, to assess the possible different levels of retention of key concepts and competencies.

4.4 Threats to Validity
Generalizability and rigor are the two main weak aspects of the situational nature of action research.

Yet, the variety of contexts where these evaluations are carried out (Singapore) and planned (Dubai),

in addition to the evaluations previously reported in the literature (Italy and USA), should contribute to

support the generalization of the outcomes. Additionally, we integrated in the methodology for the

planned evaluation in Dubai, a quantitative-oriented experimental component to improve rigor: the use

of complementary research methodologies, selected to better fit the particular contexts, should help

compensate for their weaknesses.

PPIG 2024

www.ppig.org 74

More importantly, we acknowledge our limited control over numerous variables, particularly the

inevitably diverse approaches employed by various educators when utilizing the tool. The challenge

lies in discerning the tool's impact amidst the multitude of factors influencing student learning. It is

imperative to recognize the tool as just a component within a broader socio-technical system, as

highlighted by Mulholland (personal communication, 2023). To tackle this challenge, our evaluation

strategy in Dubai includes qualitative assessments from educators' perspectives. These assessments aim

to glean insights into how teachers perceive the CPUVSIM and its effects on their educational

endeavours. Additionally, we leverage the recently developed CPUVSIM accompanying e-book titled

“A Gentle Introduction to the Central Processing Unit (CPU) and Assembly Language”. This Open

Educational Resource, available via Merlot or OER Commons, offers some pedagogical support for

utilizing the CPUVSIM. It provides explanations and practical activities to support both teachers as

well as self-learners. Notably, this interactive e-book integrates the CPUVSIM seamlessly. Each

programming example or exercise within the e-book features live images, embedding the fully

functional CPUVSIM. Users can execute, modify, and re-execute these “images” at will, enhancing the

interactive learning experience.

4.5 Ethical Considerations
In our plan, only one of the two groups of students will have the opportunity to reap the potential

advantages of using the CPUVSIM, which can be questioned from the ethical point of view. To

overcome this problem, in case the evaluation would show that a group was considerably disadvantaged

compared to the other, we plan to offer, at the end of the evaluation, some extra educational activities

to level their competences. These extra activities would target specifically the topics where the

evaluation might have identified significant differences.

5. Conclusions
We have outlined our plans for assessing the educational effectiveness of the CPUVSIM simulator. The

feedback from the pilot in Singapore, using Action Research, confirms a positive effect on students’

ability to grasp important concepts and good appreciation for the tool, as reported in the literature,

together with the identification of some challenges. This provided useful indications for the wider

evaluation planned in Dubai, where we will enrich the qualitative Action Research methodology with

a more quantitative-oriented study, aiming to address concerns about generalizability and rigor.

Through these activities, we are collecting feedback from students and teachers in diverse geographical

regions, broadening the perspective on how the CPUVSIM resonates with stakeholders from different

cultural backgrounds and educational systems.

6. References
Bourque, P., & Fairley, R. E. (2022). Guide to the Software Engineering Body of Knowledge, Version

4.0 beta. IEEE Computer Society.

Chalk, B. (2002). Evaluation of a Simulator to Support the Teaching of Computer Architecture. In 3rd

Annual LTSN-ICS Conference, Loughborough University.

Cortinovis, R. (2021). An educational CPU visual simulator. 32nd Annual Workshop of the Psychology

of Programming Interest Group.

Cortinovis, R., & Rajan, R. (2022). Evaluating and improving the educational CPU visual simulator: a

sustainable open pedagogy approach. In Proceedings of the 33rd Annual Workshop of the

Psychology of Programming Interest Group, 189-196.

Decker, R., & Hirshfield, S. (1998). The Analytical Engine: An Introduction to Computer Science Using

the Internet. PWS Publishing, Boston.

Evangelidis, G., Dagdilelis, V., Satratzemi, M., & Efopoulos, V. (2021). X-compiler: yet another

integrated novice programming environment. In Proceedings of the IEEE International

Conference on Advanced Learning Technologies, 166-169.

Higginson, P. (2014). Little Man Computer [Javascript application]. Retrieved September 2023, from

https://peterhigginson.co.uk/LMC/.

PPIG 2024

www.ppig.org 75

Imai, Y., Hara, S., Doi, S., Kagawa, K., Ando, K., & Hattori, T. (2018). Application and evaluation of

visual CPU simulator to support information security education. IEEJ Transactions on

Electronics, Information and Systems. 138, 9, 1116-1122.

Imai, Y., Imai, M., & Moritoh, Y. (2013). Evaluation of visual computer simulator for computer

architecture education. International Association for Development of the Information Society.

Kemmis, S., & McTaggart, R. (2000). Participatory action research. In Handbook of Qualitative

Research, edited by Norman K. Denzin & Yvonna S. Lincoln, 2nd ed., 567-605.

Miura, Y., Keiichi, K., & Masaki, N. (2003). Development of an educational computer system simulator

equipped with a compilation browser. In Proceedings of the International Conference of

Computers in Education, 140-143.

Mustafa, B. (2010). Evaluating a system simulator for computer architecture teaching and learning

support. Innovation in Teaching and Learning in Information and Computer Sciences. 9, 1, 100-

104.

Nikolic, B., Radivojevic, Z., Djordjevic, J., & Milutinovic, V. (2009). A survey and evaluation of

simulators suitable for teaching courses in computer architecture and organization. IEEE

Transactions on Education. 52, 4, 449-458.

Novick, M. R. (1996). The axioms and principal results of classical test theory. Journal of Mathematical

Psychology. 3, 1, 1-18.

Wiley, D., & Hilton, J. (2018). Defining OER-enabled pedagogy. International Review of Research in

Open and Distance Learning. 19, 4.

Zhang, Y., & Adams III, G. B. (1997). An interactive, visual simulator for the DLX pipeline. IEEE

Computer Society Technical Committee on Computer Architecture Newsletter. 9-12.

PPIG 2024

www.ppig.org 76

Exploring Teachers’ Perspectives on Navigating Recursion Pedagogies

Jude Nzemeke

Department of Computer

Science

City, University of London

jude.nzemeke@city.ac.uk

Marjahan Begum

Department of Computer

Science

City, University of London

Marjahan.begum@city.ac.uk

Jo Wood

Department of Computer

Science

City, University of London

j.d.wood@city.ac.uk

Abstract
Recursion is a fundamental and powerful concept in algorithm design and programming. While

invaluable for solving complex problems such as tree traversal and permutation generation, recursion

presents challenges for students who often struggle with comprehension, tracing recursive calls, and

devising efficient solutions. This study investigates teachers’ pedagogical and instructional strategies

for teaching recursion, as well as effective assessment techniques. It explores the order in which

programming concepts, such as iteration, selection, sequencing, recursion, and object-oriented

programming (OOP) are taught in relation to how well students understand the concepts. It highlights

the significance of the instructional sequence of these concepts, and reveals that, contrary to the

advocated early teaching approach by some researchers – for example, teaching recursion first before

iteration – recursion is mainly introduced last to students and is perceived by most of the surveyed

teachers as the most challenging concept for students to learn. Teachers’ perceptions of the difficulty in

teaching these concepts were also explored. Programming Assignments and Coding Challenges are

found to be the most popular and effective assessment methods for recursion. The study advocates for

an integrated teaching approach that combines tangible objects (e.g., boxes and envelopes) and visual

aids (diagrams and animations) to enhance student engagement and understanding during recursion

instruction. This multi-sensory approach caters to diverse learning styles and preferences among

students, offering a strategy for addressing the challenges associated with teaching recursion.

1. Introduction
The importance of studying recursion spans various domains, particularly in computer science and

mathematics. Recursion serves as a powerful technique for addressing problems characterized by

repetitive and self-similar structures, forming the basis for the development of intricate algorithms in

computer science. By embracing recursive principles, these algorithms offer efficient solutions to

challenges that might otherwise be daunting to tackle. Recursion’s influence is particularly pronounced

in the domain of problem decomposition. While the benefits of recursion are well acknowledged, this

study investigates its teaching aspects from the viewpoint of teachers. Exploring how teachers navigate

teaching recursion and implement effective assessment methods is crucial for enhancing teaching

strategies, addressing challenges, and optimizing instructional sequences.

2. Highlighting Research Questions
1. Identifying the sequence in which programming concepts (iteration, selection, sequencing,

recursion, and OOP) are taught, and observing possible relationships with how well students

understand these concepts.

2. What are the current instructional approaches and assessment methods that teachers find successful

in delivering recursion?

3. How does the frequency and consistency of incorporating movement-based activities, tangible

elements, and visual aids in teaching recursion affect the perceived effectiveness of these teaching

approaches?

3. Theoretical Foundations of Key Issues
Many students have difficulty understanding recursion and they often use incorrect mental models when

evaluating recursive functions (Segal, 1995; Haberman and Averbuch, 2002; Sanders et al. 2006).

Novice programmers also face challenges in learning recursion as they have few real-world analogies

to formulate a mental model, unlike iteration (Benander et al., 1996). Most learners do not naturally

PPIG 2024

www.ppig.org 77

think recursively (Anderson et al., 1988) and learning recursion poses difficulties due to its

unconventional thinking process, especially for students lacking exposure to backward reasoning which

involves working from a goal state back to an initial state. Students’ previous problem-solving

experiences mainly relied on forward reasoning, necessitating a paradigm shift in thinking when

encountering recursion (Ginat, 2005).

3.1. Base Case
Learners often struggle with recursive functions, especially understanding the significance of the base

case (McCauley et al., 2015). Misconceptions also arise in treating mathematical variables as

programming variables, leading to errors, emphasized by McCauley et al. (2015) and compounded by

context dependency and processing strategies (Segal, 1995). Hamouda et al. (2017) studied student

misconceptions about the base case in recursion, drawing on insights from Sanders and Scholtz (2012).

They linked difficulties in flow comprehension to base case misconceptions (Scholtz & Sanders, 2010).

Close and Dicheva (1997) associated programming language choice with base case misconceptions,

aligning with LOGO studies and Kurland and Pea’s (1985) findings on language confusion. Segal

(1995) dealt with categorization of “base-case as a stopping condition”. Haberman and Averbuch (2002)

identified challenges in identifying base cases, crucial for recursive algorithm functionality, as

emphasized by them. Inadequate base cases may lead to non-terminating processes and computational

inefficiencies, especially with substantial input data.

3.2. Recursion vs Iteration
In a study comparing comprehension of recursion and iteration, Benander et al. (1996) found a

statistically significant advantage for recursion. Benander, et al. (2000) found that in small code

segments involving linked lists, programmers might find locating bugs in recursive code, particularly

in copying tasks, to be easier. Mirolo (2012) contradicted the notion that novice students find iteration

easier than recursion, attributing difficulty to task characteristics rather than programming paradigm.

Endres et al. (2021) observed superior performance in iterative-framed problems involving non-

branching numerical computation. McCracken (1987) cautioned against deeming recursive

programming “hopelessly difficult”, emphasizing the importance of task matching. Sinha and Vessey

(1992) linked construct choice to cognitive fit, advocating task and problem representation

considerations.

The debate over whether to teach recursion or iteration first in computer science education involves

conflicting perspectives on foundational concepts and ease of understanding. Guzdial in a conversation

at the ITISCE 2023 conference and in Guzdial (2018) while referring to studies by Kessler and

Anderson (1986) and Wiedenbeck (1989), suggested teaching iteration first due to its easier grasp and

broader practical application. Turbak et al. (1999) found introducing recursion before iteration more

effective, contrary to traditional methods, challenging the ongoing discourse on optimal sequencing in

computer science education. Maiorana et al. (2021) concluded that students can grasp both recursion

and iteration simultaneously, supporting the early introduction of recursion to enhance algorithm

understanding in the curriculum.

3.3. Pedagogical Approach
To enhance students’ understanding of recursion across computer science domains, Velázquez-Iturbide

(2000) proposes a progressive teaching method introducing recursion through formal grammars,

functional programming, and imperative programming. Syslo and Kwiatkowska (2014) recommend

presenting recursion as a “real-life topic” to make it more accessible and relatable, especially for

beginners. Explaining recursion to novice programmers can be challenging, and approaches like

inductive definitions, Runtime Stack Simulation, Process Tracing, Mathematical induction, Russian

Dolls, and the recursion tree (Dann et al., 2001; Haynes, 1995) help address this complexity. Wu et al.

(1998) emphasize the importance of conceptual models for teaching recursion to novice programmers,

cautioning about adapting or designing concrete models without conveying internal mechanism details.

Gunion et al. (2009) challenge concerns about ‘middle school’ students learning recursion,

demonstrating that hands-on activities effectively increase engagement and facilitate learning.

Enhancing the learning experience for students can be significantly facilitated by employing tangible

materials instead of abstract concepts (Akbaşlı and Yeşilce, 2018). The use of animations, such as in

PPIG 2024

www.ppig.org 78

tools like Alice, during recursion introduction has shown promise in enhancing student comprehension,

although further research is needed to establish its long-term impact (Dann et al., 2001).

3.4. Learning Styles or Not
Understanding individual learning styles, especially in programming concepts like recursion (Wu et al.,

1998), is vital for effective teaching. Dunn and Dunn advocate tailoring teaching methods to enhance

students’ attainment, behaviour, and attitudes based on their research (Dunn, 1984; Dunn et al., 2009).

However, teaching in a style different from students may increase cognitive load, hindering learning

(Sweller, 1988). Recognizing diverse learning styles, such as visual learning, can reduce cognitive load,

improving information assimilation and retention (Jawed et al., 2019). Aligning teaching strategies with

varied learning styles is crucial in programming education (Bargar and Hoover, 1984).

Kavale and Forness (1990) defended their meta-analysis against Dunn’s (1989) critique, asserting the

ineffectiveness of modality testing and teaching. Pashler et al. (2008) questioned the experimental basis

and commercial motives of learning styles, echoed by Reynolds (1997) and Willingham (2005), who

cited a lack of scientific evidence. Tarver and Dawson (1978), and Dembo and Howard (2007) opposed

modality preference theory, citing empirical limitations and potential harm. Arbuthnott and Krätzig

(2015) highlighted the inefficacy of tailoring teaching to sensory learning styles. Teachers are advised

to focus on content-driven modality choices and universal methods (Kavale and Forness, 1990; Tarver

and Dawson, 1978; Willingham, 2005). Various methods to measure modality preferences exist, but

caution is needed due to limitations (Willingham, 2005). Instead of catering to individual differences,

teachers should employ diverse modalities for variety, attention, and memory strategies, benefiting all

students (Tarver and Dawson, 1978; Kavale and Forness, 1987; Willingham, 2005).

In line with Coffield et al. (2004) and other researchers who argue that learning styles are not fixed

traits, but rather flexible preferences influenced by context and tasks, our own teaching experiences

support this perspective. Through working with diverse groups of learners, we have observed how

individuals’ preferences for learning can vary depending on the subject matter and the learning

environment. Embracing this viewpoint, we too believe that teachers should prioritize flexibility in their

teaching methods, employing a range of strategies that accommodate the dynamic nature of learning

preferences.

With this principle in mind, our focus will be on exploring the teaching methods utilized when teaching

recursion, particularly looking at teachers’ perceptions of the impact of these methods, including the

use of visualization, auditory, reading/writing, and kinaesthetic techniques in teaching. This approach

offers a pragmatic means of addressing the research questions and shifts the focus toward identifying

effective practices that can benefit a wider array of students in the teaching and learning of recursion,

rather than attempting to tailor instruction to each individual student's unique learning style.

4. Methodology
Creswell (2009) highlighted the importance of philosophical worldview – “a basic set of beliefs that

guide action” in research design framework. These beliefs can be used by researchers to decide if they

should make use of qualitative, quantitative, or mixed methods approach. The design framework can

be illustrated further as seen in figure 1 below:

Figure 1: Design Framework [Creswell, 2009].

PPIG 2024

www.ppig.org 79

We apply a mixed-methods approach to investigating current teaching practice. Born from the paradigm

wars, it combines qualitative and quantitative approaches, offering a comprehensive view of complex

topics (Johnson and Onwuegbuzie, 2004; Terrell, 2012; Poth and Munce, 2020). Utilizing both methods

enhances understanding and explores multifaceted problems from various perspectives (Poth & Munce,

2020). Rooted in pragmatism, mixed methods emphasizes practical outcomes and provides diverse

design choices for researchers (Shorten & Smith, 2017; Terrell, 2012). This approach, applicable across

disciplines, proves valuable in answering intricate research questions (Terrell, 2012). The point of

integration is one of the primary design dimensions for mixed method research. It is defined as “any

point in a study where two or more research components are mixed or connected in some way”

(Schoonenboom and Johnson, 2017). Getting the process of data integration from qualitative and

quantitative components of the study right is key to have more insight of the data collected in mixed

methods, and this can take place during the analysis phase of the study.

Quantitative data were gathered through a comprehensive online survey featuring 24 questions, with 21

focused on quantitative information. The survey covered non-sensitive demographic data, programming

language used by teachers, challenges in teaching programming concepts and pedagogical approaches.

It inquired into instructional methods, assessment approaches, and effective techniques in teaching

recursion, providing a thorough overview of quantitative aspects in programming education.

Complementing the quantitative findings, qualitative insights were obtained through open-ended

questions, enabling in-depth participant responses unconstrained by predetermined choices (Hyman and

Sierra, 2016). To optimize completion rates, the survey incorporated a three-box limit for open-text

responses, guided by Qualtrics online experts, acknowledging that exceeding this limit could reduce

completion rates due to increased cognitive effort required for responses.

5. Ethical Considerations
In adhering to ethical standards outlined by the British Educational Research Association (BERA, 2018)

and City, University of London, this educational research prioritized informed consent. Ethical approval

from City, University of London’s ethics committee was secured for this research.

6. Sampling and Recruitment
Examination boards in England, tasked with developing detailed subject specifications that outline the

curriculum framework – including what students are expected to learn, understand, and achieve by the

end of the course – focus on recursion exclusively in post-secondary education (for students aged 16 to

18). Therefore, it was expected that primarily, teachers who teach recursion at this level and above,

would take part in the study. However, due to the relatively low enrolment of computer science students

in England, in post-secondary school (OFQUAL, 2023), the pool of teachers specializing in teaching

recursion is anticipated to be limited. From our experience and from interaction with teachers, we know

that this challenge arises because some teachers may opt not to cover recursion at primary and secondary

school (attended by students less than 16 years old), potentially due to time constraints in delivering the

curriculum. To address the challenge of recruiting teachers for the study, who teach recursion, the

Digital SchoolHouse Ingenuity Day 1 conference event was strategically targeted, a gathering primarily

attended mainly by computer science teachers.

Initially, 36 computer science teachers began the survey, comprising 61% male, 30% female, with 5%

opting not to disclose their gender, and 2% identifying as non-binary. Regarding ethnicity, 64%

identified as White British, 17% as other white backgrounds, and 6% each for Black and Asian

backgrounds, with an additional 5% identifying as other ethnic backgrounds, while 2% chose not to

disclose. One of the questions in the survey was designed to screen participants for eligibility – targeting

only teachers who have taught or currently teach recursion. The question simply asked, “Have you

taught or are you currently teaching recursion as part of your curriculum?” The survey ended for

teachers who responded “No” to this question, indicating that they lacked the experience of teaching

this topic. The eligibility screening, verifying experience in teaching recursion, narrowed the final

sample to 14 teachers. Among them, seven teachers had 15 or more years of teaching experience, three

teachers had 11–15 years, and 6 had 6 –10 years, with only one having less than one year teaching

experience. All teach recursion to post-secondary students (16 to 18-year-olds), with 3 also teaching at

PPIG 2024

www.ppig.org 80

Foundation and Undergraduate levels (18+ years old). These criteria ensured a focused and valid study

with contributions from mostly experienced teachers across institutions, effectively addressing research

objectives while acknowledging generalizability limitations.

7. Data Analysis and Discussion

7.1. RQ1: Identifying the sequence in which programming concepts (iteration, selection, sequencing,

recursion, and OOP) are taught, and observing possible relationships with how well students understand

these concepts.

7.1.1. Order of Teaching Concepts:
In investigating the teaching sequence of programming concepts, we explored the order in which these

concepts are typically introduced. The instructional sequence can significantly influence students’

comprehension and retention, providing insights into teachers’ approaches. Of particular interest is the

positioning of recursion relative to other concepts, indicating its foundational or advanced nature.

Teachers were asked to rank the order in which they taught the different concepts. Analyzing mean

rankings, with lower numbers indicating earlier introduction, reveals a consistent progression: sequence

(1.64), selection (1.93), iteration (2.50), OOP (4.43), and recursion (4.50). This order aligns with a

pedagogical strategy that introduces simpler concepts as building blocks before tackling more complex

and abstract ideas. It appears to be a strategy that supports argument made by Kessler and Anderson

(1986) and the subsequent study conducted by Susan Wiedenbeck (1989) that teaching iteration before

recursion is more beneficial, as iteration is easier to grasp and has wider practical application.

7.1.2. How Challenging are these Concepts to Students:
Teachers’ insights into students’ struggles with specific concepts further inform the analysis. Teachers

were asked to rank the order in which students understood the different concepts from easy to

understand, to very hard to understand. Recursion topped the list as the most challenging concept for

students (with a mean value of 3.93), followed closely by OOP (with a mean value of 3.79). Sequencing

was perceived as the least challenging (with a mean value of 2.29). Examining standard deviation and

variance highlighted the variability in ratings, with recursion exhibiting the highest values (0.74 and

0.55) and iteration the lowest (0.81 and 0.66), indicating the range of opinions among respondents.

7.1.3. How Difficult are these concepts to teach:
Investigating the difficulty levels teachers encounter when teaching the programming concepts, our

findings highlight a significant variation in perceived challenges. For OOP, teachers reported a mean

difficulty of 3.71, with a median difficulty of 4, indicating it is one of the most challenging topics to

teach. Recursion followed closely with a mean difficulty of 3.64 and a similar median (of 4). Both

concepts showed a wide range of challenge levels, from somewhat challenging to very challenging.

Sequencing, iteration, and selection were considered less challenging, with mean difficulties of 2.07,

2.21, and 2.00, respectively, and medians at 2. These topics were generally seen as easier to teach, with

their difficulty ranging from non-challenging to moderately challenging.

7.1.4. Findings for RQ1
Due to the impact on the statistical power of a smaller sample size, it was deemed that data collected

might not have enough power to detect a significant correlation using nonparametric measures for

example Spearman Rank Correlation. Bujang and Baharum (2016) proposed a minimum of 29 samples

(or subjects) to detect a reasonably high correlation (specifically, a correlation coefficient of 0.5) with

a good balance of error tolerance and study power. They noted other studies “(Bujang et al., 2009;

Bujang et al., 2015)” that suggest samples larger than 300 can yield statistical results highly

representative of the true population values. This is based on the idea that larger samples tend to provide

more precise estimates of population parameters, thereby improving the generalizability of the findings.

This made it apparent that the best way to analyse the data will be to look at it from a practical or

observational perspective.

The violin plots below (Figure 2: Teacher Order and Students Understanding Order) are used to

illustrate both the spread and the median of the orders in which the programming concepts are taught

and students understanding, with one side of the violin for teaching orders and the other for indicating

order in which student understanding concepts. The following observations were made:

PPIG 2024

www.ppig.org 81

The concept of sequence typically appears early in learning, supported by students finding it easier to

understand, which aligns with it likely being an introductory concept. Selection is also introduced early

on, yet students find its difficulty level consistent, irrespective of its teaching order. Iteration tends to

be taught mid-way through the curriculum and is well understood by students, indicating its placement

is appropriate for their learning curve. OOP is often reserved for the latter part of educational programs,

which is reflected in its broader and more challenging understanding distribution, highlighting its

complexity. Recursion stands out with a distinct pattern where both teaching and understanding orders

are skewed to the higher end, indicating it is both taught late and considered difficult to understand.

Overall, the data reflects a structure in teaching programming that rises from simpler to more complex

concepts, aligning well with student comprehension levels.

Figure 2: Teacher Order and Students Understanding Order

Note for Figure 2. The shape and width of the violins provide an immediate visual indication of the

distribution’s spread and density. A wider section of a violin plot indicates a higher frequency of data

points (i.e., more teachers reported similar orders), whereas a narrower section indicates fewer data

points. The horizontal lines within each violin represent the median order. This is crucial for exploring

the most common teaching order, and the understanding order for each concept. The degree of

symmetry between the teaching and understanding sides of each violin gives an immediate visual cue

about alignment. High symmetry suggests that the understanding order closely matches the teaching

order, whereas asymmetry suggests discrepancies.

7.2. RQ2 What are the current instructional approaches and assessment methods that
teachers find successful in delivering recursion?
Teachers’ approaches to teaching recursion offer insights into adapting methods for diverse learners.

The choice of instructional approach significantly influences students’ understanding and engagement

with recursion concepts in programming education. The approaches used in the survey are defined as

follows:

Inquiry-based learning is an approach where students learn through questioning and investigation.

When teaching recursion, this approach might involve encouraging students to explore recursion

concepts by asking questions, conducting research, and experimenting. For instance, students might

investigate different recursive algorithms and their applications.

Direct instruction involves presenting information to students in a structured and systematic way. When

teaching recursion, this approach may include clear explanations of recursion concepts, step-by-step

examples, and guided practice. For instance, the teacher might systematically introduce recursive

functions and then provide exercises to reinforce the learning.

PPIG 2024

www.ppig.org 82

Project-based learning is an approach where students learn by working on projects. When teaching

recursion, this approach may involve assigning projects that require students to apply recursive concepts

practically. For example, students could be asked to create a recursive artwork generator or a recursive

maze-solving program.

Problem-based learning is an approach where students learn by solving problems. In the context of

recursion, this approach might involve presenting students with real-world problems that can be solved

using recursive techniques.

Collaborative learning is an instructional approach where students work together. When teaching

recursion, this approach might involve students collaborating on recursive coding projects or solving

recursion-related problems as a team. For example, students may work together to create a recursive

function in a programming language.

Differentiated instruction [or Adapting Teaching] acknowledges the diverse needs of students. If a

teacher selects this approach when teaching recursion, it means they are adapting their instruction to

cater to individual students' learning styles and abilities. For instance, a teacher might provide additional

resources or assignments to support struggling students while challenging advanced learners with more

complex recursion problems.

Blended learning combines online and in-person instruction. In the context of teaching recursion, this

approach could involve using online resources and platforms to complement in-person lessons. For

example, students might watch online tutorials on recursion algorithms and then apply what they've

learned during in-person coding sessions.

Independent learning is an approach where students research topics on their own. In the context of

recursion, this approach may involve assigning self-directed projects or providing resources for students

to explore recursion independently. For example, students could be given a list of recursion-related

books and websites to explore as part of their learning process.

Common approaches include problem-based and inquiry-based learning, with problem-based and

project-based learning considered the most effective. Collaborative learning, although less prevalent,

still proves effective. However, further exploration is needed regarding differentiated instruction and

blended learning. See Figure 3 for graph on instructional approaches and their effectiveness.

Figure 3: Instructional Approaches for Teaching Recursion

Evaluating assessment methods used in teaching recursion is crucial for assessing their effectiveness in

measuring student comprehension. The options include Written Exams/Quizzes, Programming

Assignments/Coding Challenges, Verbal Question and Answer sessions in lessons, Pair Review/Pair

Programming, and Pupil Demonstration/Presentation. The diversity of assessment methods recognizes

varied student learning styles and abilities, influencing how teachers adapt teaching strategies. This

PPIG 2024

www.ppig.org 83

information helps identify assessment methods that promote a deeper understanding of recursion

concepts.

Assessment methods vary, with programming assignments being the most popular and effective,

followed by verbal Q&A and written exams. Pair review/pair programming and pupil

demonstration/presentation are less common. Our results indicate that most teachers find programming

assignments the most effective assessment method for recursion, followed by written exams/quizzes,

verbal Q&A, and pupil demonstration/presentation. Pair review/pair programming is perceived as the

least effective method. No respondents indicated the use of alternative assessment methods. See Figure

4 and Figure 5 for graph on assessing students.

Figure 4: Assessing students’ understanding of

Recursion.

Figure 5: Effectiveness of Assessment

Methods

What are teachers’ perceptions of the challenges faced by pupils when learning recursion?

Further inquiry was made to investigate the challenges students commonly encounter while learning

recursion, with the goal of informing targeted teaching strategies. This inquiry is crucial for

understanding specific pain points in student learning and facilitating the creation of effective teaching

materials. Different challenges may emerge at varying educational levels or with specific programming

languages, emphasizing the need for customized instruction. Responses from teachers highlighted

prevalent challenges, including students struggling to comprehend the purpose of recursion and lacking

foundational knowledge of iteration – which is sometimes mistaken for recursion and vice versa. To

address this, teachers should ensure students have a solid grasp of fundamental concepts before

introducing recursion, indicating the importance of a well-structured curriculum.

Another noteworthy challenge is students relying solely on data tracing to understand recursion, calling

for encouragement to look into the underlying principles for a deeper conceptual understanding.

Confusion between recursion and other programming concepts requires clear differentiation and

practical examples to alleviate misunderstandings. Understanding the context and rationale behind

recursive code is identified as a challenge, suggesting the importance of real-world examples and

practical applications to enhance comprehension.

Teachers also expressed a lack of in-depth resources on how to teach recursion as a challenge,

emphasizing the need for comprehensive materials catering to diverse learning styles and experience

levels. This highlights the importance of resource development to support teachers in delivering

effective instruction on recursion.

The survey sought advice from teachers on teaching recursion effectively to those new to the subject.

Recommendations included thorough preparation, confidence, and simplicity in tasks to avoid overload.

Peer support, understanding individual student needs, and fostering a student-centric approach were

highlighted.

Practical aspects, such as extensive practice, providing examples, and using teaching tools like real-

world examples and visual aids, were emphasized for diverse learning styles. The belief in spending

more time on the topic highlighted the importance of patience and a comprehensive exploration of

recursion for better understanding. Ensuring a strong foundation by understanding basics before

tackling complex topics was advised. Teachers suggested addressing potential difficulties students may

face with recursion by adapting teaching methods and maintaining focus and conciseness in delivery.

PPIG 2024

www.ppig.org 84

7.3. How does the frequency and consistency of incorporating movement-based activities,
tangible elements, and visual aids in teaching recursion affect the perceived effectiveness of
these teaching approaches?
The research explored teaching approaches for recursion, focusing on methods and the effectiveness of

the use of hands-on activities, tangible materials, and visual aids.

Six out of 14 teachers occasionally use hands-on or movement-based activities for recursion, with 3

using them frequently. The perceived effectiveness varies, with 7 teachers rating them moderately

effective, 4 very effective, and 3 slightly effective. Interestingly, no extreme opinions were expressed,

indicating varied perceptions among teachers. While not universally adopted, hands-on activities are

generally perceived as beneficial by those who incorporate them; and can enhance student engagement

and understanding of abstract concepts like recursion.

Most teachers (9 out of 14) seldom or occasionally incorporate tangible elements in teaching recursion.

The effectiveness varies, with 5 finding it very or extremely effective and 4 considering it slightly

important. Further investigation is suggested to understand why some find this approach effective

despite infrequent use. Understanding the specific tangible elements and materials used could offer

valuable insights into effective teaching strategies for recursion.

The study emphasizes the use of visual aids, such as diagrams and animations, in teaching recursion. A

significant majority (10 out of 14) frequently or always use visual aids, finding them highly effective

in conveying recursion concepts. Only two teachers found them slightly effective. Visual aids have

gained widespread acceptance, indicating their effectiveness in teaching recursion.

Two teachers who mainly teach post-secondary students in different schools, strongly advocated for the

use of PRIMM (Predict, Run, Investigate, Modify and Make) and differentiation approaches when

teaching recursion and other programming concepts in general. In a follow-up conversation with one of

the teachers after the survey, they claimed to have observed marked improvements in students’

outcomes, particularly in learning about recursive algorithms, since implementing PRIMM approach at

their school “for over three years now”. In their study, Sentance et al. (2019) suggested that PRIMM

offers an efficient method for teaching programming, enhancing comprehension, and boosting

confidence in students. They emphasized that teachers found PRIMM's structured lessons beneficial,

offering clarity in both lesson planning and delivery and it allowed teachers to tailor tasks to individual

student needs. Additionally, they recommended PRIMM's suitability for teacher training and various

stages of programming education.

8. Further Discussion
The study emphasizes recursion as the most challenging programming concept for students, from the

teacher’s perspective, shedding light on practical difficulties in the classroom. This recognition prompts

teachers to allocate additional time and resources, enhancing instructional strategy effectiveness.

Contrary to literature advocating for early or pre-iteration teaching of recursion, as highlighted in the

Theoretical Foundation section above, our study reveals that among the programming concepts

examined, recursion is, in fact, introduced to students last. The findings regarding assessment methods

and pedagogical approaches offer practical insights for teachers and researchers alike. Programming

assignments and coding challenges emerge as the preferred and most effective assessment tools for

recursion, providing a clear direction for teachers when designing students’ evaluations, in their lesson

planning. Additionally, the endorsement of problem-based learning and inquiry-based learning,

alongside the nuanced impact of collaborative learning, offers valuable guidance for teachers seeking

effective instructional strategies in the teaching and learning of recursion. While employing tangible

objects for example boxes and envelopes to symbolize values returned by functions in recursive calls

has proven highly effective in our teaching experience, our research emphasizes that, from the teachers'

perspective, visual aids (diagrams and animations), are widely embraced and very effective. We contend

that the use of tangible objects, despite being a hands-on approach, also offers a form of visualization

for learners. This highlights their crucial role in bolstering student engagement and understanding

during recursion instruction. The study advocates for an integrated teaching approach that combines for

example, tangible objects and visual aids, fostering a multi-sensory learning experience that caters to

diverse learning styles and preferences among students. This integrated approach holds the potential to

PPIG 2024

www.ppig.org 85

significantly enhance the effectiveness of recursion instruction and contribute to improved learning

outcomes.

9. Conclusion
In conclusion, the relationship between the order of teaching programming concepts and students’

understanding suggests a general alignment with educational theory: simpler concepts are introduced

first, leading to a smoother learning curve for students. However, certain concepts like OOP and

recursion present challenges that are recognized by both the teaching order and students' understanding.

This could point to areas where additional teaching aids, practice, or alternative instructional strategies

might be beneficial. The study brings to light the complexities inherent in teaching and learning

recursion. Ongoing monitoring of students' understanding relative to the teaching order is crucial.

Adjustments to this teaching sequence, if necessary, should be data-driven and responsive to the

observed learning outcomes. Furthermore, problem-based learning emerged as the most effective

method for teaching recursion, with programming assignments being the most popular and effective

assessment approach. Practical insights into effective assessment methods and teaching approaches

empower teachers to refine their techniques. We advocate for an integrated teaching approach that

incorporates tangible objects and visual aids, offering a strategy that may enhance student engagement

and comprehension. Together, these findings provide teachers with a framework to address the

challenges associated with teaching recursion, fostering an environment conducive to improved

learning experiences and outcomes.

10. Limitations
While we are confident in the credibility and meaningfulness of the data collected from the teachers

surveyed, it is essential to acknowledge several limitations inherent in our study. Firstly, the sample

size presents a challenge. While a larger sample size would enhance the statistical power and

generalizability of the study, the inclusion criteria ensured that all participants had relevant experience,

which is crucial for the study’s focus on teaching recursion. Additionally, the distribution of teaching

experience among the final sample, with a majority having 15 or more years of experience, adds

credibility to the insights gathered. Furthermore, while our study provides valuable insights into current

teaching approaches used in the delivery of recursion, it is not without its constraints. We cannot

definitively establish causality between teaching sequence of concepts and students’ learning outcomes,

as correlation does not imply causation. As such, our study does not offer comprehensive explanations

for the observed variables. Despite these limitations, we believe that our findings contribute valuable

insights into the field of Computer Science education.

11. Future Work
Drawing from the findings of this research, future investigations could explore the impact of

instructional sequence on the perceived and actual difficulty of programming concepts. Research could

scrutinize how altering the sequence of these concepts influences teacher perceptions, student

understanding, and overall learning outcomes especially regarding recursion. Future research could also

aim to address these limitations by employing larger sample sizes, utilizing experimental designs to

establish causality, and explore the underlying mechanisms driving teaching practices. Furthermore,

specific studies should be conducted, focusing on the role and effectiveness of visual aids, alongside

the integration of tangible elements and physical materials in teaching recursion. These focused

inquiries promise to provide practical insights for teachers, exploring the potential benefits of these

approaches in enhancing both student comprehension and engagement.

12. References
1. Akbaşlı, Sait & Yeşilce, İlknur. (2018). Use of Tangible Materials and Computer in Mathematics

Teaching: Opinions of School Principals. Eurasia Journal of Mathematics, Science and

Technology Education. 14. 2523-2532. 10.29333/ejmste/90087.

2. Anderson, J. R., Pirolli, P., & Farrel, R. (1988). Learning to program recursive functions. In M. T.

Chi, R. Glaser, & M. J. Farr (Eds.), The nature of expertise (pp. 153–183). Hillsdale: Erlbaum.

3. Arbuthnott, K. D., & Krätzig, G. P. (2015). Effective Teaching: Sensory Learning Styles versus

General Memory Processes. Comprehensive Psychology, 4. https://doi.org/10.2466/06.IT.4.2.

PPIG 2024

www.ppig.org 86

4. Bargar, R. R., & Hoover, R. L. (1984). Psychological Type and the Matching of Cognitive Styles.

Theory Into Practice, 23(1), 56–63. http://www.jstor.org/stable/1476739.

5. Benander, A. C., Benander, B. A., & Pu, H. (1996). Recursion vs. iteration: An empirical study of

comprehension. Journal of Systems and Software, 32, 73–82.

6. Benander, A.C., Benander, B.A., & Sang, J. (2000). An empirical analysis of debugging

performance - differences between iterative and recursive constructs. J. Syst. Softw., 54, 17-28.

7. BERA. (2018). Ethical guidelines for educational research (4th ed.).

https://www.bera.ac.uk/publication/ethical-guidelines-for-educational-research-2018-online.

8. Bujang, Mohamad Adam & Baharum, Nurakmal. (2016). Sample Size Guideline for Correlation

Analysis. World Journal of Social Science Research. 3. 37. 10.22158/wjssr.v3n1p37.

9. Claudio Mirolo. 2012. Is iteration really easier to learn than recursion for CS1 students? In

Proceedings of the ninth annual international conference on International computing education

research (ICER ‘12). Association for Computing Machinery, New York, NY, USA, 99–104.

https://doi.org/10.1145/2361276.2361296j

10. Claudius M. Kessler & John R. Anderson (1986) Learning Flow of Control: Recursive and Iterative

Procedures, Human–Computer Interaction, 2:2, 135-166, DOI: 10.1207/s15327051hci0202_2

11. Coffield, F. & Moseley, D. & Hall, Elaine & Ecclestone, K. (2004). Learning Styles and Pedagogy

In Post-16 Learning: A Systematic And Critical Review. Book Learning styles and pedagogy in

post-16 learning: a systematic and critical review.

12. Creswell, J. W. (2009). Research Design: Qualitative, Quantitative, and Mixed Methods

Approaches (3rd ed.). Sage Publications, Inc.

13. Dembo, M. H., & Howard, K. (2007). Advice about the use of learning styles: A major myth in

education. Journal of College Reading and Learning, 37(2), 101-109.

https://doi.org/10.1080/10790195.2007.10850174.

14. Dicheva, Darina & Close, Sean. (1997). Misconceptions in recursion: diagnostic teaching.

15. Dunn, R. (1984). Learning Style: State of the Science. Theory Into Practice, 23(1), 10–19.

http://www.jstor.org/stable/1476733

16. Dunn, R. (1990). Bias over Substance: A Critical Analysis of Kavale and Forness’ Report on

Modality-Based Instruction. Exceptional Children, 56(4), 352-356.

https://doi.org/10.1177/001440299005600409

17. Dunn, R., Honigsfeld, A., Doolan, L. S., Bostrom, L., Russo, K., Schiering, M. S., Suh, B., &

Tenedero, H. (2009). Impact of Learning-Style Instructional Strategies on Students’ Achievement

and Attitudes: Perceptions of Educators in Diverse Institutions. The Clearing House, 82(3), 135–

140. http://www.jstor.org/stable/30181095

18. Endres, M., Weimer, W., & Kamil, A. (2021). An Analysis of Iterative and Recursive Problem

Performance. Proceedings of the 52nd ACM Technical Symposium on Computer Science

Education.

19. F. Turbak, C. Royden, J. Stephan, and J. Herbst, Teaching Recursion Before Loops In CS1, Journal

of Computing in Small Colleges, Volume 14, Number 4, pp 86-101, May 1999.

20. Ginat, D. (2005). The suitable way is backwards, but they work forward. Journal of Computers in

Mathematics and Science Teaching, 24, 73–88. Norfolk, VA: AACE.

21. Gunion, Katherine & Milford, Todd & Stege, Ulrike. (2009). The Paradigm Recursion: Is It More

Accessible When Introduced in Middle School?. The Journal of Problem Solving. 2.

10.7771/1932-6246.1063.

22. Guzdial, M. (2018) Exploring the question of teaching recursion or iterative control structures first,

Computing Ed Research - Guzdial’s Take. Available at:

https://computinged.wordpress.com/2018/03/09/exploring-the-question-of-teaching-recursion-or-

iterative-control-structures-first/ (Accessed: 22 October 2023).

23. Haberman, B., & Averbuch, H. (2002, June 24–28). The case of base cases: Why are they so

difficult to recognize? Student difficulties with recursion. In Proceedings of the 7th conference on

innovation and technology in computer science education. Aarhus.

24. Hamouda, S., Edwards, S., Elmongui, H., Ernst, J., & Shaffer, C. (2017). A basic recursion concept

inventory. Computer Science Education, 27(2), 121–148.

25. Hyman, Michael & Sierra, Jeremy. (2016). Open- versus close-ended survey questions. NMSU

Business Outlook. 14.

PPIG 2024

www.ppig.org 87

26. Ian Sanders, Vashti Galpin, and Tina Götschi. 2006. Mental models of recursion revisited. SIGCSE

Bull. 38, 3 (September 2006), 138–142. https://doi.org/10.1145/1140123.1140162

27. J Terrell, Steven. (2012). Mixed-Methods Research Methodologies. Qualitative Report. 17. 254-

265. 10.46743/2160-3715/2012.1819.

28. Jawed S, Amin HU, Malik AS and Faye I. (2019). Classification of Visual and Non-visual Learners

Using Electroencephalographic Alpha and Gamma Activities. Front. Behav. Neurosci. 13:86.

29. Johnson, R. B. & Onwuegbuzie, A. J. (2004). Mixed-methods research: a research paradigm whose

time has come. Educational Researcher, 33(7), 14-26.

30. Kavale, K. A. and Forness, S. R. (1987). Substance over style: Assessing the efficacy of modality

testing and teaching. Exceptional Children, 54(3), 228–239.

31. Kavale, K. A., & Forness, S. R. (1990). Substance over Style: A Rejoinder to Dunn’s

Animadversions. Exceptional Children, 56(4), 357-361.

https://doi.org/10.1177/001440299005600410

32. Kurland, D. M., & Pea, R. D. (1985). Children’s Mental Models of Recursive Logo Programs.

Journal of Educational Computing Research, 1(2), 235-243. https://doi.org/10.2190/JV9Y-5PD0-

MX22-9J4Y.

33. Maiorana, F., Csizmadia, A., Richards, G., Riedesel, C. (2021). Recursion Versus Iteration: A

Comparative Approach for Algorithm Comprehension. In: Auer, M.E., Centea, D. (eds) Visions

and Concepts for Education 4.0. ICBL 2020. Advances in Intelligent Systems and Computing, vol

1314. Springer, Cham. https://doi.org/10.1007/978-3-030-67209-6_27

34. McCracken, D. D. (1987, January). Ruminations on computer science curricula, viewpoint column.

Communications of the ACM, 30, 3–5.

35. OFQUAL (2023). Official Statistics, Provisional Entries for GCSE, AS and A Level: Summer

2023 Exam Series. Gov.UK. Retrieved December 24, 2023, from

www.gov.uk/government/statistics/provisional-entries-for-gcse-as-and-a-level-summer-2023-

exam-series/provisional-entries-for-gcse-as-and-a-level-summer-2023-exam-series

36. Pashler, H., McDaniel, M., Rohrer, D. and Bjork, R., 2008. Learning styles: Concepts and

evidence. Psychological science in the public interest, 9(3), pp.105-119.

37. Poth, C., & Munce, S. E. P. (2020). Commentary—Preparing today’s researchers for a yet

unknown tomorrow: Promising practices for a synergistic and sustainable mentoring approach to

mixed methods research learning. International Journal of Multiple Research Approaches, 12(1),

56-64. doi:10.29034/ijmra.v12n1commentary

38. Renée McCauley, Scott Grissom, Sue Fitzgerald & Laurie Murphy (2015) Teaching and learning

recursive programming: a review of the research literature, Computer Science Education, 25:1, 37-

66, DOI: 10.1080/08993408.2015.1033205.

39. Reynolds, M. (1997). Learning Styles: A Critique. Management Learning, 28(2), 115-133.

https://doi.org/10.1177/1350507697282002.

40. S. M. Haynes. 1995. Explaining recursion to the unsophisticated. SIGCSE Bull. 27, 3 (Sept. 1995),

3–6. https://doi.org/10.1145/209849.209850.

41. Sanders, I., & Scholtz, T. (2012). First year students’ understanding of the flow of control in

recursive algorithms. African Journal of Research in Mathematics, Science and Technology

Education, 16(3), 348–362

42. Scholtz, T. L., & Sanders, I. (2010). Mental models of recursion: Investigating students

‘understanding of recursion. In Proceedings of the 15th Annual Conference on Innovation and

Technology in Computer Science Education (ITiCSE 2010)(pp. 103–107). Bilkent, Ankara,

Turkey.

43. Schoonenboom J, Johnson R. B. (2017). How to Construct a Mixed Methods Research Design.

Kolner Z Soz Sozpsychol. 2017;69(Suppl 2):107-131. doi: 10.1007/s11577-017-0454-1. Epub

2017 Jul 5. PMID: 28989188; PMCID: PMC5602001.

44. Segal, J. (1995). Empirical studies of functional programming learners evaluating recursive

functions. Instructional Science, 22, 385–411. https://doi.org/10.1007/BF00891962

45. Shorten A., & Smith J. (2017). Mixed methods research: Expanding the evidence base. Evid Based

Nurs, 20, 74–5. http://dx.doi.org/10.1136/eb-2017-102699

46. Sinha, A., and Vessey, I., (1992) Cognitive Fit: An Empirical Study of Recursion and Iteration,

IEEE Trans. Software Eng. 18, 368-379.

PPIG 2024

www.ppig.org 88

47. Sue Sentance, Jane Waite, and Maria Kallia. 2019. Teachers' Experiences of using PRIMM to

Teach Programming in School. In Proceedings of the 50th ACM Technical Symposium on

Computer Science Education (SIGCSE '19). Association for Computing Machinery, New York,

NY, USA, 476–482. https://doi.org/10.1145/3287324.3287477

48. Susan Wiedenbeck, Learning iteration and recursion from examples, International Journal of Man-

Machine Studies, Volume 30, Issue 1, 1989, Pages 1-22, ISSN 0020-7373,

https://doi.org/10.1016/S0020-7373(89)80018-5.

49. Sweller, J. (1988), Cognitive Load During Problem Solving: Effects on Learning. Cognitive

Science, 12: 257-285. https://doi.org/10.1207/s15516709cog1202_4.

50. Syslo, Maciej & Kwiatkowska, Anna. (2014). Introducing Students to Recursion: A Multi-facet

and Multi-tool Approach. 124-137. 10.1007/978-3-319-09958-3_12.

51. Tarver, S. G., & Dawson, M. M. (1978). Modality preference and the teaching of reading: A

review. Journal of Learning Disabilities, 11(1), 17-29.

https://doi.org/10.1177/002221947801100104

52. Velázquez-Iturbide, J. Ángel. (2000). Recursion in gradual steps (is recursion really that difficult?).

ACM SIGCSE Bulletin. 32. 310-314. 10.1145/331795.331876.

53. Wanda Dann, Stephen Cooper, and Randy Pausch. 2001. Using visualization to teach novices

recursion. SIGCSE Bull. 33, 3 (Sept. 2001), 109–112. https://doi.org/10.1145/507758.377507.

54. Willingham D. T. (2005) Do visual, auditory, and kinesthetic learners need visual, auditory, and

kinesthetic instruction? American Educator, 29, 31–35.

55. Wu, Cheng-Chih & Dale, Nell & Bethel, Lowell. (1998). Conceptual models and cognitive

learning styles in teaching recursion. ACM Sigcse Bulletin. 30. 292-296. 10.1145/273133.274315.

PPIG 2024

www.ppig.org 89

Understanding APIs and the software that provides them - Analysis of
programmers’ API mental models used in programming tasks

Ava Heinonen
Department of Computer Science

Aalto University
ava.heinonen@aalto.fi

Abstract
At one point in time, programming could be thought of as the act of translating program requirements
into source code written in one programming language. However, modern programming relies heavily
on building programs by integrating services, functionality, and data provided by external software into
a program using APIs. In part, programming consists of selecting suitable software that provides ready
solutions for programming problems and using their APIs to integrate those solutions into a coherent
program.

This change in programming necessarily changes programmers’ mental models — their understanding
of the programs they work on. In this paper, we discuss programmers’ mental models when using an API
in a programming task. We conducted interviews with twelve industry professionals using the critical
decision method. We analyzed the mental models — the understanding these practitioners utilized when
completing different software development tasks using an API. Through this analysis, we were able to
identify information about the tasks, the software providing an API, and the API that were represented
in the programmers’ mental models. These results contribute to the existing literature by opening a
discussion on how using APIs changes the nature of programs and programming and by providing
insight into the understanding necessary for completing programming tasks using APIs.

1. Introduction
Modern software development can be understood as a process of integration, combining software com-
ponents into an overall system. Software libraries and frameworks provide pre-implemented solutions
for many programming problems, which can be integrated into a new system by calling methods in their
APIs. Services hosted on the Web can also be utilized as part of a software system by making requests
to their API endpoints (Mäkitalo, Taivalsaari, Kiviluoto, Mikkonen, & Capilla, 2020).

This shift in software development has changed the nature of computer programs. In the past, a pro-
gram could be thought of as a specification written in a programming language that expresses a set
of calculations (Pair, 1990; Détienne & Détienne, 2002b). A program was a set of calculations and
objects, expressed in a programming language with rules on how to organize words into meaningful
expressions (Pair, 1990; Détienne & Détienne, 2002b). While a program is still a set of calculations and
objects, the way these are expressed is different. A program now comprises objects and calculations
expressed as code written in a programming language or implemented elsewhere and accessed via API
calls. The meaning of these calls is defined not by the programming language itself but by the programs
implementing them. A program is a set of calculations and objects, some implemented in the program’s
source code and some by other programs. These are expressed either as source code or as API calls that
indicate the execution of externally implemented calculations.

This shift in what a program is necessarily changes the way programmers design and implement pro-
grams and, even more so, the knowledge and understanding required to do so (Andrews, Ghosh, & Choi,
2002). As a programmer designs and implements a program, they form an internal representation of it —
a mental model that represents the program to be implemented (Heinonen, Lehtelä, Hellas, & Fagerholm,
2023; Kim, Lerch, & Simon, 1995). This understanding of the program to be implemented then guides
the process of translating the program design into an executable program (Pennington & Grabowski,
1990). However, the discussion around programmers’ mental models has focused on programs as speci-

PPIG 2024

www.ppig.org 90

fications written in a programming language that expresses the calculations of the program (Détienne &
Détienne, 2002b; Pennington & Grabowski, 1990; Heinonen et al., 2023).

Programming also requires the programmer to translate the designed solution into an executable pro-
gram (Pennington & Grabowski, 1990). The shift in software development has transformed this task
from writing code that implements a functionality to writing code that interacts with the interface of a
program that implements a functionality (Andrews et al., 2002). This process can be described as writ-
ing "glue" code or writing client code that integrates functionality from different software components
into one program (Chen, He, Liu, & Zhan, 2007).

In some ways, writing client code is similar to software reuse, where the programmer must understand
what type of solution is required, find a suitable solution, and adapt it to fit the target software (Détienne
& Détienne, 2002a). However, reuse theories do not account for the differences between reusing a piece
of code and integrating a program into another using its API. The latter requires not only understanding
the solution and its suitability, but also another level of understanding: the interface through which the
solution can be accessed (Thayer, Chasins, & Ko, 2021; Mosqueira-Rey, Alonso-Ríos, Moret-Bonillo,
Fernández-Varela, & Álvarez-Estévez, 2018). Successfully using an API also requires the programmer
to form a mental model of the software providing the API — what it is, what it can be used for, and how
it can be used in a program (Heinonen & Fagerholm, 2023).

As the nature of how programs are expressed, developed, and understood is changing, theories and
research on the cognitive aspects of programming should also evolve. Theories of programmers’ mental
models should encompass the concept of a program as an integrated system of multiple programs and
consider how programmers conceptualize the external programs integrated into their own programs.
Furthermore, programming theories need to address the cognitive aspects of using APIs. In this work,
we will contribute to this endeavor by presenting results on programmers’ mental models of APIs and
the programs that provide them. We will also present findings on how these mental models are utilized
in programming tasks.

In everyday discussions, different libraries, frameworks, packages, web services, and other pieces of
software that provide an API are all referred to as APIs. However, this terminology does not allow for
differentiation between the software that provides an API and the API itself. In this work, we will refer
to software libraries, frameworks, services, and other software that provide functionality, data, or other
resources that can be integrated and utilized in a new software system as provider software. We will refer
to the functionality, data, and services that the provider software offers, which can be utilized in building
new software, as resources. Finally, we will refer to the interface provided by the provider software that
allows a program to utilize its resources as a API.

In this work, we aim to provide insight into programmers’ mental models as they design and develop
programs that utilize a provider software’s resources using its API. We present results from a study
where 12 professional programmers were interviewed using the critical incident method about a situation
or situations where they had to learn to work with a new provider software. We analyze the mental
models of the participants through their expressions of their understanding, through the problems they
expressed having with understanding some aspect of the task and its context, and through the information
they sought and used to complete the tasks. Through this analysis, we identified some key aspects of
programmers’ mental models of provider software. We also identified some key mechanisms of how
these mental models are developed and how they are used in completing programming tasks.

2. Methodology
To conduct the study, we used the critical incident method interview protocol, designed to elicit informa-
tion about cognitive performance in complex task settings (Marcella, Rowlands, & Baxter, 2013), which
has been used successfully in similar studies (Votipka, Rabin, Micinski, Foster, & Mazurek, 2020).

We conducted 12 interviews in which we explored programmers’ mental models of provider systems
and their resources and APIs through detailed analyses of one or more recalled real-life events where

PPIG 2024

www.ppig.org 91

the participants had to learn about a new provider system.

2.1. Participants
A total of twelve participants took part in the study. Our participants were employed in different roles
in academic and industry settings. Two participants held primarily academic positions, while ten were
employed in software development companies or software development teams within academic or other
organizations.

2.2. Interview protocol
During the interviews, participants were asked to choose an event in which they had to learn a new API
and recall the process while we drew a diagram to visually represent it. Throughout the interviews, the
interviewers asked further questions about multiple items of interest.

The interviews lasted approximately 60 minutes and were conducted remotely or in person, depend-
ing on the availability of the interviewee. The interviews were divided into three parts: background
questions, event selection, and event walkthrough, as described subsequently.

2.2.1. Background questions
At the beginning of each interview, participants were asked about their education, programming back-
ground, and the level of experience they have with the technologies they currently work with. They were
also asked about their current job and the tasks and responsibilities of their current role.

2.2.2. Event selection
After the background questions, the participants were asked if they could recall a time when they had to
learn to use a new API. They were prompted to think about a memorable event, either recent or otherwise
memorable to them. If a participant had difficulty recalling a suitable event, we asked further questions
to assist in event selection.

2.2.3. Event walkthrough
After a suitable event had been selected, the participants were asked to recount what had happened
during the event. As participants described the event, the lead interviewer drew a diagram of the process
described by the participant. The participants could see the diagram at all times and were asked to notify
us if the diagram did not match their story in some way.

While participants described the event, we asked directed questions intended to clarify some aspect of
the event or gather further information about some important or interesting aspect of the event.

2.3. Data Analysis
We utilized iterative coding to analyze the data with the goal of examining programmers’ mental models
as they engaged in programming-related activities that required them to learn a new API.

In the first round of analysis, we coded items related to the programming projects the participants were
undertaking and divided the interviews into activities, such as designing or implementing a solution.

In the second iteration, we analyzed each activity in detail. We coded statements about mental models,
knowledge gaps, sensemaking activities, and resulting understanding. In this article, we will present
results related to mental models. Our analysis of knowledge gaps and sensemaking activities will be
presented in another publication. Statements about understanding or perception of some aspect of the
task or its context were coded as mental models.

During the third iteration, we analyzed statements related to mental models to identify the aspects of
the provider software, its resources and APIs, and the programming tasks that were represented in the
mental models.

3. Results
In this section, we will discuss our results related to programmers’ mental models of provider software
and their resources and APIs. We will first examine programmers’ mental models of provider software,
followed by the mental models of programming tasks, API resources, and APIs used when implementing

PPIG 2024

www.ppig.org 92

a program that utilizes a provider software through its API.

3.1. Understanding provider software
A programmer’s mental model of the provider software represents their understanding understanding of
the software — what it is, what it can be used for, and some relevant quality attributes such as usability
and quality. We have divided the results into two categories. The first category, "What it is and what it
can do," represents an understanding of the type of the provider software, its function, and functionality.
"Quality, usability, and other relevant attributes" represent different non-functional characteristics of the
provider software.

3.1.1. What it is and what it can do
These aspects of the provider software represent the programmer’s understanding of what a provider
software is and what it can be used for.

Type refers to the kind of provider software a specific software is — whether it’s a library, a web service,
or something else. Knowledge of the type of a provider software allows the programmer to utilize their
background knowledge of other provider software of the same type to understand what the provider
software is guiding the process of learning about and using a provider software.

As our participants were professional programmers, they had previous experience with different types
of provider software. We refer to this knowledge as provider software type schemata, which represent
different types of software, the functionality those types have, and how they can be used. For example, a
schema of REST APIs suggests that they provide access to data in a database and can be used by sending
HTTP requests to API endpoints.

Our participants discussed provider software as instances of types. The recognition of a software’s type
provided them with expectations of how it can be used, such as expecting that a REST API is used by
sending HTTP requests or a library is first installed to the project and then used by calling API methods.
It also guided the participants forward, providing expectations of what to do next and what information
was needed. For example, one of our participants discussed finding a suitable provider software, and
knowing that a library has to be installed, moved on to seeking information about how the specific
provider software could be installed using Cradle.

Function refers to the general purpose of the provider software. This was discussed as the type of task
that could be done with it, such as "draw plots" or "access data from a database." For example, one of
our participants described PNPM as follows:

It is used to install react native...or of course you can use it to install anything. So a PNPM
package manager built on top of NPM. And it can be used to install all kinds of JavaScript
dependencies.

This understanding not only aids in selecting suitable provider software for the task at hand, but it also
provides the programmer with expectations about it. There are often many provider software with the
same function, and they have some similarity between them. We refer to the knowledge of these sim-
ilar provider systems as provider software category schemata, which represent knowledge of provider
software with the same function, such as what libraries that provide methods for making HTTP requests
generally are like. Based on our interviews, participants used their provider software category schemata
when encountering a new provider software with the same function. These schemata provided them
with expectations about the software in question — its use, functionality, and even the naming of API
methods:

... I could already guess the name of the method I could use. Because with these the naming
of the methods is quite similar. They are usually always named the same way. For example
something like findAll, findOne, findByID. So the query abstractions are usually always
named like that...

PPIG 2024

www.ppig.org 93

Functionality is the set of resources provided by the provider software. These resources include data,
services, and implementations of behavior. Programmers’ understanding of provider software function-
ality enables them to select a provider software suitable for the task at hand, as described by one of our
participants who needed a provider software that provides tab components:

At that point I had read the MaterialUI documentation quite a bit. It has all kinds of ex-
amples, and I have scrolled the sidebar which lists all the components that it has, and I had
considered using it [the tab component] previously but I had not previously needed tabs for
anything.

However, programmers’ understanding of a provider software’s functionality does not always appear to
be comprehensive or entirely accurate. For instance, one of our participants expected that a provider
system for drawing plots would provide a way to combine the titles of subplots into one and were
disappointed when they learned that it did not:

I was a bit annoyed that there was no automatic way to do it. You’d think that combin-
ing identical sub-plot titles would be a relatively common use case. So then...I expected
someone would have made something automatic for it especially since it has so many other
automatic features.

3.1.2. Quality, Usability and other relevant attributes
There are, of course, multitudes of attributes a software has, ranging from fault tolerance to availability.
However, not all of these are relevant at all times. Quality and usability of a provider software were
mentioned as important by multiple participants and are thus discussed in more detail below. Partici-
pants also mentioned other attributes when those were relevant for the specific task or project they were
working on, indicating that participants considered the attributes that were relevant for them at that time.
Therefore, we will not discuss all possible attributes but focus on the notion that the mental model seems
to contain some information about the attributes deemed important for the task or project at hand.

Quality refers to the programmer’s perception of the "goodness" or quality of the provider software. Our
participants talked about forming a perception of whether the provider software was good or "valid"
to use. For example, one participant discussed building a perception of a provider software’s validity
before selecting it for use:

They [libraries] are almost always open source, so I usually also check its validity as well.
So I usually check the GitHub repository to see, for example, if it has been actively updated
and if it has a lot of these...umm...these like stars which are kind of like "likes" and if it has
a lot of forks and all those kinds of things. Like if it seems like it is used a lot and is like
validated by the developer community so it is valid. And that can also peak my interest [in
using a provider software] as well.

Usability refers to the programmer’s perception of how easy the provider software is to use. When
selecting suitable provider software, our participants discussed forming perceptions of the usability of
the API. For example, one of our participants described a provider software they liked as "logical, easy
to use, and easy to understand," while another participant discussed liking a provider software because
it seemed easy to use and understand.

Other relevant attributes: Our participants did not seem to form an understanding of all possible at-
tributes of a provider software, but rather only the attributes relevant to the task at hand. For example,
one participant had to consider the performance of a provider software to design a component using it.
However, this participant stated that they would not want to need to know this information, indicating
they would not have gathered it if it was not necessary:

PPIG 2024

www.ppig.org 94

Well I would like to think about it logically, in other words so that I would just need to know
how to use it. In this case I also had a bit of understanding of its technical side. We had to
consider it, mostly its performance, and if it would cause any problems.

3.2. Use of a provider software for a specific task
In this section we will discuss the mental models related using a provider software to achieve a specific
outcome. The outcome, of course, is most commonly a program that has a certain functionality.

The understanding related to using a provider software contains multiple aspects of the situation, includ-
ing what is to be achieved, what is required from the provider software to achieve it, how the required
resources are modeled in the provider software, and how those resources can be accessed. Below, we
will illustrate this using an example from the interviews, and then we will describe the aspects of the
mental models in more detail.

3.2.1. Example
One of our participants was implementing the backend for a mobile application:

So I had a specific application in mind already. It was a backend for an application that I
made for a course. So for the students to use...so in the course the students make a client for
the backend...so they have the backend ready but they have to make the mobile application
client for it... So it was like an application for users to review GitHub repositories. So the
user can log in and then write reviews for a GitHub repository.

They started to implement the backend working on one endpoint at a time. They start working on an
endpoint that lists all the repositories. They know that the provider software they are using provides
functionality for making requests to a database, and after forming an idea of what kind of a functionality
they’d need for the endpoint, they start looking for a suitable method:

So I knew that I have...I knew that I have a database table where the repositories are, and
it has certain fields. So then I started to think that if my endpoint has to list all of them, I
started to think about what kind of a method I had to look for.

They browse the API documentation to find a method that seems promising, and read the method de-
scription to verify that the method indeed does what they need. They then use a code example in the
documentation to write the client code that calls the method:

It [API documentation] has like API reference, so like the API in a more technical level. So
I went there. And that was organized by the main themes, so there was like queries, so a
section about how to make queries. And the methods were listed there. And from there I
could spot a method that could be the right one. And then based on the method description
I verified that it really was. And it also had code, they usually also have code examples
showing how to actually do it.

3.2.2. Goals, tasks, solutions and resources
One of the aspects of the programmer’s mental model is an understanding of what is to be implemented,
and what is required from the API to implement it. This includes the program that is to be implemented,
the part of the program the programmer is currently working on, how the part of the program can be
implemented, and what is required from the provider software to implement the part.

Goal software:refers to the programmer’s understanding of the program they are implementing. For ex-
ample, in the previous example one participant described the backend application they were developing.
Our participants described having different levels of understanding of the design of the goal software.

PPIG 2024

www.ppig.org 95

In some cases, they were working from formal design documents that provided them with a detailed
understanding of the architecture of the goal software. In other cases, they did not describe the use of
formal design documents or processes, but they did have a rather extensive understanding of the design.

So. We decided that we should make a new component which handles this part of it. So we
made a new container for it. And in that, in regular intervals it fires up, and the idea is that
it makes a request to the API and fetches... Or actually first it fetches a configuration file
from DynamoDB which tells it what to fetch. It specifies what to fetch from where...And
then based on the configurations it makes queries to the API and fetches all the information
about the campaigns. And and so we know that first it fetches all the campaigns, and
checks their timestamps to see if some of them have changed. And if they have, then it
fetches information about those campaigns like product information- and then it updates
the information to another DynamoDB table.

However, when participants were adding functionality to existing programs by integrating a service that
provides the entire functionality, their understanding of the resulting integrated program was limited.
This understanding was primarily shaped by their background knowledge of applications in the domain
rather than their understanding of the specific provider software. For example, one participant had
already began integrating a service into an existing application when they encountered a problem that
necessitated them to develop a deeper understanding of the system they were constructing. Their surprise
at how the system works indicates they did not possess a robust mental model of it previously:

So. I hadn’t previously like. So rarely some thing from your own code ever calls anything
else. So all of our services work so, that a frontend always has one backend. And the
frontend always talks to only its backend and then the backend may call some other service
or do anything else. And in this case it was like "wait a second, it talks with something
else". Our frontend sends requests to it kind of like google analytics...So like after I got it it
was more clear that "hey this is what we are doing and this is what it is all about". endquote

Task: refers to the programmer’s understanding of the specific part of the goal software they
are currently working on. When the program is small, the entire program could be the task.
However, when the program is larger, it is split into parts, and the programmer works on
them one at a time.

In many of our interviews, it was not clear how the participants identified the task at hand.
However, participants who discussed tasks related to setting up the provider software could
often provide more detail on how the tasks were identified. In some cases, participants iden-
tified the task based on their experience with the type of provider software. For example,
one participant was using a library. Drawing from their familiarity with other libraries, they
recognized they had to add the library to their project and moved on to read the library doc-
umentation to learn how to do so. In cases where the participant was integrating a service
to an existing program or when a library required more extensive setup, participants also
mentioned reading documentation to learn what had to be done.

Solution: refers to the programmer’s mental model of the program that fulfills the task.
Some of our participants described the solution in functional terms - what the program
should do.

Other participants described the solution in terms of programming concepts or patterns that
could be used to achieve the required functionality. They discussed knowing, for example,
that to create a program that fetches specific data from a database they had to make a HTTP
GET request, or that to create a program that makes multiple HTTP requests in parallel they
should create a new threads. For example one participant was implementing a program, that
allowed users to authenticate to a web-service. The participant was working on keeping the

PPIG 2024

www.ppig.org 96

users logged in, and based on their domain knowledge and knowledge of the service, knew
that they should use refresh tokens to implement the functionality:

The situation was, that the authentication worked using OAuth, which means
it was token-based. And with tokens it is essential that, for example, you stay
logged in. So you don’t have to log in again after like an hour when the token
expires. And for that you need a system called refresh token.

Some participants discussed how they identified the concept(s) that were required to imple-
ment the solution. For example one of our participants was implementing a modification to
an existing web application. They knew that the program should allow the user to switch be-
tween two views, and it should be easy for the user to see that there are two views available.
They then spend some time figuring out the solution:

I did not know exactly how I wanted to do it. With React it is really easy to
switch between components inplace. You just use a conditional statement to
remove one and then change the state to show another one. And then switch
back. Like a toggle. But I thought that way it would not be so easy for the users
to see that there are multiple views there. There at the same place. So then I
thought that the other view actually already has tabs for different files, so we
could make another level of tabs.

In cases where the participant was already familiar with the provider software, they dis-
cussed the solution in terms of the provider software.

Resources: refer to programmer’s understanding of what is required from a provider soft-
ware to implement the solution. Some participants discussed the resources in terms of
programming concepts that they expected a provider software would provide the tools to
implement. One example of this is the participant who wanted to implement tabs described
above. Other participants discussed needing the implementation of a specific behavior, for
example fetching all rows of a database table. Participants who were writing a program
that interacts with a service, the resources were described in terms of provider software
functionality that the programmer wanted to use, such as authentication to the service.

Some of our participants were using provider software to access data, and knew the data
that they needed for their programs, such as one participant who was making a program that
checks the age of an user account, and knew they needed a datamodel that contained the
age of a specific user account:

Basically we knew the datamodel...We were trying to do when we upgrade the
subscription. So basically what happens, we usually the company will draw out
the accounts, and sometime the person who is upgrading to the new service is
using ten years old account. And then we need to upgrade it to the new account
because that Is too old... This is the thing which was, we need to calculate
specific years...

The division between solutions and resources is not always clear. Some participants first
designed the solution and identified resources they needed from a provider software, and
then moved on to figure out which provider software provides the required resources and
how to use it to add those resources to their program. Some participants had already selected
a provider software to use, and as they designed their solution they did so based on their
understanding of the provider software’s functionality, so the solution was designed based
on how it could be done using the specific provider software they had in mind.

PPIG 2024

www.ppig.org 97

3.2.3. API-translated solution model and its implementation
Another aspect of the mental model is an understanding how to use the API of the provider
software to utilize specific resources. This understanding can be roughly divided into two
categories: Understanding how the resources are modeled in the API, and understanding
how to implement the code that interacts with the API to access the resources.

API-translated solution model: represents the programmer’s understanding of how the re-
sources they want to use are modeled in the API. In other words, the API-translated solution
model describes the solution in terms of API elements, API tasks, or when it comes to data
resources, datamodels. Some participants described the API-translated solution model in
terms of API tasks. With API task we refer to the set of tasks the client code has to perform
in regards of the API. For example, one of our participants was using a provider software
that implements a functionality that draws plots. The task they were working on was writing
the code that draws a title to the center of the plot. To do so, they first had to figure out how
this behavior is modeled in the API. Using StackOverflow they learned that the client code
has to first instruct the provider software to remove the titles from all the sub-plots, and then
add text to specific coordinates within the plot:

So you remove from the Seaborn...make it so that it does not make the sub-titles
or titles for the sub-plots. And then you just manually write text to it [the plot]
through matplotlib using those like coordinates. So you just manually add text
there and give it its orientation and coordinates.

Some participants described the API-translated solution model in terms of API elements
and their relationships:

The tab API consisted of a tabs component, and you place tab components within
it and give each tab an index. And tabs receives a state I think. And then there is
also a tab panel component which is placed within a tab. And then a tab panel is
shown according to the state.

When the resources are data, the provider software models information about different enti-
ties as datamodels, and the API-translated solution model refers to the datamodels and their
attributes and relationships that represent information about a specific entity. For example
one participant was working on a program that writes specific data to a provider software.
They knew the entity they wanted to write information about. However, to write the pro-
gram they had to first figure out how the entity was represented in the provider software:

So our department started to write the information about [entity] into the
[provider software] using our own system...So we just checked from the API
catalogue that here is this datamodel called [entity] and they can be created us-
ing this endpoint here...And then we checked what we needed for the datamodel.
So it needs references to three different things. And we wondered how we were
supposed to get the references from? So we do have the three other datamodels,
but how are we supposed to get the right instances?...At that point it was unclear
why in the world of [provider software] the information about [entity] is split
into three datamodels and what the relationships between the models are...So we
did not know what the three references actually mean. And then when we were
told that you have to use this [another datamodel] then it started to make sense
like that one had all the information we need so we can start by saying take this
one first. At that point the whole thing did not seem so difficult and confusing
anymore.

Implementation model: refers to the implementation details of the client code for API tasks,
elements, and datamodels. This includes the syntax of the client code as well as their

PPIG 2024

www.ppig.org 98

parameters. This may also include the syntax of configurations or other code that has to
be written to implement the solution. For example, one participant described seeking for
information about the data type of parameters:

I checked the tab panel and the tab, the individual tabs, what I have to give them,
to make sure I give them the right index, or like what kind of index they need.
That was not explained in the code example page.

Participants often described searching for and reading code examples to figure out how to
use provider software. In these cases the information about the API-translated solution
model and the implementation model were acquired simultaneously. In other cases, par-
ticipants described learning the API-translated solution model first, and then moving on to
seek information about the correct syntax to implement it.

4. Discussion
In this paper, we present the results of a study where we used the critical incident inter-
view technique to gain insight into programmers’ mental models of provider software, their
resources and their APIs. Our results show, that as programmers work with provider soft-
ware, they form a mental model of the provider software, that represents their understanding
of the provider software as a software artifact — its function and functionality, the way it
works and is used in a program, and its quality, usability, and other attributes relevant to the
situation.

This mental model provides the necessary framework for utilizing the provider software’s
resources in a program. As programmers integrate provider software’s resources into a
program through its API, their mental models of the provider software’s type, function,
functionality and use guide the process of identifying resources required to solve a pro-
gramming problem, and figuring out how the resources are modeled in the software and
how to integrate the them into a program. This result corresponds with the idea of initial
API mental models, that represent programmer’s understanding of a provider system they
form before they begin using the provider software in programming tasks (Heinonen &
Fagerholm, 2023). These mental models guide the programmer’s actions, providing them
with understanding of what the provider software can be used for and how the provider
software can be used, as well as what information is required to use it and what should be
done to begin using the provider software (Heinonen & Fagerholm, 2023).

When it comes to program design, our results show that the process is in most cases quite
similar to the models of program design that have been previously proposed. Existing the-
ories of program design describe program design as a process of decomposing a problem
into manageable sub-problems that can then be broken down further and solved (Atwood,
Jeffries, Turner, Polson, & CO, 1980; Pennington & Grabowski, 1990). We see the same
behavior when designing solutions that use provider software. Our results show program-
mers breaking the goal program down into manageable tasks, that can then be solved one
by one. However, in cases where programmers integrate services into existing programs or
use libraries that require extensive setups, this decomposition of the problem is different. In
these cases the programmer does not necessarily have a deep understanding of the resulting
program, and thus use documentation to gather the information about the tasks required to
implement it.

When writing code, traditionally, we would expect the programmer to understand what
is to be implemented, how the required functionality can be achieved in computing
terms (Pennington & Grabowski, 1990). We would also expect the programmer to have
an understanding of the programming language used to write the code to implement the
solution (Hoc, 1977). When using provider software, not only does the programmer require
an understanding of the programming language used to write the client code, but also the

PPIG 2024

www.ppig.org 99

API resources, tasks and their syntax. We see programmers forming an understanding of
what is to be implemented as a high-level understanding of the entities in terms of behavior
and outcomes. Understanding how those entities are modeled in the API of the specific
provider system and the syntax of the API methods is then used to integrate those entities
to a program.

Therefore the understanding required to create programs using provider software requires
understanding of the programming language used to write the client code and the parts of
the overall program that do not use APIs with its syntax, grammar, rules of discourse and
other conventions. It also requires understanding of the provider software and the API,
which have their own design, syntax, rules of discourse, and other conventions — a mental
model of the API and its language.

5. Conclusions
Writing about programming, Pennington and Grabowski stated "Programming problems
are unique in that they usually involve solving a problem in another (application) problem
domain, such as mathematics, accounting, electronics, or physics, in addition to solving the
program design problem" (Pennington & Grabowski, 1990). Now, we can add a third level
to the complexity of programming. Programming using provider software requires the pro-
grammer to solve the problem in the problem domain and solve the program design problem
in terms of the structure and behavior of the program that solves the problem. It also requires
the programmer to solve the problems of identifying and selecting provider software that
provide the required resources to implement the designed program, and writing the client
code to interact with the API of a provider software so that the provider software behaves
as required.

PPIG 2024

www.ppig.org 100

6. References
Andrews, A., Ghosh, S., & Choi, E. M. (2002). A model for understanding software com-

ponents. In International conference on software maintenance, 2002. proceedings.
(pp. 359–368).

Atwood, M. E., Jeffries, R., Turner, A. A., Polson, P. G., & CO, S. A. I. E. (1980). The
processes involved in designing software. NTIS, SPRINGFIELD, VA, 1980, 62.

Chen, X., He, J., Liu, Z., & Zhan, N. (2007). A model of component-based programming.
In International symposium on fundamentals of software engineering: International
symposium, fsen 2007, tehran, iran, april 17-19, 2007. proceedings (pp. 191–206).

Détienne, F., & Détienne, F. (2002a). Software reuse. Software Design—Cognitive Aspects,
43–55.

Détienne, F., & Détienne, F. (2002b). What is a computer program? Software De-
sign—Cognitive Aspects, 13–20.

Heinonen, A., & Fagerholm, F. (2023). Understanding initial api comprehension. In 2023
ieee/acm 31st international conference on program comprehension (icpc) (pp. 43–
53).

Heinonen, A., Lehtelä, B., Hellas, A., & Fagerholm, F. (2023). Synthesizing research on
programmers’ mental models of programs, tasks and concepts—a systematic litera-
ture review. Information and Software Technology, 107300.

Hoc, J.-M. (1977). Role of mental representation in learning a programming language.
International Journal of Man-Machine Studies, 9(1), 87–105.

Kim, J., Lerch, F. J., & Simon, H. A. (1995). Internal representation and rule develop-
ment in object-oriented design. ACM Transactions on Computer-Human Interaction
(TOCHI), 2(4), 357–390.

Mäkitalo, N., Taivalsaari, A., Kiviluoto, A., Mikkonen, T., & Capilla, R. (2020). On
opportunistic software reuse. Computing, 102, 2385–2408.

Marcella, R., Rowlands, H., & Baxter, G. (2013). The critical incident technique as a tool
for gathering data as part of a qualitative study of information seeking behaviour. In
Leading issues in business research methods (Vol. 2). Academic Conferences and
Publishing.

Mosqueira-Rey, E., Alonso-Ríos, D., Moret-Bonillo, V., Fernández-Varela, I., & Álvarez-
Estévez, D. (2018). A systematic approach to api usability: Taxonomy-derived crite-
ria and a case study. Information and Software Technology, 97, 46–63.

Pair, C. (1990). Programming, programming languages and programming methods. In
Psychology of programming (pp. 9–19). Elsevier.

Pennington, N., & Grabowski, B. (1990). The tasks of programming. In Psychology of
programming (pp. 45–62). Elsevier.

Thayer, K., Chasins, S. E., & Ko, A. J. (2021). A theory of robust api knowledge. ACM
Transactions on Computing Education (TOCE), 21(1), 1–32.

Votipka, D., Rabin, S., Micinski, K., Foster, J. S., & Mazurek, M. L. (2020). An observa-
tional investigation of reverse engineers’ processes. In 29th usenix security sympo-
sium (usenix security 20) (pp. 1875–1892).

PPIG 2024

www.ppig.org 101

Analysing Open Source Software to Better Understand Long Term Memory
Structures in the Human Brain.

 Thomas Mullen
tom@tom-mullen.com

Abstract
As AI models become larger, replicating long term memory structures (LTM-S) may produce the same
benefits that evolution provided the human brain (efficiency, performance, and extensibility).

At the heart of this paper is the conjecture that software structures are close representations of LTM-S.
If this is true, then open source can be considered a huge database of easily searchable LTM-S examples
that could assist in a deeper understanding of the same.

The paper proposes a general refactoring algorithm based around two elements of LTM-S, chunks and
analogies. The underlying aim is to develop mechanisms and theories to analyse the analogical and
chunking structures employed in software.

1. Introduction
The processes of introducing a required behaviour to a code base involves translating the requirements
into dependencies amongst a set of variables. Even when a successful dependency graph is identified,
software languages allow many structural choices of how to represent that graph. Design principles then
provide the guidance to establish which alternative is easiest to understand.

There may be background and context that form part of this process. However, this paper looks
specifically at the relationship between the dependency graph and the software structures that the
developer alights upon. At the heart is the conjecture that those structures are close representations of
the LTM-S of the dependency graph in the developer’s brain.

The conjecture that code structures are representations of long-term memory structures was stated in
Mullen (2009) in a slightly different form. This paper attempts to further validate this conjecture by
proposing a refactoring algorithm which is based on elements of LTM-S (specifically, chunking and
analogies).

The refactoring algorithm follows this process and has three elements:

• Software Chromatography. The code to be analysed is distilled into two graphs. Both graphs
have shared nodes which represent the inherent variables/values/attributes in the code to be
refactored. The first graph is a normalised dependency graph (which is inclusive of
conditionals) and the second is a structural graph that identifies where each node is represented
in the software language elements.

• Candidate Solutions Library. A selection of dependency sub-graphs, each of which is mapped
to a number of alternative structural graph solutions.

• Chunking Objective Function. A measurement of simplicity, a function comprised of coupling
and cohesion parts.

A more detailed description of the algorithm is provided in section 3.2, but the precis is that the code
base to be analysed is firstly distilled into the dependency and structure graphs. Each dependency sub-
graph in the library is searched for in the distilled dependency graph. Where a match is found each
alternative structural solution is then employed in the distilled structural graph and the change to the
chunking objective function is calculated. If the objective function is improved than that refactor
becomes a recommendation.

The advantages of LTM-S that evolution has provided the human brain would likely benefit AI models.
Webb et al (2023) showed that “[GPT-3] appears to display an emergent ability to reason by analogy”
so it’s possible that the training processes already produces them. However, a better understanding of

PPIG 2024

www.ppig.org 102

LTM-S could assist in recognising analogical structures in AI models and refine the training process to
produce them. For example, Holyoak and Thagard (1997) propose that analogies are chosen based on
similarity, structure and purpose. Gentner (1983) proposes that the depth of the behaviour function is a
driver. Analysing which abstractions/analogies are chosen to be represented by classes in open-source
code may help to fill in specific details of the process in choosing primary analogies.

2. Software Structures are LTM-S Conjecture
2.1 LTM-S in Languages
Whenever we understand anything, the endgame is to lay down long term memories. Only then can we
utilise that knowledge, build upon it and apply it to other domains (to expand understanding in those
areas). If we had a choice of how to represent something and the primary aim was to make it easier to
understand, then the closer our representation gets to LTM-S, the less translation is needed when we
(or others) try to understand the knowledge it represents.

The same argument could be applied to natural languages. For example, if you needed to explain
something to me (especially knowledge that it took time for you to acquire). You would first access the
LTM-S in your brain that contains that knowledge. You would then serialize those structures as natural
language. I would deserialize those sentences and (hopefully) produce the same LTM-S that exist in
your mind. In that way I could achieve the same knowledge without the cost you had to achieve it.
Indeed, cognitive linguists analyse natural languages to see if they betray how the mind works.

If natural languages are the serialization of LTM-S, then it could be said that software languages provide
a direct access equivalent. So, from a 30,000 foot point of view, the conjecture that software structures
are long term memory structures makes sense.

It’s probably inevitable that at some point AI models will communicate with one another to pass on
knowledge without the necessity of repeating costly training. If AI models employ the same LTM-S as
in a human brain, then the languages they will use will likely be based upon those structures (potentially
a massive parallel version). The more we understand about LTM-S, the better our ability to eavesdrop
or, more usefully, influence that knowledge transfer (especially to correct bias or error).

2.2 Chunking Analogies
If we consider the aspect of software design that simplifies the code structure without changing the
behaviour. Then this is the same process as laying down long term memories, i.e. chunking analogies
(Mullen, 2009). Specifically,

• Chunking – where memory elements are grouped so that elements within a chunk are strongly
related to each other, but loosely related to elements in other chunks. The design principle of
low coupling/high cohesion guides the developer to chunk the code.

• Analogies – a mapping of two or more domains that contains attributes and behaviours. This is
similar to the class description of the OO paradigm. However, there are other software language
structures that can represent analogies (Mullen, 2009).

Software design is a process of identifying the different language structures we can employ to represent
the abstractions/analogies of the required behaviour and then choosing whichever provides the best
coupling and cohesion (chunking). The similarity between the cognitive psychologists’ description of
LTM-S and software design principles and languages adds further validation to the software structures
are LTM-S conjecture.

2.3 So What?
Even if we are prepared to accept at this stage that the conjecture is true, how does that help us?

Evolution has provided the human brain with LTM-S that produce an efficient, performant, and
extensible knowledge store. These structures could be just as advantageous to AI models.
Understanding LTM-S and the process that creates them would be key to recognising these structures
in AI models or guiding the training process to produce them.

PPIG 2024

www.ppig.org 103

If the software structures are LTM-S conjecture is true, then open-source software could provide us
with a huge searchable database of LTM-S examples. We could analyse these structures with the same
aim that cognitive linguists analyse natural languages.

The next section proposes a general refactoring algorithm. It is not expected that this will produce a
usable refactoring tool for developers. However, if it can come up with reasonable (or, hopefully,
illuminating) refactoring suggestions then that could provide a more detailed validation of the
conjecture. In addition, the mechanisms and theories needed for the algorithm could be employed to
analyse open source. This would provide a large enough dataset for correlations to be identified and
provide further evidence of the links between software structures and LTM-S.

3. Analysing Analogical and Chunking Structures In Open Source Code
Before going into the details of the algorithm it may be beneficial to provide an example of the type of
refactoring that the tool is intended to deliver. This is included in the next section with the description
of the algorithm following it.

3.1 Example
The three code examples in Fig 1 represent the same behaviour with respect to the relationship between
z and its constituent elements a1, a2, a3, b1, b2 and b3. In all the examples, the same labels are used (z,
a1, etc.) but in real code they would be different labels and may have additional dependencies amongst
them, and with other elements. The proposal is to represent the dependency relationship in a normalised
graph so that the isomorphic nature can be easily identified.

Figure 1 – Three different code structures that provide the same behaviour between z and its

dependencies a1, a2, a3, b1, b2, b3.

Fig 2 shows the resulting dependency graph for all the examples in Fig 1. There are three main
composite elements to the graph;- conditional elements; pure functional sub-graphs; and assignments.
This is discussed in more detail in Appendix A.

In addition to the dependency graph, a partner structural graph details how the different elements are
represented in the language. This contains the same variable and expression nodes that are in the
dependency graph but are placed in the package/class/method structure where they are defined in the
code. Fig 3 shows the structure graph for the middle code snippet in Fig 1.

PPIG 2024

www.ppig.org 104

Figure 2 – Normalised dependency graph for all the three code examples in Fig 1

Figure 3 – Structure graph for the second code example in Fig 1

To illustrate a refactoring example, consider the code in the left-hand column of Fig 4, for which the
dependency graph is in Fig 5. There is a subgraph isomorphism with the normalised graph of the three
code examples in Fig 2. Specifically with the mapping;- b1-> (value==0); b2 ->
(lowerValue<=upperValue); b3 -> (lowerValue <= input && value <=
upperValue); a1 -> ZERO; a2 -> IN_RANGE; a3 -> NOT_IN_RANGE; z_1 -> z_ZERO; z_2 ->
z_IN ;and z_3-> z_NOT. Consequently, we could employ the structure associated with any of the three
examples in Fig 1. The second structure in Fig 1 applied to this code would produce something like that
in the right-hand column of Fig 4.

PPIG 2024

www.ppig.org 105

Figure 4 – Example refactor

Figure 5 –Normalised dependency graph for the code example in Fig 4

PPIG 2024

www.ppig.org 106

3.2 Proposed Algorithm
The refactoring algorithm has three elements

• Software Chromatography. Where the code to be analysed is distilled into the dependency and
structural graphs.

• Candidate Solutions Library. A selection of dependency sub-graphs and their potential
structural graph solutions. An example entry in the library would be the dependency graph
shown in Fig 2 paired with the three alternative structural graphs that represent the code
examples in Fig 1.

• Simplicity objective function. A single value function to measure the simplicity of the solution.
The proposal is to use a chunking penalty function (made up from coupling and cohesion
penalty functions). This is detailed in Appendix B, but is comprised of distance functions on
the structural and dependency graphs.

Definitions:

F0 the dependency graph of the code to be analysed.
S0 the structural graph of the code to be analysed.
G (with elements gi) the set of dependency sub-graphs in the candidate solutions library.
Ti (with elements tij) the set of alternative structural graphs for the dependency sub-graph gi.

The steps of the algorithm are as follows:

1. Distil the code that is to be analysed and produce the dependency and structural graphs F0 and
S0.

2. For Each dependency sub-graph gi in the candidate solutions library, G:
a. Search for an isomorphism of gi in F0.
b. For each finding of the candidate sub-graph, loop through the alternative structural

graph solutions tij that are stored with gi in the candidate solutions library.
i. Calculate the change to the chunking penalty function when S0 is modified to

employ the alternative structure tij. If this is an improvement, then the refactor
of tij to S0 is presented as a recommendation.

One question remains as to how we build the candidate solutions library. This could be achieved by
performing the distillation process across open-source code and identifying dependency sub-graphs
using a clustering algorithm. Further filtering could be employed based on the number of alternative
structural solutions for a dependency sub-graph. It is expected that a similar process would be useful
when we attempt to analyse open source for LTM-S.

3.2 Short Term Memory Capacity Limit
The capacity limit of short-term memory (Miller, 1956) has a significant influence on our ability to
understand. It would be natural to assume that any algorithm which represents human understanding
should incorporate those limits. The proposed algorithm doesn’t explicitly mention short-term memory
capacity limits but does model them implicitly in two ways.

Firstly, the candidate solutions library contains structures from existing code. A reasonable assumption
is that at least one person (the developer of that code) must have understood it. Since short-term memory
is the gateway to long term memory then the structures in the library have successfully passed through
someone’s short term memory and so, taken in isolation, are within the capacity limits.

Secondly, there is an argument that a function which could describe the limit is likely to be
combinatorial in nature. As more and more elements are added to short term memory the possibility of
cognitive overload becomes non-linearly more likely. The cohesion penalty function is made up from
pairs of siblings in the structural graph, which is O(n2). This may or may not be sufficient to model the
capacity limit so could need to be revisited.

PPIG 2024

www.ppig.org 107

4. Conclusion
This paper proposes a mechanism to distil software into two graphs, dependency and structural. The
dependency graph is normalised to facilitate recognising isomorphisms of behaviour between different
structural implementations. The intention is that this could be useful for the following:

• Better understanding of LTM-S. If we accept the conjecture that code structures are direct
representations of long-term memory, the open source would be a huge searchable database of
LTM-S examples. The ability to recognise code structures that are isomorphic in their
behaviour would be key to this search. Software structures are not necessarily the only elements
that could be mapped to LTM-S. For example, the same arguments could apply to architectural
designs. However, software structures are likely to be more useful, due to the large dataset
available with open source and the ability to identify dependency graphs and their associated
structural representations.

• Refactoring tool. This paper proposes a work-in-progress algorithm for a general refactoring
tool. Analysing open source to build up a library of refactoring candidates and choosing
recommendations only when a simplicity function (based on cognitive principles) is improved.

• Code stored as a dependency graph. Most languages in use today require that code is stored in
flat files. The files often fit a purpose for defining primary abstractions/analogies or for
chunking/cohesion considerations. If the refactoring algorithm, above, could be proved
successful then there may be an opportunity for storing the normalised dependency graph. As
developers initiate searches on the code, the best structure to represent the dependency sub-
graph of the search result would be generated. In most cases, this would likely produce the same
results as present in the flat file solution. However, it may allow for a cleaner representation of
cross-cutting concerns, as well as reacting to changes to the dependency graph that would
otherwise require a significant refactoring.

5. References
M. Fowler, K. Beck, J. Brant, and W. Opdyke (1999). Refactoring: Improving the Design of Existing

Code. Addison- Wesley ISBN 0-201-48567-2

D. Gentner (1983). Structure-mapping: A theoretical framework for analogy. In Cognitive Science, 7,
pp 155-170.

K. J. Holyoak and P. Thagard. The Analogical Mind (1997).
http://cogsci.uwaterloo.ca/Articles/Pages/Analog.Mind.html

Miller, G. A. (1956). "The magical number seven, plus or minus two: Some limits on our capacity for
processing information". Psychological Review. 63 (2): 81–97. CiteSeerX 10.1.1.308.8071.
doi:10.1037/h0043158. hdl:11858/00-001M-0000-002C-4646-B. PMID 13310704. S2CID
15654531.

Mullen, T. 2009. Writing code for other people: cognitive psychology and the fundamentals of good
software design principles. In Proceedings of the 24th ACM SIGPLAN conference on Object
oriented programming systems languages and applications (OOPSLA '09). Association for
Computing Machinery, New York, NY, USA, 481–492.
https://doi.org/10.1145/1640089.1640126

J. R. Ullmann. 1976. An Algorithm for Subgraph Isomorphism. J. ACM 23, 1 (Jan. 1976), 31–42.
https://doi.org/10.1145/321921.321925

Taylor Webb, Keith J Holyoak, and Hongjing Lu (2023). Emergent analogical reasoning in large
language models. Published at Nature Human Behaviour (2023)
https://doi.org/10.1038/s41562-023-01659-w.

PPIG 2024

www.ppig.org 108

https://doi.org/10.1038/s41562-023-01659-w

Appendix A : Normalised Dependency Graph
The normalised dependency graph consists of connected parts of three different element constructs. All
nodes in the graph have a unique identifier, however for the sake of brevity the examples given here
sometimes use the label associated with that element. If we take a simple max function as an example:

int max(int i, int j) {
 if (i > j) {
 return i;
 } else {
 return j;
 }
}

The normalised dependency graph is in Fig A.1

Figure A.1 – Normalised dependency graph for the max function.

The three constructs are

• Conditional – consists of the following nodes
o An upper conditional node (triangle shape pointing up), labelled uc-1 in the max

example.
o Two or more lower conditional nodes (triangle shape pointing down), labelled lc-1_T

and lc-1_F in the max example.
§ For conditional statements there will be two lower conditional nodes

(representing the true and false cases).
§ Class hierarchies will also be represented by conditional structures with a

lower conditional node for each class that inherits from a super class or
interface.

§ Switch/case statements will have a lower conditional node for each case
element.

The edges in the conditional construct are:
o Conditional edges (between the upper conditional node and each lower conditional

node)
o An upper conditional value edge and lower conditional value edges (one for each lower

conditional node). This is easiest understood by looking at the example where it
represents the conditional statement. The value from the upper conditional edge is the
boolean expression and the lower conditional edges point to TRUE and FALSE. So for
a runtime case the upper conditional value is compared to the lower conditional values
to determine which lower conditional branch represents the dependency in that case.

• Functional – a sub graph that consists of variables, literal values and operands that combine
them. The i>j construct in the graph is an example of this.

PPIG 2024

www.ppig.org 109

• Assignment – a link between a variable and a functional construct that also contains the lower
conditional nodes that must all be satisfied for that dependency. There may be many
assignments for a variable (some of which point to the same functional construct). The effective
boolean expressions are in disjunctive normal form.

A.1 Shorthand notation
The graph can be described by the following shorthand notation that represent the edges. In each case
the examples given are the shorthand notation for the graph of the max function, given in fig x.

• Conditional – this consists of two parts.
o Firstly, an upper conditional node with a set of lower conditional nodes e.g.

(uc-1, lc-1_T, lc-1_F)
This represents the edges between the upper and lower conditional nodes e.g.

{uc-1 => lc-1_T, uc-1 => lc-1_F}
o Secondly, the edges between the conditional nodes and the conditional values

{uc-1 => “>”, lc-1_T => “TRUE”, lc-1_F => “FALSE”}
• Functional – simply the edges in the functional graph. The example is below. However a

functional label, f(i,j), is provided for reasons that will become apparent in section A.2
(Establishing Isomorphisms)

f(i,j) -> {“>” => i, “>” => j}
• Assignment – consisting of two parts.

o The first is the set of assignments for a variable, e.g.
max => {max_i, max_j}

o the second defines each of these assignments using the value and the set of lower
conditionals, e.g.

max_i -> [i, {lc-1_T}]
max_j -> [j, {lc-1_F}]

A.2 Establishing Isomorphisms
The candidate solutions library contains dependency subgraphs that we need to search for in the
dependency graph of the code we are analysing. The intention is to use Ullman’s (1976) sub-graph
isomorphism algorithm. The number of different node and edge types will be leveraged in the
refinement step to aid in the process (e.g. upper conditional nodes will only be mapped to upper
conditional nodes).

There will also be different flavours of isomorphisms. This would include:

1. Assignment value as function. In this case the functional constructs are collapsed to a single
function node (f(i,j,…) as mentioned in the functional shorthand notation in section B.1).
The choice would then to be whether we include the function parameter list in the isomorphism.
Whilst including the parameter list may lead to a more targeted mapping, not including the list
could open up to more refactoring recommendations (with the belief that the chunking objective
function would reject many unsuitable refactorings).

2. Pure functional: where the dependency sub-graph would contain a single functional construct.
In this case the algorithm would identify refactors such as “Extract Method” and “Introduce
Variable” (Fowler et al, 1999).

PPIG 2024

www.ppig.org 110

Appendix B : Chunking Penalty Function
The chunking penalty function consists of two parts;- coupling and cohesion. Both these parts rely on
distance functions on the dependency and structural graphs. The initial proposal for these functions is
given but analysis of open source may help to refine these.

• Coupling: a reduced form of the dependency graph is used that strips out all the non-variable
nodes (but retains any dependency paths). The edges then provide the direct dependencies
amongst the variables. Each edge is taken and the penalty is how far away the two nodes are
on the structural graph (the further they are away the worse the cohesion). A simple distance
function is initially proposed. However, edge weights or a function may need to be applied.

• Cohesion: this applies to elements that are structurally grouped together. Sibling nodes on the
structural graph are processed and, for each pair, a metric of the similarity of the pair is used.
This is achieved by using a vector that contains the distance of a node (on the dependency
graph) to all other nodes. The cosine distance is then used to provide a measure of dissimilarity.

Definitions:

sij – the distance between nodes i and j in the structural graph.

di – a vector giving the distance of node i with each other node on the dependency graph.

𝑐ℎ𝑢𝑛𝑘𝑖𝑛𝑔	𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 	 0 𝑠!"
!,"	%&'()	&*	+%	

(',(!%	-.(/('01('	
'(2(%'(%13	,/+2.

+ 0 31 −
𝑑! . 𝑑"

8𝑑!8 8𝑑"8
9

!,")!45!%,	
%&'()	!%	-.(

)-/01-0/+5	,/+2.

PPIG 2024

www.ppig.org 111

Designing a didactic model for programs and data structures

Federico Gómez
Instituto de Computación

Facultad de Ingeniería
Universidad de la República

fgfrois@fing.edu.uy

Sylvia da Rosa
Instituto de Computación

Facultad de Ingeniería
Universidad de la República

darosa@fing.edu.uy

Abstract
Several authors affirm with solid arguments that it is essential to educate in computing, at least from sec-
ondary education and covering undergraduate courses, and that this continues to be a pending problem
in most educational systems. Some point to the relationship between research and educational practice,
which partly arises from the undervalued role of didactic research within the academy. Based on our
epistemological model and taking as starting point fundamental ideas of computing, we began to develop
a didactic model for the development of computational competencies and skills for novice students. In
this paper we present the rationale of the proposed didactic model, a description of and empirical study
and a preliminary analysis of the results of the experience.

1. Introduction
Several authors affirm with solid arguments that it is essential to educate in computing, at least from
secondary education and covering undergraduate courses. These arguments provide answers to the why
and for whom (to teach computer science) of the didactic questions (Saeli, Perrenet, Jochems, & Zwan-
eveld, 2011). The authors add that this continues to be a pending problem in most educational systems
(Denning & Tedre, 2015, 2019, 2021; Dowek, 2013) and some point to the relationship between research
and educational practice, which partly arises from the undervalued role of didactic research within the
academy. For example, at the conference “Key Competencies in Informatics and ICT (KEYCIT 2014)”
that took place at the University of Potsdam in Germany in 20141, several works by science educators
from various European countries were presented. In those, case studies, positions and perspectives of
education in computing and technology were discussed, focused on secondary education, undergraduate
education and teacher training. We found that the concepts of “competencies” and “key competencies”
are a central issue and that most authors use some type of taxonomy to define their didactic model, for
example in (Bröker, Kastens, & Magenheim, 2014) the authors take the following definition of compe-
tency: “The existence of learnable cognitive abilities and skills which are needed for problem solving as
well as the associated motivational, volitional and social capabilities and skills which are essential for
successful and responsible problem solving in variable situations.” and they add: “This definition im-
plies that competences are learnable by interventions.” For the competency model, these authors use the
Anderson and Krathwohl taxonomy (AKT), an adaptation of Bloom’s taxonomy to which they add two
dimensions: A) levels of knowledge (factual, procedural, conceptual, metacognitive) and B) classifica-
tion of cognitive domains (“remembering, understanding, applying, analyzing, evaluating, creating”).

As a result of the literature review, added to our empirical research and own theoretical development,
we conclude that our model of knowledge construction about data structures, algorithms and programs,
helps in designing answers to the how to teach of the didactic questions (Saeli et al., 2011), playing a
role similar to that of competencies and taxonomies used by the reviewed authors. Besides, the model
contributes with a theoretical elaboration, mainly in two directions: extending Piaget’s theory to encom-
pass the construction of knowledge about programs (da Rosa, 2018; da Rosa, Viera, & García-Garland,
2020) and providing a theoretical framework for designing empirical studies through Piaget’s triad intra-
inter-trans (da Rosa & Gómez, 2019, 2022). This contribution is not minor: in their systematic review
of research in computer science education, several of the cited authors found that half of the studies do
not explain any theoretical framework. For the studies that do, their theories and conceptual models

1https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/index/docId/7032/file/cid07.pdf

PPIG 2024

www.ppig.org 112

are taken from other areas such as psychology or pedagogy and present a dispersed area with a great
variety of terminology and methods. Although the authors anticipate a growth in the theoretical field
of computer science education, at the time of their study they considered the number of studies with
theoretical and conceptual frameworks specific to the area so small that they would not have sufficient
impact to generate a theoretical unification of the area (Malmi et al., 2014).

Based on our epistemological model and taking fundamental ideas of computing (Schwill, 1997; Bell,
Tymann, & Yehudai, 2018) as a didactic perspective, we began to design a didactic model for the de-
velopment of computational competencies and skills for novice students (Cabezas & da Rosa, 2022).
Fundamental ideas group together the central concepts and long-range of computing, allowing knowl-
edge to be distinguished from ephemeral information, which constitutes a suitable answer for the what
to teach of the didactic questions. These fundamental ideas are described in the next Section. The rest
of the paper is organized as follows: in Section 3 a complete empirical study is included and in Section
4 some reflections and future lines of work are presented. Finally, bibliographic references are included.

2. Fundamental ideas of computing
Andreas Schwill’s work on fundamental ideas in computer science (Schwill, 1997) is a classic cited by
several authors as a starting point for the development of didactic modeling. Schwill defines four criteria
that a fundamental idea must meet:

• the vertical criterion (the idea appears in different domains of the discipline)

• the horizontal criterion (the idea can be worked on at any intellectual level)

• the criterion of time (the idea can be observed throughout the evolution of the discipline)

• the common sense criterion (the idea makes sense in an informal, pre-theoretical and pre-scientific
context and can be expressed in natural language)

and points out algorithmization, structural dissection and language as fundamental ideas (with sub-
ideas). In (Dowek, 2012) the author adds as fundamental the idea of a machine related to the notion
of a program as an executable object. In (Bell et al., 2018), the authors propose ten fundamental ideas,
listed below, that cover those of Schwill and Dowek and add others related to the further development
of computer science (networking, security, simulations).

1. Information is represented in digital form.

2. Algorithms interact with data to solve computational problems.

3. The performance of algorithms can be modelled and evaluated.

4. Some computational problems cannot be solved by algorithms.

5. Programs express algorithms and data in a form that can be implemented on a computer.

6. Digital systems are designed by humans to serve human needs.

7. Digital systems create virtual representations of natural and artificial phenomena.

8. Protecting data and system resources is critical in digital systems.

9. Time dependent operations in digital systems must be coordinated.

10. Digital systems communicate with each other using protocols.

PPIG 2024

www.ppig.org 113

The specificity of the modeling process means that we have focused on building knowledge about algo-
rithms, data structures, and programs. Consequently, we face the challenge of defining our own subset
of fundamental ideas. In principle we take the fundamental ideas above related to these concepts (1, 2,
3, 4, 5), separating them from those related to issues such as security, networks and ethics (the rest).

The authors’ formulation of ideas 2, 4 and 5 led us to investigate the notions of a non-computable
problem, problems without a computable solution and a non-computational problem since their clarity
is relevant for our subset of fundamental ideas. Thus we find that in the complementary document to
their article2, the authors delve into each of the ten fundamental ideas proposed, expressing about idea
2: “The term ‘computational problem’, ‘algorithmic problem’, or simply ‘problem’ in this context is
often used to refer to the task that needs to be computed e.g. searching for a word, sorting values into
order, finding the shortest route on a map, or finding a face in a photo.” At this point the importance of
our theoretical elaboration is clearly observed: in our epistemological model the “algorithmic world” is
distinguished from the “computational world” and we point out that “algorithmic problem” and “com-
putational problem” are not the same (and much less simply “problem”!), even in a computer context.
One of the main contribution of our work is the extension of Piaget’s general law of cognition to en-
compass the construction of knowledge about data types and programs. Piaget’s original law regulates
the construction of knowledge about algorithmic solutions of problems and we have extended it to take
into account computational solutions. The construction of knowledge about algorithms, data types and
programs lies in understanding the dialectical relationship between both kind of solutions (da Rosa et
al., 2020). In our work fundamental idea 2 is related to the “algorithmic world” and fundamental idea 5
to the “computational world”.

In (Harel & Feldman, 2004) the author defines algorithmic problem as:

1. a characterization of a legal, possibly infinite collection of potential input sets,

2. a specification of the desired outputs as a function of the inputs.

Consequently, the fundamental ideas for which we plan to design didactic sequences and validate them
in the classroom are the following:

1. Information is represented in digital form.

2. Algorithms interact with data to solve algorithmic problems.

3. Programs express algorithms and data in a form that can be implemented on a computer.

4. The performance of algorithms can be modelled and evaluated.

The fundamental idea 1 is related to the computational skill of knowing how to represent information
as data types that the program has to deal with and here is used in that sense. Designing an algorithmic
solution (algorithm) to an algorithmic problem consists of defining a function that takes elements from
an input set and produces a desired output (fundamental idea 2), and solving the computational problem
means to implement the algorithm in some programming language and execute it (fundamental idea
3). We consider that the fundamental idea 4 has to be introduced also, although it is not included in the
empirical study presented in the following Section. As mentioned in the Section 1, the didactic sequence
was designed and developed within the theoretical framework of the intra-inter-trans triad.

3. The empirical study
The activities described in this section were developed in two instructional instances with students in
an introductory programming course in October 2023. A didactic sequence was designed to introduce

2https://www.canterbury.ac.nz/media/documents/oexp-engineering/BigIdeas-webdocument.pdf

PPIG 2024

www.ppig.org 114

a topic that until that moment was new to the students but related with their previous knowledge. It
is a data structure called capped array, along with four fundamental operations for its manipulation:
initialization, insertion, listing and search. In the capped array values are inserted one by one from zero
(empty capped array) until the predefined maximum value, without being necessary to store values for a
fixed number of cells determined prior to execution as in classical arrays known by the students. The cap
is a special variable that keeps track of the number of values stored so far. This structure holds didactic
interest in two senses: first, due to its flexibility it makes possible to establish a relationship, in terms of
the process of knowledge construction about data structures, between static structures previously studied
(arrays and records) and dynamic structures to be studied later (linked lists and binary trees). Second,
the representation of data through the structure of capped array and operations on it present an adequate
level of complexity, enhancing the introduction of fundamental ideas 1, 2 and 3 of Section 2.

The sequence was designed to be executed in class with a group of 12 students, taking into account their
prior knowledge. They all had worked with the following topics: resolution of simple programming
problems, basic syntax of an imperative programming language, variables, elementary data types, ex-
pressions and simple instructions, control structures (both selection and iteration), subprograms (both
functions and procedures), static data structures (arrays and records). The programming language used
in class was Pascal.

The activities for the sequence were designed based on guidelines established in the epistemological
model according to which knowledge is built through a first stage focused on isolated objects (intra
stage), then passing through a second stage that takes into account relationships between said objects
and their transformations (inter stage) and reaching a third stage in which a general scheme is built that
involves both the generalized objects and their transformations (trans stage). The sequence consists of
four groups of activities introducing the fundamental ideas 1, 2 and 3 as shown below:

A. Manipulation of the structure (fundamental ideas 1 and 2).

B. Formalization of the structure in a programming language (fundamental idea 1).

C. Initialization and insertion operations (fundamental idea 3).

D. Listing and search operations (fundamental idea 3).

The activities within group A start from the students’ instrumental knowledge (intra stage) and induce its
transformation into conceptual knowledge (inter stage) in relation to the structure itself and the insertion
operation, both of which constitute new concepts for the students. The activities in this group introduce
fundamental ideas 1 and 2 by means of transforming the data in a structure that can be handled by the
algorithm in Activity 3. The activities within group B introduce fundamental ideas 1 and 3 by means of
discussing computational issues of the representation of the structure and its effects on the memory of the
computer. The activities in group C introduce fundamental idea 3 with emphasis in the Pascal program
as a formalization of the conceptual knowledge about the insertion algorithm (trans stage). Finally, in
the activities within group D students work with operations that present similarities and differences with
the insertion operation in order to consolidate the knowledge about the new structure of capped array.
These are listing and search operations that students have implemented on classic arrays. We present
below a detailed description of the activities within each group.

Group A: Manipulation of the structure (fundamental ideas 1 and 2)

Activity 1: Imagine there is a shelf that contains compact discs, which are located from left to right. It
is desired that a person, standing in front of the shelf, can immediately know the number of discs placed
so far, without having to count them one by one or do any type of calculation. What could be added to
the shelf so that the person can know that?

The proposed arrangement has a correlation with the data structure to be constructed at the formal stage.
The discs correspond to the values to be stored in the cells and their positions on the shelf to the indices

PPIG 2024

www.ppig.org 115

of the array (the data structure). The activity introduces the need to incorporate a new element: the cap.
Students are induced to propose a solution, at instrumental level, to solve the task. They are expected
to come up with ideas such as "put a mark" or "write down the amount of discs on a piece of paper".
Based on the students’ ideas, they are then asked to reflect on why each alternative works (or doesn’t
work). For example, putting a mark implies the need to count the discs that precede it, which does not
satisfy the requirement of avoiding counting them. Having a piece of paper with the amount provides a
better solution, as it avoids having to count all of the discs every time.

Activity 2: Suppose you have a disc in your hand and you are about to place it on the shelf after the last
one. What condition should be met to be able to perform the task successfully? After placing the disc,
what should be done so that the person from Activity 1 still knows how many discs are placed without
having to count them?

This activity expects students to apply instrumental knowledge for its resolution. Everyone has stored
items on a shelf before, so they should be able to figure it out without difficulty. The purpose is to make
them aware of both the general case and the edge case (checking that the cap value does not exceed the
maximum number of discs that fit on the shelf).

Activity 3: Based on your answer to the question in activity 2, write an algorithm in pseudocode to
insert a new disc on the shelf after the last one and update the number of discs placed.

This activity proposes the use of an intermediate formalism (pseudocode) to help conceptualization and
begin the passage to the trans stage. This is particularly helpful when introducing a new operation
(insertion of a new element) that has no similar equivalent in the students’ prior formal knowledge. So
far, they had only worked with classic arrays (without a cap). In a classic array, the insertion operation is
not defined, since all of its cells always have a value stored in it. The notion of inserting a new element
into a data structure is being worked on for the first time with the introduction of the capped array.

Group B: Formalization of the structure in a programming language (fundamental idea 1)

Activity 4: Define a data type in Pascal that allows representing the shelf along with the number of
discs stored so far (the cap). For simplicity, assume that the shelf has the capacity to hold at most 50
discs and that each disc is simply represented by an integer number (its ISBN). Explain how each part
of your Pascal definition corresponds to the shelf.

This activity involves construction of knowledge about the use of the programming language to define
the capped array. The students had previously worked separately with arrays and records, and their
integration allows the new data structure to be defined, since it unifies, in the same syntactic unit, both
the array and the cap. Taking advantage of the fact that no new syntactic elements are required, the
activity encourages students to use what they already know about the language syntax to propose a
definition for the new data structure and establish a correspondence between the shelf (instrumental
stage) and its representation in a programming language (formal stage).

Activity 5: Given the following variables in Pascal:

arr: Arreglo; (* classic array *)
act: ArregloConTope; (* capped array *)

Assuming that both of them have 10 cells (with indices ranging from 1 to 10), draw both the variable
arr with values stored in all of its cells and the variable act, assuming that only the first four cells have
been loaded with values so far. What expression should you write in Pascal to access the third cell of
the classic array? And to access the third cell of the capped array? And to access the cap?

Activity 6: Now we are going to compare some characteristics between the classic array and the capped
array. What syntax similarities and differences do they present? In what circumstances is it more
appropriate to work with the classic array? and with the capped array? What is the purpose of the cap?
Why does the classic array not need a cap? What happens with the values in the cells after the cap in

PPIG 2024

www.ppig.org 116

the capped array?

Activity 5 induces students to construct knowledge about the syntax rules necessary to manipulate the
capped array and become aware of how said data structure works in the computer memory. Subse-
quently, activity 6 induces a reflection process about the similarities and differences between the two
data structures, both at syntactic and functional level. Especially in relation to the fact that, as seen ear-
lier in the course, all cells of the classic array must be stored with valid values, while the cells after the
cap contain undefined values ("garbage" values), simulating the absence of discs on the shelf beyond the
position indicated by the cap. According to the epistemological model, the construction of knowledge
about the new structure is carried out from the generalization of knowledge previously constructed for
the manipulation of classic arrays and records.

Group C: Initialization and insertion operations (fundamental idea 3)

Activity 7: Write the following subprograms in Pascal (each suprogram name is kept in Spanish, which
is the native language of the students who participated in the class, as well as the names given in Spanish
for the data types: Arreglo for the classic array and ArregloConTope for the capped array):

procedure InicializarTope (var act: ArregloConTope)
function EstaLleno (act: ArregloConTope) : boolean
procedure Insertar (val: integer; var act:ArregloConTope)

which, respectively, initialize the cap with 0, determine whether the capped array already contains
values in all its cells and insert the new value into the capped array, according to the algorithm in
activity 3.

Activity 8: Draw a capped array that has 10 cells in total and show what it would look like after each
of the following instructions is executed. How many more values could be inserted into it after executing
these instructions?

InicializarTope (act);
Insertar (5, act);
Insertar (3, act);
Insertar (8, act);

Activity 7 asks students to implement the requested subprograms in Pascal, based on the knowledge built
in the previous activities. It is expected that no major difficulties should arise, due to the progressive
construction of concepts arising from previous activities. In particular, the third procedure constitutes a
new expression of the algorithm in pseudocode. During writing, it is expected that students will make
errors typical of machine execution. For example, a problem with an index that produces an out of range
error, or accessing a cell with an undefined value ("garbage" value). In such cases, activity 8 induces
students to resort to a mechanism called automation, described in (da Rosa & Gómez, 2022), which
consists of manually executing the algorithms on an array drawn on paper which, within the framework
of the epistemological model, has proven to be very useful in helping students become aware of errors
and return to the code and correct them.

Group D: Listing and search operations (fundamental idea 3)

Activity 9: Write the following subprograms in Pascal:

procedure ListadoComun (arr: Arreglo)
procedure ListadoConTope (act: ArregloConTope)

which respectively list on screen the values stored in the classic array and in the capped array. Watch
the code written for both subprograms. What similarities and differences do they present?

Activity 10: Write the following subprograms in Pascal:

function BusquedaComun (arr: Arreglo; num: integer): boolean

PPIG 2024

www.ppig.org 117

function BusquedaConTope(arr: ArregloConTope; num:integer):boolean

which respectively determine whether or not the value num is stored in the classic array and in the
capped array. Watch the code written for both subprograms. What similarities and differences do they
present?

Unlike the insertion algorithm from activity 8 (which is a new operation), students have already im-
plemented listing and search operations on a classic array earlier in the course. These activities take
this into account and seek to adapt said prior knowledge for the implementation of new versions, now
working on the capped array. They have reasonable similarities and differences with the classic array,
which provides an adequate context for the construction of new knowledge working at the formal level
(through generalization). Finally, students are asked to compile and run all implemented subprograms
on a computer. To do this, they are provided with a source file with the declarations and headers of the
requested subprograms. Students simply must complete the missing portions, corresponding to the body
of each of the implemented subprograms, before compiling and executing.

The course lasts 15 weeks and has several groups of students, distributed at different time schedules.
Every group attends two classes per week, each lasting 90 minutes. According to the course curriculum,
the capped array is planned to be worked on in week 10, after having introduced classic arrays and
records in weeks 8 and 9, respectively. The didactic sequence was executed with a group of 12 students,
who participated voluntarily. The rest of the students attended groups in which the topic was worked on
in the traditional way (presenting from the beginning both the data structure and the operations, working
directly at the formal stage), without taking into account the students’ prior knowledge at the intra and
inter stages. A future in-depth analysis of the differences in learning observed in the students after
having worked on the topic based on one methodology or another is to be done.

All twelve students worked in teams of three members each. Everyone solved the ten activities presented.
The work mechanics consisted of the teacher presenting the statement of each activity and then each team
proposed a solution for it. Subsequently, a collective discussion was held among the entire class. We
now present the development of the activities within each group (A, B, C and D) and a brief analysis of
the work of the different teams.

Group A: Manipulation of the structure (fundamental ideas 1 and 2)

In activity 1, the four teams determined necessary to have a "space" that kept track of the number of
discs placed so far on the shelf. They called it "poster", "sheet" or "paper". Regarding the question
posed in activity 2, everyone concluded that it was necessary to compare the value currently noted on
the "space" with the capacity of the shelf prior to placing the new disc after the last one. Within the
framework of the epistemological model, students became aware of the two fundamental operations to
solve the problem: comparison (of the cap with the maximum size) and insertion (of the new element
after the last one) and they all managed to write the requested pseudo code in activity 3. As an example,
the solution of one team is shown in Figure 1 (photo of the original algorithm, written in Spanish).

Figure 1 – Pseudo code for activity 3

PPIG 2024

www.ppig.org 118

Group B: Formalization of the structure in a programming language (fundamental idea 1)

For activity 4, all teams defined a record type in Pascal that grouped the array with the cap. As ex-
pected, they did it tied to the specific instance presented in the activities of group A, considering a shelf
with capacity for 50 discs. As an example, the definition proposed by one team is shown in Figure 2
("Estantería" is the Spanish word for shelf). According to the epistemological model, such definitions

Figure 2 – Type definition for the capped array

are expected in this stage. Although they are correct from a syntactic point of view, they show that the
students’ thinking is still tied to the specific instance of discs manipulated in the instrumental stage. The
jump from specific cases to the general case is produced by successive repetition. To abstract from the
specific instance, during the collective discussion, the teams were asked how they would modify the
definition so that it serves different specific sizes. This introduced the need for a constant N to make it
possible to define a capped array of any size, as it is shown below:

type ArregloConTope = record
arre: array [1..N] of integer;
tope: 0..N;

end;

In activity 5, the four teams managed to draw both the classic and the capped array, according to the
instructions given. When writing the expressions to access the third cell of the classic array, the third
cell of the capped array, and the cap, they made various syntax errors. This is expected at this stage,
since it is the first time that they combine syntax for arrays with syntax for records. In the subsequent
discussion, reflection was induced and all teams were able to correct the aforementioned errors. As an
example, the responses of one of the teams are shown in Figure 3.

Figure 3 – Answers for questions posed in activity 5

As in activity 5, the answers to the questions posed in activity 6 presented a variety of errors, which

PPIG 2024

www.ppig.org 119

were again corrected after discussion, in which the similarities and differences between both structures
(classic and capped array) were stated, both in terms of syntax and semantics. All students understood
that it is appropriate to use the classic array when the number of values is fixed and known in advance,
while the capped array is a collection with a variable number of elements, upper bounded by the size of
the array.

Group C: Initialization and insertion operations (fundamental idea 3)

In activity 7, the four teams wrote initial versions for the three requested subprograms, making similar
errors to those in activity 6. The syntax errors became evident after computer compilation. Facing the
errors shown by the compiler helped the teams to reflect and correct them. Regarding execution errors
(for example: an out-of-range error), the automation mechanism (guided by activity 8) made it possible
to detect and correct them. The final version of one team for each requested subprogram is shown below:

procedure InicializarTope (var act: ArregloConTope);
begin

act.tope:=0;
end;

function EstaLleno (act: ArregloConTope) : boolean;
begin

if act.tope=N then
EstaLleno:=TRUE

else EstaLleno:=FALSE;
end;

procedure Insertar (val: integer; var act: ArregloConTope);
begin

if (not EstaLleno(act)) then
begin

act.arre[act.tope+1]:=val;
act.tope:=act.tope+1;

end;
end;

Group D: Listing and search operations (fundamental idea 3)

Finally, activities 9 and 10 had a development analogous to that of activities 7 and 8, once again making it
possible for all teams to implement correct versions for the requested subprograms (listing and search).
Each team compiled and then ran all implemented subprograms on the computer. Below is the final
version corresponding to the same team of questions 7 and 8 for the listing and search on the capped
array.

procedure ListarConTope (act: ArregloConTope);
var i: integer;
begin

for i:= 1 to act.tope do
writeln (act.arre[i]);

end;

function BuscarConTope (act: ArregloConTope; num : integer) : boolean;
var i:integer;
begin

i:= 1;
while (i <= act.tope) and (act.arre[i] <> num) do

PPIG 2024

www.ppig.org 120

i:= i+1;
if i <= act.tope then

BuscarConTope:=TRUE
else BuscarConTope:=FALSE;

end;

4. Conclusions and further work
As it is pointed out in Section 1, various authors argument that one of the difficulties for computing
being part of the basic disciplines for the education of all students lies in the undervalued role of its
didactic. This becomes evident considering the lack of scientific research in the field supported with
solid theoretical foundations elaborated with the participation of computing teachers. We have con-
ducted for many years, empirical studies such as the one presented here, designed in the framework of
epistemological basis. In the last years we have integrated results from didactic research (Bröker et al.,
2014; Schwill, 1997; Bell et al., 2018) in order to produce a didactic model that computing teachers
can use and evaluate. Particularly we found that the fundamental ideas of (Schwill, 1997; Bell et al.,
2018) constitute an axis for designing didactic sequences, as described in Section 3. Although we have
included the fundamental idea 4 about the performance of algorithms in our subset of fundamental ideas
(see Section 2), we have not used it in the empirical study described here, leaving the task for future
work.

The didactic sequence designed for the study constitutes one of the applications of the didactic model
(didactic sequences for Physics are described in a draft version of unpublished manuscript). The theoret-
ical framework guided by the fundamental ideas and the epistemological model that we have developed
(Section 2) made it possible to design the activities in such a way that both the learning objectives and
the work strategies were clearly outlined.

Within the four fundamental didactic questions: what, how, why and for whom (to teach computer sci-
ence) (Saeli et al., 2011), the prior identification of the fundamental ideas made it possible to accurately
define the specific programming concepts to work on in the sequence (what). On the other hand, the
epistemological model made it possible to define the activities so that the students themselves built
knowledge about these concepts during their execution (how). We believe that this particular point is
of special value and distinguishes our didactic model from other approaches traditionally used in edu-
cation, which usually focus on the presentation of concepts, without taking into account how students
learn. As for why and for whom, the authors mentioned in Section 1 solidly justify why it is important
to educate on computer topics in secondary education and/or undergraduate courses.

Last, in relation to the application of the didactic sequence, it was observed, in a first preliminary anal-
ysis, that the gradual nature of the proposed activities (taking into account the knowledge construction
process guided by the intra-inter-trans triad) made it possible for the students to gradually build knowl-
edge about the concepts worked on. The four teams of students managed to successfully solve every
activity and finished with the compilation and execution on the computer of all the subprograms, imple-
mented by themselves. The teacher’s main task was to guide the collective discussion after each activity
(instead of having an expository role of the concepts being worked on) and make corrections when ap-
propriate. An in-depth analysis of the study remains to be done, from which it is expected to extract
more evidence about the effect of introducing the fundamental ideas and draw conclusions that, in turn,
will allow to provide feedback and enrich the didactic model, still under construction.

5. References
Bell, T., Tymann, P., & Yehudai, A. (2018). The big ideas in computer science for k-12 curricula. Bul-

letin of EATCS, 1(124).. http://smtp.eatcs.org/index.php/beatcs/article/
viewFile/521/512.

Bröker, K., Kastens, U., & Magenheim, J. (2014). Competences of undergraduate computer science stu-
dents. In KEYCIT – Key Competencies in Informatics and ICT. Torsten Brinda, Nicholas Reynolds,

PPIG 2024

www.ppig.org 121

Ralf Romeike, Andreas Schwill (Eds..
Cabezas, M., & da Rosa, S. (2022). Modelado didático para ideas fundamentales en com-

putación. Proceedings of The 51 SADIO Conference, Simposio Argentino de Educación en In-
formática (SAEI 2022). https://www.fing.edu.uy/~darosa/#papers/Modelado
-Didactico-Ideas-Fundamentales-Computacion.pdf.

da Rosa, S. (2018). Piaget and Computational Thinking. CSERC ’18: Proceedings of the 7th Computer
Science Education Research Conference, 44–50. https://doi.org/10.1145/3289406
.3289412.

da Rosa, S., & Gómez, F. (2019). Towards a research model in programming didactics. Proceedings of
2019 XLV Latin American Computing Conference (CLEI), 1–8. doi: 10.1109/CLEI47609.2019

da Rosa, S., & Gómez, F. (2022). The construction of knowledge about programs. Proceedings of PPIG
2022 - 33rd Annual Workshop, 1–8.

da Rosa, S., Viera, M., & García-Garland, J. (2020). A case of teaching practice founded on
a theoretical model. Lecture Notes in Computer Science 12518 from proceedings of the In-
ternational Conference on Informatics in School: Situation, Evaluation, Problems, 146–157.
https://doi.org/10.1007/978-3-030-63212-0.

Denning, P., & Tedre, M. (2015). Shifting identities in computing: From a useful tool to a new method
and theory of science. In Hannes Werthner and Frank van Harmelen, Eds. Informatics in the
Future, Proceedings of the 11th European Computer Science Summit.

Denning, P., & Tedre, M. (2019). Computational thinking. Cambridge, MA : The MIT Press.
Denning, P., & Tedre, M. (2021). Computational thinking: A disciplinary perspective. Informatics in

Education., 20(3), 361–390. doi: 10.15388/infedu.2021.21
Dowek, G. (2012). Les quatre concepts de l’informatique. Bulletin de l’Association EPI. https://

www.epi.asso.fr/revue/articles/a1204g.htm.
Dowek, G. (2013). L’enseignement de l’informatique en France, Il est urgent de ne plus attendre.

www.academie-sciences.fr/activite/rapport/rads_0513.pdf. (Rapport de
l’Académie des Sciences)

Harel, D., & Feldman, Y. (2004). Algorithmics - The Spirit of Computing. Addison-Wesley Publishers
Limited 1987, 1992, Pearson Education Limited 2004.

Malmi, L., Sheard, J., Bednarik, B., Helminen, J., Kinnunen, P., Korhonen, A., . . . Simon. (2014).
Theoretical underpinnings of computing education research: what is the evidence? ICER14:
Proceedings of the tenth annual conference on International computing education research., 27–
34.

Saeli, M., Perrenet, J., Jochems, W. M., & Zwaneveld, B. (2011). Teaching Programming in Secondary
School: A Pedagogical Content Knowledge Perspective. Informatics in Education, Vol. 10, No. 1,
73–88.

Schwill, A. (1997). Computer science education based on fundamental ideas. Proceedings of the IFIP
TC3 WG3.1/3.5 joint working conference on Information technology: supporting change through
teacher education, 285–291.

PPIG 2024

www.ppig.org 122

Craft Ethics - Aiming for Virtue in Programming with Generative AI

Martin Jonsson
Södertörn University
martin.jonsson@sh.se

Jakob Tholander
Stockholm University

jakobth@dsv.su.se

Abstract
This paper analyses some aspects of the profound shifts in programming practice and education about by
the advent of generative AI (GenAI). As GenAI tools become increasingly integrated into programming
environments, they offer an approach to programming that bypasses significant aspects of the meticu-
lous syntax-focused processes inherent in traditional programming. Instead, these tools enable a more
immediate transition from problem articulation to automated solution generation, reducing the need for
traditional forms of iterative problem-solving and careful focus on coding details. This paradigm shift
not only challenges the foundational skills taught in programming education but also raises ethical con-
cerns regarding aspects such as interpretability, authorship and accountability of the produced code. This
involves a reevaluation of programming education and practice, suggesting a need for a reorientation to
emphasise ethical and interpretative skills in programming with GenAI. Based on a series of studies
on GenAI-supported programming, this paper highlights aspects relating to control, agency, and design
for ethical deliberation in the evolving practices of programming with GenAI. To move towards such
practice, we propose a set of design challenges based on the concept of "Craft Ethics," which empha-
sizes virtue, quality, and a thoughtful approach to programming and design. These challenges integrate
traditional craftsmanship values into GenAI practices, ensuring that the ethical and qualitative aspects
of programming are renewed and enhanced.

1. Introduction
Generative AI (or GenAI)tools based on Large Language Models such as GPT-4, Gemini, or Llama,
have reached a level of functionality where they are capable of generating various forms of working
programming code ranging from advanced code-completion to writing code snippets based on natural
language input, as well as advanced debugging, reviewing, and rewriting code. These tools are rapidly
being taken into practice both among professional programmers as well as in a range of educational
settings and have given rise to renewed discussions of how programming finally may reach the point
of being democratized and accessible to a broader audience, mirroring the hopes of early high-level
languages such as Smalltalk and Logo. More recently, Krings et al, (2023) for instance, envision what
the future of programming might be like when AI tools become powerful enough to generate working
programming code based on open-ended specifications, allowing for ‘everyone to be programmers’,
potentially turning programming into a practice that is more about developing ways to support humans
in “how to best educate the machine” (Welsh, 2023), than about writing code in traditional ways. The
new programming tools based on generative AI are certainly impressive but are also limited in many
ways, and we still need to better understand how they are used in actual practices of programming,
and what new kinds of interactions and collaborations need to be supported in the emerging processes
of co-creation and co-coding between humans and AI (Jonsson & Tholander, 2022). In their current
form, interaction with these tools is primarily conducted through various forms of text or chat-based
natural language interactions which provides powerful opportunities for open-ended forms of interaction
(Prather et al., 2023). However, studies have pointed to the need to also explore and understand the new
practices that emerge with the use of these kinds of tools, and how the interactions and practices are
shaped by the properties and behaviours of both the underlying models and the programming tools that
leverage their functionalities to the end users. (Denny, Kumar, & Giacaman, 2023) (Jeuring, Groot, &
Keuning, 2023) (Jonsson & Tholander, 2022). The new programming practices and the new ways to
create digital interactive materials also challenge established truths about what are good and virtuous

PPIG 2024

www.ppig.org 123

ways of programming, and how to achieve good quality and desired behaviours of the generated code
materials. Based on research in this area, we will discuss some new emerging phenomena relating to
GenAI-assisted programming, and identify a set of ethical challenges relating to the use of such tools
in various programming activities. To elaborate on these challenges we will articulate programming
practice as a form of craftsmanship based on concepts from theories on craft and design practices, such
as design judgment, and craftsmanship of risk. Finally, we will outline a Craft Ethics for GenAI-assisted
programming, highlighting stances and approaches that might be beneficial for mitigating some of the
identified challenges.

2. Background
An increasing amount of studies have explored the effectiveness of novel AI tools such as CoPilot for
generating working programming code and how they integrate with and influence various aspects of
the practices of programming, such as learning (Jeuring et al., 2023), productivity(Bird et al., 2023),
use (Kazemitabaar et al., 2023), correctness and performance (Denny et al., 2023), etc. Bird, et al
(2023)for instance noted how programmers using CoPilot spent less time analysing code errors, but at
the same time seemed to develop less of an understanding of how or why a particular piece of code
worked the way it did. They also noted that the perceived productivity among users of CoPilot was
actually higher than it actually was. Relatedly, several other studies, (e.g. (Prather et al., 2023) (Barke,
James, & Polikarpova, 2022)) show that users of Generative AI tools for programming were required
to put additional efforts into actions such as instructing and articulating how the code should work, as
well as on reading, reviewing, debugging and tweaking the code that has been generated, while less
efforts were put into spending time on writing actual lines of code. This has been argued as pointing to a
potential larger shift in the nature of future practices of programming, making programming less about
writing code from scratch, and more about being able to interpret, understand and tweak code generated
by AI systems. This has even somewhat provocatively been phrased as that we are facing "the end of
programming" (Welsh, 2023), suggesting that the future of programming will change from programming
being a process of writing syntactically and logically correct lines of code, to a process of being skilled
in expressing and instructing the system in ways that makes it generate the code that one wants. A few
recent examples of studies have explored how to design for novel kinds of programming with Generative
AI may look beyond current interaction models, for instance, through prototypes that use the ability
of ChatGPT to generate code based on visual and textual sketches of a program (Lewis, 2019) (Ban
& Hyun, 2020) and how to create programming assistance through conversational interactions when
programming using LLMs (Ross, Martinez, Houde, Muller, & Weisz, 2023).

2.1. Emerging Programming Practices
A limited number of studies have specifically addressed issues and specific patterns of use and interac-
tion that emerge with generative AI tools in programming, and to identify emerging design opportunities
(Jayagopal, Lubin, & Chasins, 2022) . Barke et. al. (2022) suggest that interaction with AI-based pro-
gramming assistants is bimodal. Firstly, it involves what they call an acceleration mode, denoting how
the tool simplifies and speeds up the process of writing a particular piece of code, and secondly, it in-
volves an exploration mode denoting how the tool supports the programmer to explore different options
when hesitating on where to go next. In a similar fashion, Jonsson and Tholander (2022) discuss the
notion of friction and point to two ways that it can be understood in processes of programming with
code generation tools. These tools may work to remove some of the friction that a novice programmer
experiences in programming, e.g. simplifying through the generation of initial suggestions and ideas,
and alternative solutions to various problems. They may also induce friction by slowing down the pro-
cess, suggesting unexpected routes that make users reflect and explore alternative solutions. Similarly,
Prather et al (2023) identified two interaction patterns in novice programmers use of CoPilot. The first,
called sheparding, describes how students worked through continuous tweaking of prompts that guided
Copilot through making its auto-generated code proposals to close up on a working solution, rather than
creating code from scratch. The second, called drifting, regarded how students tried to make use of the
system’s suggestions despite not getting closer to a working solution, thereby drifting between various

PPIG 2024

www.ppig.org 124

suggestions and eventually getting lost. A form of interaction called slow accept was also identified,
through which users typed in the suggested code snippet themselves, rather than merely accepting it.
This allowed them to better understand the purpose and workings of the proposed code. This growing
number of empirical studies of the usage of generative AI for programming have started to identify and
conceptualise the different ways that incorporate these technologies in their practices However, there is
still limited understanding of how these kinds of interactions are shaped by the specific properties of the
user interfaces, and the opportunities of novel designs for alternative forms of use.

2.2. From Programming Tools to Programming Partnerships
Some of the findings of previous studies have raised discussions about how these shifts in the nature
of programming practice and interaction may fundamentally recast the relations between programmers
and the technologies they are entangled in the creation of programming code. Both Welsch (2023) and
Jonsson and Tholander (2022), point to how programmers have to give up parts of their autonomy as
programmers and hand over control over the coding process to the AI tool (Bird et al., 2023). Program-
ming tools and practices would then require the design of ways to support new forms of partnerships
between human and artificial partners, new kinds of pair-programmers, in which the AI is considered
an active collaborator, and not merely a non-agentive tool (Lawton, Grace, & Ibarrola, 2023) . Such a
reframing of the relations in programming practices requires a reconsideration of each actor’s contribu-
tion to and role in the collaborative process. As in other forms of human-human collaboration, this is
not always what can expected or specifically designed for. All actors in various ways and to different
extent contribute to bringing the overall process forward. This might involve a perspective where code
develops through shared and collaborative efforts, including the wrongs and rights, mishaps and points
of view of either actor. Conceptually, this aligns with notions of co-creativity and co-creation that have
emerged in research in perspectives on HCI, which frame how interactive and smart technologies may be
considered as co-participants in creative processes (Wakkary, 2021), rather than as mere tools controlled
by human actors. This further relates to conceptual and theoretical work in HCI (Devendorf & Ryokai,
2015), around notions such as more-than-human design, and co-performance (Kuijer & Giaccardi, 2018)
and machine agency (Pickering, Engen, & Walland, 2017) which suggest a reconsideration of the view
of humans as the sole source of creative agency, to also see various forms of interactive and digital
technologies as sharing the agency to spur ideas and creative expressions. These theories highlight the
entanglement of human agency with agencies originating from non-human entities, implying that pro-
gramming and design are inherently relational forms of action. Programming and design are then not
to be viewed as exclusively human actions, but co-constituted in entanglements of human and artificial
agencies. We argue that the intersection between current technical developments and these theoretical
perspectives on human-machine relationships opens up for interesting discussions around responsibility,
control, and ethics in the new emerging practices of GenAI-assisted programming.

3. Ethical Challenges in GenAI-assisted Programming
As has been shown above, generative AI tools have the potential to radically redefine what programming
is and how to do it. A large part of the research on GenAI-assisted programming, focuses on how
to increase performance and productivity, reducing errors, and creating a more effective collaboration
between humans and AI. What has been less discussed are the ethical ramifications of this shift of
practice. Some concerns have been raised, for example, the risk that programmers might lose their jobs
(Welsh, 2023), or that these new tools will have limited accessibility for broader groups of potential
users, increasing gaps both between groups in society, as well as globally between the global north
and developing countries. In the following, we will omit ethical issues on this societal macro level
and instead focus on some challenges that arise on the level of the individual users and the emerging
practices of GenAI-assisted programming.

As an increasing amount of the code the programmers produce is automatically generated, an inherent
consequence is that the programmer has less control over the way the code is written and how it executes.
For cases such as basic auto-completion for setting up simple programming constructs, this might not
be problematic, as the code is easy to read and interpret. However, as these tools get more advanced, we

PPIG 2024

www.ppig.org 125

can assume that the generated code will be more challenging to read and, as all programming code, hide
and abstract away important aspects of the code. This will give less control over the code and require the
programmers to trust how the system is built and how it is executed. While large software development
projects have similar consequences in that there is not one single individual in control of every piece of
functionality in the system, we argue that when we to an increasing extent rely on AI-generated code,
we will encounter unknown consequences of how it executes. We have identified four particular ethical
challenges that may occur in the concrete GenAI-based programming practices: 1) dealing with errors
and imperfections, 2) explainability and accountability of code, 3) bias and drifting in interaction, and
4) methods and approaches for bias and testing

3.1. Errors and Imperfections
Being able to interpret and find errors in generated code is reinforced by the fact that it is well-known and
broadly acknowledged that despite rapid improvements, LLM-based tools still generate textual output
that is far from perfect. Text generated by LLMs is commonly flawed or even totally wrong, and the
same goes for the generation of programming code. A recent study from Kabir et al. (2024) shows
that 52% of ChatGPT answers to programming questions contain incorrect information, but that users
still prefer using ChatGPT for getting answers due to the comprehensiveness and well-articulated style
of language often used. Concerning errors in generated programming code, Weisz, et al (2021) discuss
how programming differs significantly from other forms of text-based practices, since small errors in
programming may have much more significant consequences compared to small errors in a piece of
argumentative or fictional text. Errors in the logic of the code may fundamentally change its workings,
thus requiring that any piece of generated code always needs to be thoroughly reviewed. In Barke
et al’s (2022) study of novice programmers, they point to a need for a shift in programming practice
from writing code, to reading and interpreting generated code, and how this enables students to work
at a higher level of abstraction and spend their cognitive effort on thinking about the semantics of the
program, rather than on details of the syntax and logic. Vaithilingam et al, (2023) as well as Jonsson
and Tholander (2022) further discuss the consequences of the imperfection of the code that tools such as
CoPilot or ChatGPT in relation to the design of novel forms of interaction for working with such code
generation. Importantly, these studies found that despite code generation being imperfect, it still proved
useful for the ongoing problem-solving and creative process, for instance as starting points when being
stuck or as ’pieces of code to think with’ in order to carry the overall process forward. It is likely that the
performance of the LLM-models will improve, resulting in fewer errors and unexpected code. This is
obviously a positive development, but it might lead to an over-reliance and poorly grounded expectations
on the quality of the code that AI tools may generate, leading to the users omitting critical reflection and
evaluation of the generated output. Moreover, this also builds on an assumption that the code is generated
on a well-defined intention of the final execution. However, many programming projects are iteratively
driven, in which the code works as a co-creative tool in developing the idea of what is to be designed
and built.

3.2. Explainability and Responsibility
A commonly discussed problem with respect to AI and especially large language models, is that these
systems are opaque, giving no explanation as to why a certain input generates a particular output. Even
the researchers who designed these systems often have a hard time explaining the intricate links between
input or output, or as bluntly put by (Welsh, 2023): "Nobody actually understands how large AI models
work." This raises issues regarding who is responsible for the effects of the outputs of the AI system. To
what extent can the user be in control of the output and the process? In the case of programming, the
user might not have the abilities and training to fully understand the generated code or it may rely on
code or data generated elsewhere. This raises the issue of how to design mechanisms in these systems
that allow programmers to interpret and understand code in a fashion that allows them to be accountable
for the behaviour of code. This concerns both an understanding of the workings of the generated code
as such, but also involves challenges in how the AI tools interpret the instructions and input provided
by the user, and how the generated output aligns with the user’s ideas or more or less well-articulated

PPIG 2024

www.ppig.org 126

intentions. Partly this can be understood as a problem that can be mitigated by more powerful and
better-tuned AI models, but there are dimensions of this problem that cannot be solved by engineering.
The power of these tools resides in that they can translate a short instruction or a few lines of code into
a solution rich with details that go far beyond what was specified in the input. If every aspect and detail
that should be included in the generated output has to be specified in the input instructions, the gains and
usefulness of the tools become comparable to just writing the code on your own. Projecting the usage
of GenAI tools into the future, it is not hard to imagine usages in which the AI-generated output is too
detailed or complex to fully comprehend even for expert users. If such code causes harm or expresses
unwanted norms, it raises concerns regarding the responsibility for the emerging effects. This would call
for more rigorous and efficient testing methods. However, as is well documented for instance in critical
algorithm studies, the effects of these systems are not intentional or predictable beforehand but emerge
out of interaction with users and the data that they operate upon.

3.3. Bias and Drifting
Bias in AI and machine learning systems is a well-known issue, extensively discussed concerning its
ethical implications. Bias typically arises when training data is flawed due to prejudices related to
gender, race, and other factors, leading AI systems to reproduce these flaws. In the context of GenAI-
assisted programming, bias can also be significant. If the AI is trained on biased historical code bases,
these biases can be reflected in its suggestions. Training data that is not diverse and predominantly
includes code from specific demographics may cause the AI to favour certain coding styles or solutions.
The architecture and algorithms used can further introduce bias by prioritizing specific data patterns.
This may affect code completion and the recommendations that are generated, potentially reflecting
bias or stereotypes thereby limiting the opportunities for novel and creative solutions. Additionally,
the AI tools might generate code that is less accessible to certain user groups if it is optimized based
on specific demographics, making it less usable for other groups. Bias can also manifest in the AI’s
performance across different development environments, particularly if certain coding environments or
tools are more represented in the training data. Lastly, if the AI is predominantly trained on code from
a specific region, it may fail to suggest best practices common in other regions. The potential biases
of GenAI programming tools may play out in different ways in different patterns of interaction, for
instance in relation to Prather et al’s (2023) notion of drifting - a phenomenon where the AI-generated
code gradually drifts away from the users’ initial intentions. Drifting illustrates how a biased GenAI-
programming tool can become ethically challenging, as the activity must always be understood as a
joint effort between human and AI actors, and where the activity and generated outcomes is a result of
a mangle of agencies (Pickering et al., 2017) attributed to both humans and the tools, models and user
interfaces involved in the interaction.

3.4. Control and Testing
In a recent, still unpublished study comparing novice programmers with experienced programmers in
their use of GenAI tools, a number of differences emerged concerning how the two groups manage
control and testing. One critical difference between novice and experienced programmers concerned
their previous coding experiences and how these influenced how well they could evaluate and test the
code that the tools generated. As one would expect, the more experienced the users were, the more
elaborate they were in their judging of the workings of the code that was generated. Less experienced
users on the other hand, primarily evaluated the code by executing it in order to be able to experience
and reflect upon how the output behaved in relation to what they had expected. To conceptualise this,
two dimensions of interaction and use were proposed; code-focused versus execution- and experience-
focused interactions. The code-focused interactions align to a large extent with existing programming
practices and often involve the careful writing of prompts or structuring of sections of pseudo-code that
the tools would use to generate a specific piece of code, including the interactional efforts required to
understand and interpret the code that was generated. This also aligns with how previous studies (Barke
et al., 2022) have argued for how generative AI tools contribute to a shift in the focus of programming
practices from primarily involving various processes oriented to the writing of code, to the increased

PPIG 2024

www.ppig.org 127

engagement of competencies of skillfully reading, interpreting and tweaking generated code. The novice
users more commonly engaged in interactions that were execution- and experience-focused, involving
the writing of prompts, articulation of ideas, or expression of intentions that had the purpose of getting
the tool to generate a piece of code that would result in a particular kind of execution - such as a specific
visual interaction on the screen - without expecting an explicit idea of the specific characteristics or
qualities of the actual code that the execution would be based upon. Projecting the use of GenAI tools
for programming into the future, it is not unreasonable to assume that the textual code representation
will be less important and less in focus than in current programming practices. This shift in how code
is evaluated and tested might be ethically problematic as the focus on execution omits the scrutiny and
detailed examinations of all the generated materials.

4. A Turn to Craft
Welsch (2023) claims that generative AI provides a "seismic shift" for people’s relation to computation
and programming, replacing predictable static processes, governed by instruction sets and decidability,
with an understanding of computation as temperamental, mysterious and unpredictable, more similar to
humans than we have seen before. Likewise, generative AI tools offer an approach to programming that
bypasses significant aspects of the meticulous syntax-focused processes inherent in traditional program-
ming. Instead, these tools enable a more immediate transition from problem articulation to automated
solution generation, reducing the need for traditional forms of iterative programming practice and care-
ful focus on details of syntax and logic. This paradigm shift raises ethical concerns regarding aspects
such as authorship and accountability of the produced code, and how programming processes are con-
trolled. In these emerging programming practices, there is a need to establish common understandings
of what constitutes good practice, how quality is maintained, and how to aim for virtue. Programming
practices have traditionally been characterised as cognitive endeavours rooted in logic and scientific
scrutiny, highlighting computational thinking as a particularly critical competence, such as decompo-
sition of problems into parts and working systematically towards a solution. An alternative, albeit not
necessarily contradicting way of describing programming practice, is through the notions of crafting,
and craftsmanship. This perspective on programming has previously been put to the fore by the soft-
ware craftsmanship movement (Sundelin, Gonzalez-huerta, Wnuk, & Gorschek, 2021) that emerged in
the early 2000s (McBreen, 2002) as a response to the industrialization of software development. This
view characterises programming not merely as a technical-logical endeavour but with resemblances to
art practices that require a deep commitment to quality, detail, and material. A recent literature study
on the software craftsmanship movement (Sundelin et al., 2021) summarizes the core ideas behind this
movement, highlighting both a focus on particular qualities of software architectures, such as simplicity,
minimalism, and layered architectures, as well as a focus on processes and organisation of work high-
lighting iterative design with a strong focus on testing and iterative refinement. Cultural dimensions are
also highlighted, such as values relating to professionalism, like pride, humility and accountability. As
noted in previous chapters, GenAI-supported programming might result in practices where the care to
detail is replaced by higher-level design considerations and automated manufacturing processes with a
more direct route from high-level instructions to a final result. Such a process runs the risk of missing
out on important considerations and attendance to the details that shape key qualities of what is being
created. Therefore, we propose that the notion of software craftsmanship need to be reconsidered and
reframed to align with the new directions that programming practices are taking. In order to do this
we have to articulate the specific aspects of craftsmanship in line with the novel AI tools and ways of
working with them, and how these can be stimulated through novel tools and methods.

4.1. Design judgment and reflection in action
Many of the ethical challenges outlined in the previous chapter highlight the need for judgment and
critical evaluations to be integral parts of the programming practice. In his seminal work on the Re-
flective Practitioner, Donald Schön (1987) describes how professional designers continuously engage
in a reflection-in-action, referring to the process by which they think about and critically analyze their
actions while they are performing them. This concept emphasizes the importance of real-time reflection

PPIG 2024

www.ppig.org 128

to adapt and respond to complex and dynamic situations effectively. Unlike traditional forms of reflec-
tion that occur after the fact ("reflection-on-action"), reflection-in-action involves immediate, intuitive
problem-solving and the ability to adjust one’s approach on the fly based on the emerging circumstances
and feedback. Nelson and Stolterman (2014) further elaborate on such designerly ways of reflecting in
action by proposing the notion of design judgment as an intrinsic and important skill in design practices.
Design judgment is described as a series of both conscious and subconscious judgments and deliber-
ations on a broad range of different aspects. Parts of these judgments can be described as intellectual
judgments, which could concern actively making sure that the design results live up to a “desiderata”
of stated quality criteria and standards. Another dimension of design judgment is described as de-
sign volition, focusing on using one’s own will to pursue desired ends, referring to a particular form of
judgment-making related to the processes that bring new things into existence. These types of judgments
typically do not rely on a science of measurement to determine an objective outcome. Rather it is the
ability to gain subconscious insights abstracted from experiences and reflections from situations that are
complex indeterminate, indefinable and paradoxical. Design judgment is here described as a process of
taking in the whole, in order to formulate a new whole. Nelson and Stolterman identify design judgment
as comprised of the following particular kinds of judgments:

• Framing judgment – defining and embracing the space of potential design outcomes and the di-
rection that the design process will initially take

• Default judgments – a nearly automatic response to a triggering situation representing a form of
“bodily knowing” and an application of high-level skill without conscious deliberation

• Appreciative judgment – determining what is to be considered background and what requires
attention as foreground, assigning importance to some things and considering other aspects as
part of the context.

• Appearance judgment – Aesthetic judgments concerning the material substance and temporal ex-
perience or the fundamental character of the design.

• Quality judgments – deliberations relating to craftsmanship, connoisseurship or artistry, for exam-
ple highlighting precision and skill in crafting and shaping materials. Quality judgments can be
understood as a quest for excellence in the making of things.

• Instrumental judgments – The choice and mediation of means within the context of prescribed
ends. These judgments take technology into consideration and concern techniques and what in-
struments to use to determine what are realistic possibilities.

• Navigational judgment – making the right choices in an environment that is complex and un-
predictable. Securing the desired state of affairs by staying on track and proceeding in the right
direction, knowing when to follow the rule book and when to leave it aside.

• Compositional judgment – bringing things together in a relational whole, and concerns aesthetic,
ethical as well as sensual considerations.

• Connective judgment – establishing interconnections among things so that they create functional
assemblies, creating synergies and emergent qualities.

• Core judgments – The cases where we “know what is right” without being able to argue in a
rational way. A composite of meanings and values, formed during the experience of living.

• Mediative judgment – balancing the different types of designer judgments to orchestrate how the
whole should be brought together.

PPIG 2024

www.ppig.org 129

Even though programming has often been described as a craft practice, working with code and interac-
tivity as design materials, all aspects of design judgment as described above might not be immediately
applicable to computer programming. Many of the judgments are however relevant and a subset of
these judgments will be a fundamental contribution to the forthcoming suggestion of a Craft Ethics for
GenAI-assisted programming.

4.2. Workmanship of Risk
David Pye’s work, The Nature and Art of Workmanship (Pye, 1968) from 1968 explores the philosophy
and practice of craftsmanship, emphasizing the importance of skill and human touch in creating objects.
Pye here paints a romanticized image of traditional craft and craftsmanship as a reaction to the increasing
industrialisation of design and mass production of goods. He distinguishes between "workmanship of
risk," where the quality of the outcome is directly influenced by the maker’s skill and decisions during
the creation process, and "workmanship of certainty," where the outcome is predetermined by machine
processes, factory production, and automation. This distinction can be directly applicable to the case
of AI-generated code which could be described as articulating a "design" or description of the wanted
output, that is provided to the machine, which automates the production of the code. For such processes,
you are required to know exactly what qualities you want when you start the manufacturing process, as
they cannot emerge as part of the process. Pye instead advocates a craftsmanship of risk, where the end
result continuously depends on the mastery as embodied in persons, reflected in a capacity for judgment,
and expressed in problem-finding rather than problem-solving. But the main concern is taking care and
retaining control of the work process, and as a result of this, accepting responsibility for the end result.
This stance towards making with machines, as well as coding with AI, reflects a more ethical practice,
where the programmer becomes an integral part of the entire programming process.

4.3. Making with Head, Heart and Hand
Cheatle & Jackson (2023) explores traditional pre-digital craft practices and highlights qualities of craft
practices to be embraced in digital creative practices, such as craft’s holistic ways of making with ‘head,
heart, and hand’ and craft’s distinctly collaborative and embodied practice styles. Their conceptualisa-
tion of craft accounts for ways of making that are based on a rich and dynamic concept of personhood,
a ‘whole self’ approach, where mindfulness and cognitive processes are combined with emotional di-
mensions and the physical and skilful workings of the body in equal measure. "The heart" in this un-
derstanding of craft represents a driving force that moves work forward, founded on respect for labour,
hard work, self-reliance, community support, perseverance, and excellence in work. The heart here
symbolizes a type of personal investment that sustains work through challenges and failures, as well
as the pursuit of building a better world through care, commitment, trust, responsibility, respect, and
knowledge. This embodied and holistic perspective on making, to some extent aligns with the accounts
of design judgments accounted for above, referring to a "bodily knowing" based on internalised experi-
ences.

4.4. Towards a Craft Ethics in GenAI-Assisted Programming
Based on how virtue, ethics and judgment are articulated in relation to craft and design practices, we
provide a first outline of a new ethical framework, Craft Ethics for GenAI-assisted programming, in
an attempt to highlight the need for a common understanding of craftsmanship and judgment for the
emerging practices involving programming with generative AI-based tools. Craft ethics builds on the
care given to details and quality that are intrinsic to most craft and design practices, and the conscious
and unconscious judgments and deliberations that take place in these processes. As part of this frame-
work, we propose an alternative understanding of design judgment, in terms of programming judgment.
Central judgments in GenAI-assisted programming are: Framing judgments - Being clear of the aims and
directions and being able to articulate them in the co-creative activities with the AI tools. Quality judg-
ments - Continuously monitoring and evaluating the joint performance between human and AI in a quest
for excellence. Instrumental judgments - an internalised understanding of the capabilities and limitations
of the AI tools. Navigational judgments - Monitoring the co-creation process with a critical awareness
towards drifting in unwanted directions. Co-creative judgments - critically monitoring how different

PPIG 2024

www.ppig.org 130

agencies come into play in the joint activities, and how the interplay works towards a whole. Another
dimension of the Craft Ethics framework we refer to as riskful programming, encouraging practices that
emphasize flexibility, creativity, and adaptability, often at the expense of predictability and control. In
riskful programming with GenAI, the programmer accepts full responsibility for AI-generated outcomes
and is forced to engage intimately with the co-creative process to mitigate the potential harms that might
appear. The final dimension of the Craft Ethics framework is programming with head, hands and heart,
highlighting programming as an embodied practice with intrinsic ethical dimensions, with an overarch-
ing ambition of programming as a pursuit of building a better world. A craft ethics framework could
be understood as a set of guiding principles to support practitioners in how to engage in this particular
form of programming activities in an ethical and sustainable way. The framework could also be used
to inform the design of new tools and user interfaces for GenAI-supported programming, for example
making room for and encouraging programming judgment and riskful programming approaches.

5. Conclusions
In this paper, we have tried to outline some aspects related to the new emerging practices concerning
GenAI-assisted programming, as well as a number of ethical challenges related to these practices. The
need for a new understanding of craftsmanship for programming with generative AI tools was high-
lighted, discussing the need to support design judgment in different forms. An initial draft of a craft
ethics framework was formulated, consisting of a) programming judgment, b) riskful programming, and
c) programming with head, hand and heart.

6. References
Ban, S., & Hyun, K. H. (2020, March). 3D Computational Sketch Synthesis Framework: As-

sisting Design Exploration Through Generating Variations of User Input Sketch and Interac-
tive 3D Model Reconstruction. Comput. Aided Des., 120(C). Retrieved 2024-05-02, from
https://doi.org/10.1016/j.cad.2019.102789 doi: 10.1016/j.cad.2019.102789

Barke, S., James, M. B., & Polikarpova, N. (2022, October). Grounded Copilot: How Programmers
Interact with Code-Generating Models. arXiv. Retrieved 2024-01-24, from http://arxiv
.org/abs/2206.15000 (arXiv:2206.15000 [cs])

Bird, C., Ford, D., Zimmermann, T., Forsgren, N., Kalliamvakou, E., Lowdermilk, T., & Gazit, I. (2023,
May). Taking Flight with Copilot. Commun. ACM, 66(6), 56–62. Retrieved 2024-01-30, from
https://dl.acm.org/doi/10.1145/3589996 doi: 10.1145/3589996

Cheatle, A., & Jackson, S. (2023, October). (Re)collecting Craft: Reviving Materials, Tech-
niques, and Pedagogies of Craft for Computational Makers. Proc. ACM Hum.-Comput. Inter-
act., 7(CSCW2), 250:1–250:23. Retrieved 2024-02-21, from https://dl.acm.org/doi/
10.1145/3610041 doi: 10.1145/3610041

Denny, P., Kumar, V., & Giacaman, N. (2023, March). Conversing with Copilot: Exploring Prompt
Engineering for Solving CS1 Problems Using Natural Language. In Proceedings of the 54th
ACM Technical Symposium on Computer Science Education V. 1 (pp. 1136–1142). New York,
NY, USA: Association for Computing Machinery. Retrieved 2024-02-29, from https://doi
.org/10.1145/3545945.3569823 doi: 10.1145/3545945.3569823

Devendorf, L., & Ryokai, K. (2015, April). Being the Machine: Reconfiguring Agency and Control in
Hybrid Fabrication. In Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems (pp. 2477–2486). New York, NY, USA: Association for Computing Machin-
ery. Retrieved 2021-12-21, from https://doi.org/10.1145/2702123.2702547 doi:
10.1145/2702123.2702547

Jayagopal, D., Lubin, J., & Chasins, S. E. (2022, October). Exploring the Learnability of Program
Synthesizers by Novice Programmers. In Proceedings of the 35th Annual ACM Symposium on
User Interface Software and Technology (pp. 1–15). Bend OR USA: ACM. Retrieved 2024-
05-02, from https://dl.acm.org/doi/10.1145/3526113.3545659 doi: 10.1145/
3526113.3545659

Jeuring, J., Groot, R., & Keuning, H. (2023, November). What Skills Do You Need When Developing

PPIG 2024

www.ppig.org 131

Software Using ChatGPT? (Discussion Paper). In Proceedings of the 23rd Koli Calling Interna-
tional Conference on Computing Education Research (pp. 1–6). Koli Finland: ACM. Retrieved
2024-04-25, from https://dl.acm.org/doi/10.1145/3631802.3631807 doi:
10.1145/3631802.3631807

Jonsson, M., & Tholander, J. (2022, June). Cracking the code: Co-coding with AI in creative
programming education. In Proceedings of the 14th Conference on Creativity and Cognition
(pp. 5–14). New York, NY, USA: Association for Computing Machinery. Retrieved 2023-
11-30, from https://dl.acm.org/doi/10.1145/3527927.3532801 doi: 10.1145/
3527927.3532801

Kabir, S., Udo-Imeh, D. N., Kou, B., & Zhang, T. (2024, May). Is Stack Overflow Obsolete? An
Empirical Study of the Characteristics of ChatGPT Answers to Stack Overflow Questions. In
Proceedings of the CHI Conference on Human Factors in Computing Systems (pp. 1–17). New
York, NY, USA: Association for Computing Machinery. Retrieved 2024-05-29, from https://
dl.acm.org/doi/10.1145/3613904.3642596 doi: 10.1145/3613904.3642596

Kazemitabaar, M., Hou, X., Henley, A., Ericson, B. J., Weintrop, D., & Grossman, T. (2023, November).
How Novices Use LLM-based Code Generators to Solve CS1 Coding Tasks in a Self-Paced Learn-
ing Environment. In Proceedings of the 23rd Koli Calling International Conference on Computing
Education Research (pp. 1–12). Koli Finland: ACM. Retrieved 2024-04-25, from https://
dl.acm.org/doi/10.1145/3631802.3631806 doi: 10.1145/3631802.3631806

Krings, K., Bohn, N. S., Hille, N. A. L., & Ludwig, T. (2023, April). “What if everyone is able
to program?” – Exploring the Role of Software Development in Science Fiction. In Proceed-
ings of the 2023 CHI Conference on Human Factors in Computing Systems (pp. 1–13). Ham-
burg Germany: ACM. Retrieved 2024-05-02, from https://dl.acm.org/doi/10.1145/
3544548.3581436 doi: 10.1145/3544548.3581436

Kuijer, L., & Giaccardi, E. (2018, April). Co-performance: Conceptualizing the Role of Artificial
Agency in the Design of Everyday Life. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (pp. 1–13). New York, NY, USA: Association for Computing Ma-
chinery. Retrieved 2022-01-05, from https://doi.org/10.1145/3173574.3173699

Lawton, T., Grace, K., & Ibarrola, F. J. (2023, July). When is a Tool a Tool? User Perceptions of System
Agency in Human–AI Co-Creative Drawing. In Proceedings of the 2023 ACM Designing Interac-
tive Systems Conference (pp. 1978–1996). New York, NY, USA: Association for Computing Ma-
chinery. Retrieved 2024-02-29, from https://doi.org/10.1145/3563657.3595977
doi: 10.1145/3563657.3595977

Lewis, C. (2019, April). Why can’t programming be like sketching? In Proceedings of the Conference
Companion of the 3rd International Conference on Art, Science, and Engineering of Programming
(pp. 1–6). Genova Italy: ACM. Retrieved 2024-05-02, from https://dl.acm.org/doi/
10.1145/3328433.3338060 doi: 10.1145/3328433.3338060

McBreen, P. (2002). Software craftsmanship: The new imperative. Addison-Wesley Profes-
sional. Retrieved 2024-05-30, from https://books.google.com/books?hl=sv&lr=
&id=C9vvHV1lIawC&oi=fnd&pg=PR13&dq=%5B57%5D+Pete+McBreen.+2002.+
Software+Craftsmanship:+The+New+Imperative.+Addison-Wesley.&ots=
pQ_x2wbVfN&sig=J9QWqgl4n8pmugreoPI1pl_d0TM

Nelson, H. G., & Stolterman, E. (2014). The design way: Intentional change in an unpredictable
world. MIT press. Retrieved 2024-05-30, from https://books.google.com/books
?hl=sv&lr=&id=lr34DwAAQBAJ&oi=fnd&pg=PR9&ots=UFve8ln4P5&sig=
kJYyFDkUsZ7Ygq0Q38vmMWu_O_s

Pickering, J. B., Engen, V., & Walland, P. (2017). The Interplay Between Human and Machine
Agency. In M. Kurosu (Ed.), Human-Computer Interaction. User Interface Design, Develop-
ment and Multimodality (pp. 47–59). Cham: Springer International Publishing. doi: 10.1007/
978-3-319-58071-5_4

Prather, J., Reeves, B. N., Denny, P., Becker, B. A., Leinonen, J., Luxton-Reilly, A., . . . Santos, E. A.

PPIG 2024

www.ppig.org 132

(2023, November). “It’s Weird That it Knows What I Want”: Usability and Interactions with
Copilot for Novice Programmers. ACM Trans. Comput.-Hum. Interact., 31(1), 4:1–4:31. Re-
trieved 2024-02-20, from https://doi.org/10.1145/3617367 doi: 10.1145/3617367

Pye, D. (1968). The Nature and Art of Workmanship. Cambridge University Press.
Ross, S. I., Martinez, F., Houde, S., Muller, M., & Weisz, J. D. (2023, March). The Programmer’s

Assistant: Conversational Interaction with a Large Language Model for Software Development.
In Proceedings of the 28th International Conference on Intelligent User Interfaces (pp. 491–514).
Sydney NSW Australia: ACM. Retrieved 2024-04-25, from https://dl.acm.org/doi/
10.1145/3581641.3584037 doi: 10.1145/3581641.3584037

Schön, D. A. (1987). Educating the reflective practitioner: Toward a new design for teaching and
learning in the professions. San Francisco, CA, US: Jossey-Bass. (Pages: xvii, 355)

Sundelin, A., Gonzalez-huerta, J., Wnuk, K., & Gorschek, T. (2021, September). Towards an Anatomy
of Software Craftsmanship. ACM Trans. Softw. Eng. Methodol., 31(1), 6:1–6:49. Retrieved 2024-
05-30, from https://dl.acm.org/doi/10.1145/3468504 doi: 10.1145/3468504

Vaithilingam, P., Glassman, E. L., Groenwegen, P., Gulwani, S., Henley, A. Z., Malpani, R., . . . Yim, A.
(2023, May). Towards More Effective AI-Assisted Programming: A Systematic Design Explo-
ration to Improve Visual Studio IntelliCode’s User Experience. In 2023 IEEE/ACM 45th Interna-
tional Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP) (pp.
185–195). Melbourne, Australia: IEEE. Retrieved 2024-02-29, from https://ieeexplore
.ieee.org/document/10172834/ doi: 10.1109/ICSE-SEIP58684.2023.00022

Wakkary, R. (2021). Things We Could Design: For More Than Human-Centered Worlds. MIT Press.
Weisz, J. D., Muller, M., Houde, S., Richards, J., Ross, S. I., Martinez, F., . . . Talamadupula, K. (2021,

April). Perfection Not Required? Human-AI Partnerships in Code Translation. In 26th Interna-
tional Conference on Intelligent User Interfaces (pp. 402–412). New York, NY, USA: Associ-
ation for Computing Machinery. Retrieved 2024-01-30, from https://dl.acm.org/doi/
10.1145/3397481.3450656 doi: 10.1145/3397481.3450656

Welsh, M. (2023, January). The End of Programming. Commun. ACM, 66(1), 34–35. Retrieved 2024-
04-30, from https://dl.acm.org/doi/10.1145/3570220 doi: 10.1145/3570220

PPIG 2024

www.ppig.org 133

Educational Tools for Probabilistic Machine Learning Curriculum in Schools

Josephine Rey
Computer Laboratory

University of Cambridge
jmr239@cam.ac.uk

Alan F. Blackwell
Computer Laboratory

University of Cambridge
afb21@cam.ac.uk

Xinyue Li
Cambridge University
Press & Assessment

University of Cambridge
xinyue.li@cambridge.org

Gemma Penson
gpensonite@gmail.com

Hong Ge
Engineering Department
University of Cambridge

hg344@cam.ac.uk

Helen Arnold
Independent Tutor

helenlindaarnold@gmail.com

Abstract

As Bayesian approaches to probability and statistics become more widespread foundations of machine
learning, there is interest in introducing basic principles of probabilistic modelling at secondary school
level. This paper presents a series of educational experiments with simple probabilistic modelling tools
based on probabilistic programming languages.

1. Introduction
This paper reports on progress within a long-term project, following earlier reports at the Psychology of
Programming Interest Group (PPIG). The overall agenda is the use of probabilistic programming lan-
guages (PPLs) to enhance education in probability and statistics, specifically when introducing concepts
of probabilistic modelling into school and university curricula.

This educational agenda was one focus of a paper at PPIG 2019 that introduced the research field of us-
ability of PPLs (Blackwell et al., 2019), in a multi-authored paper including many of the contemporary
leaders in PPL development and research. Among other contributions, the 2019 paper suggested that the
field may benefit from a ‘furthest-first’ strategy (starting design work with those who are most excluded),
in this case by undertaking initial scoping research with school students in remote and disadvantaged
communities, in particular on the African continent. Early results reported on experiments with visual-
ising Bayesian probability in the Kalahari (Blackwell, Bidwell, et al., 2021), and use of causal models
by schoolchildren in Nigeria to estimate the risk of Covid-19 infection on the basis of observations
(Attahiru, Maudslay, & Blackwell, 2022).

These educational experiments have been planned in collaboration with an international mathematics
curriculum research team based at Cambridge University Press & Assessment (CUP&A), who have
developed a framework of mathematical concepts and learning objectives encompassing a compre-
hensive range of probability and statistics content across both primary and secondary school curric-
ula (Cambridge Mathematics, n.d.). In addition to their ongoing work, the team has recently begun
investigating how to support skills and practices in the field of digital technology-enhanced education,
including AI (Li & Zaki, 2024). One of the goals for this team is to anticipate and document future devel-
opments in this curriculum area that will enhance competencies and advanced learning in this evolving
field, much of which is dependent on fundamental principles of probability and statistics that are not yet
routinely included in school curricula (Slesinski & Fadel, 2024; Hoegh, 2020).

In this paper, we present two further projects advancing our investigation: one evaluating an interac-
tive visualisation of Causal Bayesian Networks in a UK classroom context and the other extending the
Scratch language with PPL functionality to investigate how classroom use of interactive statistical mod-
eling tools in South Africa might support curriculum priorities in that country.

PPIG 2024

www.ppig.org 134

2. Previous Work
As described in the introduction, work that we have previously presented at PPIG explored foundational
concepts in Bayesian probability through a ‘furthest-first’ agenda to engage communities historically
excluded in curriculum research. This programme of work is in contrast to other initiatives that have
introduced PPLs in university-level teaching, typically at an advanced level, including Oxford, Harvard
and Columbia 1.

2.1. Conditional probability in the Kalahari
The first of these explorations investigated ways of representing and thinking about probability in re-
lation to the context and needs of the Ju|‘hoansi people living near Tsumkwe, Namibia (Bidwell et
al., 2022). As hunter-gatherers, a strong ability to reason about likelihood from observed data enables
survival and success. This work explored interactive visualisations of conditional probability, using
physical spinners made from cardboard and paperclips to carry out simple Monte Carlo simulations that
quantitatively explored the causal relationship between random variables (Blackwell, Bidwell, et al.,
2021). For example, the chance of finding water under different temporal and situational scenarios (i.e.
‘after rain’, ‘within a tree’ and ‘within a tree given that it may be home to a snake’) places the founda-
tions of Bayesian ideas within indigenous knowledge practices and elevates the importance of making
AI accountable to diverse knowledge practices (Bidwell et al., 2022).

2.2. Causal reasoning during a pandemic
Following interruption of the Kalahari fieldwork by the Covid-19 pandemic, we created a simple
Javascript emulation of the cardboard spinner, allowing interactive Monte Carlo simulations to be ex-
plored remotely with our field research collaborator and translator on the screen of his Android phone
(Blackwell, Bidwell, et al., 2021). Simulated outcome frequencies were tallied in an interactive web-
page, with the proportion of different outcomes for each variable rendered as a pie chart whose sector
sizes could be compared to the relative sizes of the spinner sectors as a demonstration of long-run prob-
abilities.

These visualisations were used as the starting point for a classroom experiment in a school in Nige-
ria, where a lesson plan asked children to quantify their relative risks of being infected with Covid, as
informed by observations they might make in a local market (Attahiru et al., 2022). Likelihoods of dif-
ferent outcomes for each random variable were again visualised as different-sized sectors in a pie chart.
Causal relations between random variables were visualised as links between the pie charts, showing how
the different outcome likelihoods of an unknown variable might be updated on the basis of observations
of other variables that it is conditioned on.

Using these visualisations, a workshop with eight students was carried out remotely, using a web-based
lesson plan trialled by a teacher known to the researcher in Nigeria. The static visualisations of likeli-
hoods were not successful in this case, in large part because the lesson plans were neither clearly related
to students’ personal experiences of risk and likelihood nor to the standard curriculum in probability and
statistics as taught at that level in Nigeria.

3. Interactive Visualisation of Causal Bayesian Networks
As an improvement over the static visualisation concept evaluated in (Attahiru et al., 2022), we created a
dynamic version of the same visualisation, in which the circular nodes of a Bayesian network are again
replaced by pie charts whose sector sizes correspond to the relative likelihoods of different outcomes for
a categorical random variable. Figure 1 shows an overview of this system’s operation.

The interactive network graphs allow students to create and link nodes, specify frequencies of known
values for exogenous variables (observed data external to the model), and observe expected outcome
distributions for the endogenous variables (values inferred by the model) that are specified as child
nodes in the graphical model. The graph is constructed by interactively creating and linking nodes, with

1e.g. Oxford’s Bayesian Statistical Probabilistic Programming, Harvard’s Probabilistic Programming and Artificial Intel-
ligence, Columbia’s Applied Statistics III Nonparametric Theory in Machine Learning

PPIG 2024

www.ppig.org 135

Figure 1 – Overview of the interactive CBN visualisation created by Penson, showing a Causal
Bayesian Network with relative likelihood of values indicated by sizes of pie chart segments within
each node. The bottom part of the display shows a corresponding conditional probability table.

class likelihoods for exogenous variables entered via an interactive dialog, and model updates rendered
as modified pie charts for the endogenous variables.

3.1. Implementation
With the visualisation implemented in d3.js, the original plan had been to support more complex or
data-intensive models via back-end execution in the Turing PPL (Ge, Xu, & Ghahramani, 2018). Early
experiments also used the Julia implementation of BUGS, which shares Julia components with Turing.jl
(Xianda Sun & Ge, 2024). However, performance issues with that server connection, and the rela-
tive simplicity of the teaching scenarios, meant that the classroom deployment of the system could be
achieved with in-browser execution, with the graphical model compiled to the TypeScript PPL BayesJS2

(re-compiled using Browserify). An example of the BayesJS node syntax corresponding to one of our
teaching examples is shown in Figure 2.

Figure 2 – BayesJS node syntax corresponding to part of the university applications model

2github.com/bayesjs/bayesjs

PPIG 2024

www.ppig.org 136

3.2. Evaluation
Where Attahiru’s project (Attahiru et al., 2022) had explored causal reasoning in relation to experiences
that were expected to be meaningful to schoolchildren in Nigeria, we evaluated this interactive visu-
alisation in a Western context, with secondary school students studying the UK sixth-form curriculum
in Further Mathematics. In this context, a cultural priority is how students will achieve the necessary
grades for admission to university. We, therefore, used a teaching example that focused on causal factors
in university admission, based on the Western approach to teaching Bayesian probability advocated by
Pearl (Pearl, 1995), and replicating teaching examples that had previously been used for school-based
research in other Western settings by (Lecoutre, 1992) and (Gordon, Henzinger, Nori, & Rajamani,
2014).

Classroom evaluation of our tool focused on the following research questions:

1. Do students employ Bayesian thinking in their decision-making? (Pre-intervention)

2. Can Bayesian thinking be induced through interaction with an interface? (Intervention)

3. Is the system’s usability sufficient to support students completing Bayesian tasks? (Usability)

An in-school trial was conducted with 20 students at Hill’s Road Sixth Form College in Cambridge. This
took place during a timetabled class in Further Maths, supervised by a classroom teacher. The study was
approved by the ethics committee of the Cambridge Department of Computer Science and Technology.

The research questions were investigated through six tasks:

• Tasks 1, 4, 5, and 6 directly address the research questions:

– Task 1 (Pre-intervention): Students answer questions about BT without using the interface.
(RQ1)

– Task 4 and 5 (Intervention): Students build a Causal Bayesian Network (CBN) using either
the interface or on paper (within-subjects). (RQ2)

– Task 6 (Usability): Students complete self-directed tasks with the interface, reporting diffi-
culty and completion level. (RQ3)

• Tasks 2 and 3 (Intervention) These provide foundational knowledge for later tasks:

– Task 2: Lecture on probability and probability trees.

– Task 3: Introduction to CBNs using examples.

The order of completing tasks with and without the interface is switched between groups to avoid bias.
Overall, this evaluation aims to assess if the educational tool can effectively teach Bayesian thinking
through interaction and if the interface itself is usable for students.

Using Likert scale measures in a post-intervention survey, students reported improved understanding of
Bayes theorem, conditional and marginal probabilities, and prior and posterior likelihoods (p < 0.05).
In comparing usability between the two presentation conditions, they reported that hand-drawn CBNs
were easier and faster to create (Welch’s t test, p < 0.05), while those created using the interactive editor
were easier to modify and explore.

4. Teaching Bayesian probability in a South African context
This section reports a preparatory study exploring the potential of digital tools to introduce Bayesian
concepts in probability education in South Africa. The first author conducted interviews with educators,
curriculum designers, and NGO leaders to understand the challenges of designing future probability

PPIG 2024

www.ppig.org 137

curricula and how the current South African Curriculum Assessment Policy Statements (CAPS) support
digital tools and their use in classrooms (Department of Basic Education, 2011).

The study identified several challenges in South Africa’s education system. The shift from a student’s
mother tongue to English in the Intermediate Phase (ages 9-13) creates difficulties for learners when
acquiring subject-specific knowledge. Additionally, the CAPS curriculum is outcomes-driven and rigid
in structure, with its delivery frequently affected by structural and socioeconomic inequality between
schools (Spies, 2022).

Regarding digital tools, teachers lack the resources and training necessary to integrate technology ef-
fectively into their classrooms, and CAPS does not provide guidance for employing such tools. When
considering future curricula, the importance of addressing infrastructural limitations and insufficient
teacher training for digital tools becomes clear. The findings emphasised that curricula should celebrate
African perspectives and integrate indigenous knowledge systems. However, they also acknowledge
the need for a balance between including these local contexts and ensuring students are prepared for a
globalised world.

The study also explored the challenges of teaching probability and mathematics in South Africa. Prob-
ability studies fall under the mathematics curriculum’s ‘Data Handling’ focus area, but feature few
real-world notions of likelihood beyond games of chance and simple data collection/analysis. Findings
suggest that games from African cultures could be a valuable resource for teaching probability concepts
instead of those related to suits and cards.

In designing digital tools to support future curricula, informants stressed the importance of accessibility
for learners with varying digital literacy levels. Teacher training and support are crucial for the successful
implementation of these tools. The study also highlights the need for the tools to function offline,
considering limitations like power outages that are common in South Africa. Finally, user testing in
classrooms is essential to evaluate and improve the effectiveness of these digital tools.

Overall, the findings highlighted the need for culturally-relevant curricula that integrate African knowl-
edge systems alongside globally recognised educational standards. Inclusive digital tools are necessary,
but researchers must address infrastructural challenges and ensure these tools can support diverse learn-
ers. The study emphasises the importance of ongoing collaboration between researchers, educators, and
policymakers. To this end, South African educators are committed to improving education and building
capacity for future skills, with efforts underway to integrate technology, social-emotional learning, and
indigenous knowledge into the curriculum.

5. The ScratchTuring hybrid PPL
Previous experiments in this programme of work, as reported above, have achieved web-deployable
prototypes by using visualisation libraries such as d3.js and implementing basic programmability with
additional semantic elements such as the facility to link pie charts together as nodes of a graph. In
these earlier systems, more sophisticated probabilistic modelling has been achieved either through back-
end execution using a general-purpose PPL such as Turing or JuliaBUGS or in-browser execution via
compilation to Javascript as in BayesJS.

In order to explore the potential for web-based educational PPLs in the South African context, we used
a more powerful formalism for visual computation: the well-known Scratch language and environment
originally created for school-level introductory programming classes (Resnick et al., 2009). Scratch
already has sophisticated editing, interaction, and visualisation capabilities, and is deployed in a fully
browser-based version with extension capabilities that enabled the extensions described below.

5.1. Turing interface
The ScratchTuring hybrid introduces new Scratch blocks that invoke the PPL functionality of the Tur-
ing.jl language, cross-compiled into Turing scripts that are executed on a (local or remote) server, which
can then be queried from Scratch to visualise the probabilistic model. We created Scratch-syntax wrap-

PPIG 2024

www.ppig.org 138

pers for a subset of the Turing language so that Turing development tasks, such as creating and con-
ditioning models on new data, can be done within the Scratch editor. This functionality is delivered
through a constrained set of blocks specifically to support lesson plans in probabilistic modelling, as
seen in Figure 3.

Figure 3 – Scratch blocks used to interact with model distributions in Turing

5.2. Geographical data
We wanted to address the policy demand in South Africa for educational tools that relate to recent ad-
vances in machine learning while also considering the geographical and cultural context within which
South African students engage with such advances. We therefore created new Scratch capabilities relat-
ing to these concerns, in contrast to the original development and evaluation of Scratch that focused on
the Western priorities of children’s engagement with computer games and digital media.

One lesson plan was inspired by previous work that had provided schoolchildren in Ethiopia with pro-
grammable access (via simplified Python libraries) to satellite imagery from Google Earth Engine geo-
tagged with the what3words API (Longdon, Gabrys, & Blackwell, 2024). We created a Scratch exten-
sion that loads a satellite image from any specified coordinates as a ‘backdrop’. This image can then be
used in conventional Scratch code, as seen in Figure 4 where the Scratch character is making a random
walk, sampling colours from an image of the South African coast.

Figure 4 – The ScratchTuring interface used to create a program that collects samples from a
satellite image

PPIG 2024

www.ppig.org 139

5.3. Probability model dashboard
The core extension that allows ScratchTuring to be used as an interactive tool for exploration of prob-
abilistic models is a model dashboard, implemented as a new tab in the browser-based Scratch client.
The operation of this dashboard can be seen in Figure 5, which shows a teaching application where each
Scratch sprite represents an elephant in the Kruger National Park, South Africa’s largest nature reserve.
The elephant sprite reports its attributes as sample observations, updating a statistical model maintained
in Turing. The ScratchTuring dashboard can then be used to visualise a probability density function
reported by that model, showing the prior distribution before the observation, followed by (as in Fig-
ure 5) the posterior distribution. Using these facilities, a teacher projecting the dashboard can deliver
exploratory interactive lessons, and students may also experiment with Scratch to create larger or more
complex data science projects and simulations.

Figure 5 – The ScratchTuring model dashboard showing prior and posterior distributions based on
reported elephant heights. After observing a baby elephant, the posterior distribution (green dotted
line) reflects an updated belief that elephants can sometimes be smaller.

5.4. Visualising image samples as a hue distribution
As an experiment in relating local understanding of satellite image data to simple probabilistic methods
in computer vision and machine learning, we implemented a model type and visualisation that renders
probability distribution for colours sampled from a hue spectrum, as seen in Figure 6. The hue sampling
Scratch block calculates a local average RGB from the background of a sprite’s location and maps
this into hue space (with saturation and brightness collapsed). This allows a distribution of hues to be
calculated across samples from a satellite, as seen in figure 6. In the figure, it can be seen that hues are
drawn from two different distributions, one corresponding to portions of the satellite image containing
the ocean, and one corresponding to the colour of the beach. Although rendering a hue spectrum as
the x-axis of a histogram is intuitively appealing, it should be noted that not all HSB colour values are
easily perceived as being similar to the same hue value with 100% saturation and brightness. To help
students appreciate this mapping, the histogram bars are rendered using the average of the saturation
and brightness values observed, rather than the bright colours shown on the axis. The actual colours
observed in the samples collected for a particular hue also pop up as a set of patches when the user
hovers over its corresponding bar.

PPIG 2024

www.ppig.org 140

Figure 6 – The ScratchTuring model dashboard showing the distribution of hues sampled from a
satellite image. The samples are collected using behaviour added to the Scratch character, shown
here carrying a magnifying glass, whose lens is positioned over the part of the image from which
the sample will be taken.

5.5. Lesson evaluation
At the time of writing, the ScratchTuring prototype has been presented to UK students at a specialist
mathematics school in Cambridge. Students from the school are planning to travel to Kenya in the
summer of 2024 for a programme of activities planned to include volunteer teaching at a Kenyan primary
school. There may be an opportunity for students to use some aspect of this project during their visit.

The ScratchTuring prototype has also been demonstrated to several of the South African teachers who
participated in the study described in Section 4. Additionally, a lesson plan incorporating this tool was
recently introduced to Grade 8 students (ages 13-14) in Langa, a township in Cape Town, during a
mathematics class at a specialist maths and science secondary school.

6. Discussion
We have described two interactive prototypes, continuing a series of educational experiments studying
the potential use of probabilistic programming languages for teaching Bayesian probability and statistics
at school level. Both systems are intended for web deployment in classrooms and present an interactive
graphical front end, with a more conventional PPL used to construct and manipulate a Bayesian model.

We are especially interested in the potential for new developments in international school curricula to be
initiated in non-Western contexts, including countries in Africa. Although the authors are based in the
UK and often work with local schools as required by the practicalities of student research projects, we
are focused on curriculum ideas that can be informed by local understanding and indigenous knowledge
traditions from other parts of the world (Blackwell, 2021; Blackwell, Damena, & Tegegne, 2021). Since
the methods of Bayesian probability underpinning recent advances in machine learning already represent
a change in emphasis from the established conventions of frequentist statistics embedded in today’s
Western curricula (Slesinski & Fadel, 2024), this seems an ideal opportunity to consider the opportunities
and implications arising less WEIRD (Western, Educated, Industrialised, Rich, Developed) ways of
thinking (Henrich, Heine, & Norenzayan, 2010; Escobar, 2018).

At the 2022 PPIG workshop, Zainab Attahiru presented lesson plans that visualised conditional proba-
bility in a form intended to be accessible to students in Nigeria, allowing them to reason quantitatively
about risks in their own lives (Attahiru et al., 2022). Gemma Penson’s project, as reported here, has
implemented an interactive version of the same visualisation, demonstrating that it can be used by UK
students to reason in a probabilistic way about their school ambitions.

The series of educational experiments described in this paper aligns with key learning sciences theories
such as project-based learning (engaging students in real-world challenges), situated learning (embed-
ding education within its natural context), and simulation-based learning (using interactive, real-life

PPIG 2024

www.ppig.org 141

scenarios). These perspectives afford the potential to extend the findings beyond local settings to inter-
national and global contexts.

The ScratchTuring prototype that we have introduced builds on these experiments to create a fully fea-
tured visual programming environment, with facilities supporting direct modelling of problem domains
relevant to African learners. Preliminary teacher evaluation suggests that ScratchTuring is sufficiently
robust and usable for deployment in classrooms, and we expect to be able to report on those deployments
at the PPIG workshop.

7. Acknowledgements
We are grateful to the many teachers and students who have advised us and participated in the exper-
imental lessons reported here. Josephine Rey’s research has been funded by the Margaret & Patrick
Flanagan Trust. Continued research enhancing the usability and educational applications of the Turing
language is funded by the Alan Turing Institute. Generative AI declaration: The preparation of this
manuscript employed multiple automated language-processing tools, including functions for spelling
and grammar correction, summarisation, paraphrasing and predictive text.

8. References
Attahiru, Z., Maudslay, R. H., & Blackwell, A. F. (2022). Interactive bayesian probability for learning

in diverse populations. In Ppig (pp. 77–87).
Bidwell, N. J., Arnold, H., Blackwell, A. F., Nqeisji, C., Kunta, K., & Ujakpa, M. (2022). Ai

design and everyday logics in the kalahari. In The routledge companion to media anthro-
pology. Routledge. Retrieved from https://www.routledgehandbooks.com/doi/
10.4324/9781003175605-54 (Accessed on: 14 Dec 2023)

Blackwell, A. F. (2021). Ethnographic artificial intelligence. Interdisciplinary Science Reviews, 46(1-2),
198–211.

Blackwell, A. F., Bidwell, N. J., Arnold, H. L., Nqeisji, C., Kunta, K., & Ujakpa, M. M. (2021).
Visualising bayesian probability in the kalahari. In Ppig.

Blackwell, A. F., Church, L., Erwig, M., Geddes, J., Gordon, A., Maria, I. G., . . . others (2019).
Usability of probabilistic programming languages. In Ppig (pp. 53–68).

Blackwell, A. F., Damena, A., & Tegegne, T. (2021). Inventing artificial intelligence in ethiopia.
Interdisciplinary Science Reviews, 46(3), 363–385.

Cambridge Mathematics. (n.d.). Randomness and probability research summary. (unpublished)
Department of Basic Education. (2011). Curriculum and assessment policy statement: Mathematics

grades 1-3.
Escobar, A. (2018). Designs for the pluriverse: Radical interdependence, autonomy, and the making of

worlds. Duke University Press.
Ge, H., Xu, K., & Ghahramani, Z. (2018). Turing: a language for flexible probabilistic inference. In

International conference on artificial intelligence and statistics (pp. 1682–1690).
Gordon, A. D., Henzinger, T. A., Nori, A. V., & Rajamani, S. K. (2014). Probabilistic programming. In

Future of software engineering proceedings (pp. 167–181).
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and

brain sciences, 33(2-3), 61–83.
Hoegh, A. (2020, September). Why Bayesian Ideas Should Be Introduced in the Statistics Curricula

and How to Do So. Journal of Statistics Education, 28(3), 222–228. Retrieved 2023-11-06,
from https://doi.org/10.1080/10691898.2020.1841591 (Publisher: Taylor &
Francis _eprint: https://doi.org/10.1080/10691898.2020.1841591) doi: 10.1080/10691898.2020
.1841591

Lecoutre, M.-P. (1992). Cognitive models and problem spaces in “purely random” situations. Educa-
tional studies in mathematics, 23(6), 557–568.

Li, X., & Zaki, R. (2024). Harnessing the power of digital resources in mathematics education: The
potential of augmented reality and artificial intelligence. In S. Papadakis (Ed.), Iot, ai, and ict

PPIG 2024

www.ppig.org 142

for educational applications: Technologies to enable education for all (pp. 191–223). Cham:
Springer Nature Switzerland.

Longdon, J., Gabrys, J., & Blackwell, A. F. (2024). Taking data science into the forest. Interdisciplinary
Science Reviews, 49(1), 82-103. doi: 10.1177/03080188241230415

Pearl, J. (1995). Causal diagrams for empirical research. Biometrika, 82(4), 669–688. Retrieved
2023-12-19, from http://www.jstor.org/stable/2337329

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., . . . others
(2009). Scratch: programming for all. Communications of the ACM, 52(11), 60–67.

Slesinski, J., & Fadel, C. (2024). What “mathematics of ai” should be taught in schools? (Tech. Rep.).
Center for Curriculum Redesign.

Spies, A. (2022). A culture of exclusion: Re-configuring inclusive education in south africa. In-
ternational Human Rights Law Review. Retrieved from https://api.semanticscholar
.org/CorpusID:253231697

Xianda Sun, A. T., Philipp Gabler, & Ge, H. (2024). Juliabugs: A graph-based probabilistic program-
ming language using bugs syntax. In The languages for inference (lafi) workshop at the 51st acm
sigplan symposium on principles of programming languages (popl 2024).

PPIG 2024

www.ppig.org 143

Automatic Bias Detection in Source Code Review

Yoseph Berhanu Alebachew
Virginia Tech

yoseph@vt.edu

Chris Brown
Virginia Tech

dcbrown@vt.edu

Abstract
Bias is an inherent threat to human decision-making, including in decisions made during software de-
velopment. Extensive research has demonstrated the presence of biases at various stages of the software
development life-cycle. Notably, code reviews are highly susceptible to prejudice-induced biases, and
individuals are often unaware of these biases as they occur. Developing methods to automatically detect
these biases is crucial for addressing the associated challenges. Recent advancements in visual data an-
alytics have shown promising results in detecting potential biases by analyzing user interaction patterns.
In this project, we propose a controlled experiment to extend this approach to detect potentially biased
outcomes in code reviews by observing how reviewers interact with the code. We employ the "spot-
light model of attention", a cognitive framework where a reviewer’s gaze is tracked to determine their
focus areas on the review screen. This focus, identified through gaze tracking, serves as an indicator
of the reviewer’s areas of interest or concern. We plan to analyze the sequence of gaze focus using ad-
vanced sequence modeling techniques, including Markov Models, Recurrent Neural Networks (RNNs),
and Conditional Random Fields (CRF). These techniques will help us identify patterns that may suggest
biased interactions. We anticipate that the ability to automatically detect potentially biased interactions
in code reviews will significantly reduce unnecessary push-backs, enhance operational efficiency, and
foster greater diversity and inclusion in software development. This approach not only helps in identi-
fying biases but also in creating a more equitable development environment by mitigating these biases
effectively.

1. Introduction
The Software Development Life Cycle (SDLC) is full of decisions. For example, when working in
a team, developers perform an activity called code review which requires the reviewer deliberate on
whether to include the code written by other developers into the main code-base. In open source project
that utilize distributed version control systems such as Git1, this review process will take a from of pull
request.

Like any human decision-making process, stakeholders in the SDLC are susceptible to cognitive bias.
In a mapping study that assessed over 65 scientific papers published up to 2016, Mohanani et al.
(Mohanani, Salman, Turhan, Rodriguez, & Ralph, 2020) reported that at least 37 cognitive biases have
been shown to exist in the software engineering process. Based on a study that observed 16 developers
in situ, Chattopadhyay et al. (Chattopadhyay et al., 2022) reported that 45.72% of developers’ actions
exhibited one or more of 28 biases.

In a large-scale pull request analysis, Murphy-Hill et al. (Murphy-Hill, Jaspan, Egelman, & Cheng,
2022) discovered that biased pushbacks exist with a high correlation to the code author’s gender, eth-
nicity, and age. The authors estimated that over 1000 hours of programmer time are wasted per day
due to this pushback. Such push back could be a result of in-group favoritism, which is when one give
preferential treatment to others they perceive as being part of their own group, whether that group is
defined by ethnicity, nationality, religion, or other shared characteristics.

With the pervasiveness of open source software projects and global software development powered by
distributed version control systems such as git, programmers work with code contributors/authors of

1https://git-scm.com/

PPIG 2024

www.ppig.org 144

different background. This means, the source code review process (often in the form of pull/merge
request) involves accepting/rejecting code written by a contributor whom the reviewer might no know
at all. Platforms like GitHub2 provide some profile information about the code author. This in principle
should not be a problem as code review should only involve examining the source code and decide on
it’s merit only. However, it has been shown that reviewers examine information besides the source code
while performing the review (Ford, Behroozi, Serebrenik, & Parnin, 2019). In the study participants
reviewed source code while their eye gaze was tracked. This authors reported that reviewers gazed and
fixated on profile indicators such as profile picture of the authors more than what was self reported by
the participants.

In a follow-up to the aforementioned study, Huang et. al(Huang et al., 2020) established a causation
relationship between reported author gender and biased merge request decision. In this study, partici-
pants presented with pull request were more likely reject it if the author was reported to be a female or
an automated bug fix program than if the same pull request was presented as being authored by male
contributor.

1.1. Background
Decision-making refers to the process of choosing among several alternatives. We typically associate
decision-making with instances where we make conscious and deliberate choices. However, based on
this definition, we make decisions every minute of every day, often with little conscious effort. Generally,
we want to and believe we make rational decisions, that is, we choose the alternative that is most likely
to lead to our desired outcome (Pronin, Lin, & Ross, 2002).

Making such rational decisions, however, requires that we weigh all alternatives and the potential out-
comes for each, which is resource-intensive. There is also a trade-off between the accuracy and timeli-
ness of our decisions. As a result, we tend to take shortcuts called heuristics. These short cuts enable us
to make decisions that, while not guaranteed to be rational all the time, work often enough and are far
timelier than exploring all alternatives in detail. These shortcuts take various forms but generally result
from an effort to achieve decision-making goals with minimal resource expenditure.

When these shortcuts fail to result in a rational outcome, it leads to what we call cognitive bias. Tversky
and Kahneman, who first introduced the concept of cognitive bias, defined it as "the systematic errors
in judgment that occur predictably in particular circumstances" (Tversky & Kahneman, 1974). One key
aspect of this definition is that biases are predictable. This means that under the right circumstances,
the likelihood of making a cognitive bias is more than random chance. Since the introduction of the
concept in 1974, over 200 cognitive biases have been identified by researchers in behavioral economics,
psychology, management, and sociology.

1.2. Problem Statement
The core problem we aim to address in this proposed project is the need for an automated system to
detect bias in source code reviews. Bias in code reviews can significantly impact the quality and fairness
of the review process, leading to potential issues in code quality, team dynamics, and overall project
outcomes. Currently, detecting such biases is challenging due to the subtle and often unconscious nature
of biased behavior. Our approach involves analyzing data on how reviewers interact with the code review
screen. By examining patterns in actions such as scrolling, highlighting, commenting, and time spent
on different sections of the code, we aim to identify indicators of bias. This attempt to identify patterns
of interaction that can indicate possibility of bias will provide valuable insights into the review process,
enabling teams to address and mitigate bias, thereby improving the fairness and effectiveness of code
reviews.

2https://github.com/

PPIG 2024

www.ppig.org 145

2. Literature Review
2.1. Physical Manifestation of Bias
Boonprakong et al. (Boonprakong, Chen, Davey, Tag, & Dingler, 2023) explored the indicators of bias
in physiological and interaction data. They demonstrated the existence of behavioral and physiological
signals of cognitive bias. The authors conducted two studies that collected and analyzed eye-tracking,
skin conductance level (SCL), and fNIRS data from an experiment in which participants were presented
with information that either aligned with or opposed their opinions on a topic. Since the opinions were
presented in text form, the eye-tracking data collected focused on dwelling time instead of scan path.

Using the data from the experiment, the authors built four bias classifiers: a Linear Discriminant Anal-
ysis (LDA), Support Vector Machine (SVM) with RBF kernel, Random Forest, and XGBoost, all with
5-fold cross-validation. The highest accuracy achieved was 55.27% with XGBoost, which barely out-
performed ZeroR (50.04%). To ensure that the models’ performance was not due to mere chance, they
conducted permutation tests and found that all achieved a p-value lower than 0.05. Participants showed
higher neural activity and spent more time processing statements that disagreed with their own opinions.

2.2. Cognitive Bias in Software Engineering
The Software Engineering (SE) process is intricate and decision-intensive. Like any decision-making
endeavor, SE is prone to cognitive biases. Mohanani et al. (Mohanani et al., 2020) conducted a compre-
hensive mapping study to explore cognitive biases within the field of software engineering. This study
aimed to identify, catalog, summarize, and synthesize existing research on the subject. Specifically, it
highlighted research on cognitive biases frequently encountered in SE, focusing on their origins, mani-
festations, and impacts. The authors examined 65 papers published until 2016, finding that 37 cognitive
biases have been studied at various stages of the SE process.

Chattopadhyay et al.(Chattopadhyay et al., 2022) conducted a two-part field study to assess the extent
of cognitive biases in developers’ daily activities. The field study took place in a startup, where the
authors observed ten developers in situ for an hour while they performed their daily tasks. They found
that 45.72% of developers’ actions (953 out of 2084) involved one or more of the 28 observed biases,
which were grouped into ten categories.

As part of the study, follow-up interviews were conducted with 16 developers to validate the findings,
assess the perceived frequency of biases, and identify available tools and practices to address the iden-
tified biases as reported by developers. The authors reported that developers spent 34.51% of their time
reversing biased actions. Of all the reversal actions, 70.07% involved biases. They defined reversal
actions as those that developers need to undo, redo, or discard and measured the total number of actions
and time spent on these reversal actions resulting from cognitive biases.

Additionally, the authors assessed the standard tools developers reported for bias mitigation and pre-
sented a set of helpful practices to mitigate or address the biases, grouped into six categories.

2.3. Bias in Source Code Review
One area within software engineering where biases have been observed is the process of source code
review. With the widespread adoption of distributed version control systems, code reviews often occur
through merge requests (or change requests). Murphy-Hill et al. (Murphy-Hill et al., 2022) conducted
a large-scale analysis of pull requests at Google. The study’s primary objective was to examine the
influence of demographic attributes, such as gender, ethnicity, and age, on the rate of pushback. Here,
"pushback" is defined as "the perception of unnecessary interpersonal conflict in code review, where a
reviewer blocks a change request" (Egelman et al., 2020). This concept draws on role congruity theory,
which posits that a group member receives negative evaluations when stereotypes about the group are
misaligned with the qualities perceived as necessary for success in a specific role. The authors found
a significant correlation between the incidence of pushback and the gender, ethnicity, and age of the
code’s author.

An eye tracking experiment by Ford et. al (Ford et al., 2019) has showed that reviewers do look at

PPIG 2024

www.ppig.org 146

information beyond the source code itself while decision to accept or reject a pull request. Reviewers
fixated on what Ford et. al. referred to as social indicators such as the contributor’s aviator, display
name, and contribution history. They found that the amount of actual fixation was more than what was
self-reported by reviewers after the experiment.

In another eye tracking study, Huang et. al (Huang et al., 2020) re-established the existence of correlation
reported gender of authors and rate of push back. What’s more they demonstrated causation relationship
exists. They found both male and female reviewers were harsher on female-authored pull requests
compared to male contributors of the same contribution. This implies the reviewer’s bias based on
gender which contradicts the self-reported behavior in which the reviewers claimed they did not put the
gender of the author into consideration.

An interesting finding in this study is that participants admitted their bias towards computer generated
code. But even in these instances participants tried to rationalize their bias after the fact with excuses
such as that the code generated by computer programs are "too complex and less understandable".This is
despite the fact that the actual code was written by human. This shows that even when we acknowledge
our biases, we try to justify them rather than gauge their rationality.

2.4. Bias Detection
Detecting cognitive bias refers to identifying the expected likelihood of bias in a decision rather than
certainty. Primary procedure for detection has been based on selective exposure experiment. In such
methods, participants are surveyed with pre and post experiment questionnaires which will be used as a
basis to see if they are biased in the task. Such an approach can be referred to as a static detection since
it relies on post activity static analysis as opposed to dynamic techniques that try to detect bias during
the decision making. Static detection limits the debiasing techniques that can be employed.

Dynamic Detection is a detection effort whereby the (possible) occurrence of cognitive bias is detected
during the deliberation process, before the actual decision is made. While such detection is more likely
to help in mitigating biases in the current decision, it is relatively difficult to implement.

Wall et. al. (Wall, Blaha, Franklin, & Endert, 2017) proposed a theoretical framework for quantifying
interactions and subsequently identifying biased interaction in visual data analytics tools. In a later
work (Wall, Blaha, Paul, & Endert, 2019), the authors presented a formative study that implemented
this theoretical recommendation. They used their proposed metrics in detecting anchoring bias from
interaction data while participants were tasked with an activity purposefully prepared to induce bias.
The authors reported an encouraging result towards the ability to detect cognitive bias, in real time,
based on interaction behavior.

Nussbaumer et al. (Nussbaumer, Verbert, Hillemann, Bedek, & Albert, 2016) presented an attempt to
establish a framework for automatic confirmation bias detection and feedback in criminal intelligence
visual analytics. The authors identified software development and research challenges that need to be
addressed to realize the proposed framework. The research tasks include developing a detection method,
providing meaningful feedback, and evaluating the effectiveness of the proposed methods.

They proposed the use of visual analytics tools, such as MUVA (Kalamaras, Papadopoulos, Drosou,
& Tzovaras, 2015) and VALCRI3, to record interaction logs for analysis while users performed typical
tasks. This work defines two types of bias detection based on interaction data. The first is a statistical
approach that compares biased interactions with unbiased ones. The second is a semantic approach that
maps biased and unbiased interactions to cognitive processes and compares these cognitive processes.

2.5. Eye Tracking in Software Engineering
Eye tracking has been used by a number of researchers to understand developer behavior. Bansal et al.
(Bansal et al., 2023) present an early attempt at using Large Language Models (LLMs) for programmer
attention modeling. They employed gaze trackers and LLMs to build a machine learning model capable

3https://cordis.europa.eu/project/id/608142

PPIG 2024

www.ppig.org 147

of predicting how programmers scan source code. To build this model, the authors had 27 programmers
perform a Java source code comprehension task, involving 25 randomly selected methods from a total
of 68, for 1.5 hours with breaks every 20 minutes. The participants wore eye trackers to record their
fixations during the task. Afterward, the participants were asked to write short summaries of the source
code. The collected data was used to build an LLM model that takes source code as input and produces
the expected scan-path. This model aims to mimic the way programmers would scan and comprehend
source code, providing insights into programmer attention patterns.

Aljehane et al. (Aljehane, Sharif, & Maletic, 2023) used eye movement data to identify the expertise
level of developers based on how they examine source code. They conducted a quantitative analysis
comparing the eye movements of 207 participants, including both novices and experts, while they solved
comprehension tasks. The results revealed a notable increase in pupil size among the novice group
compared to the experts, suggesting that novices exert greater cognitive effort. Additionally, novices
exhibited significantly more fixations and longer gaze durations than experts when comprehending code.
Furthermore, a correlation study indicated that programming experience remains a strong predictor of
expertise in this eye-tracking dataset, alongside other expertise variables.

3. Proposed Methodology
We propose a research project aimed at collecting data on code reviewer interactions through an experi-
mental setup. We will analyze the collected data using various machine learning algorithms to identify
patterns that predict the occurrence of cognitive biases, with a particular focus on prejudice. Our findings
will be reported at a peer-reviewed academic conference. This section details the major tasks envisioned
for our project.

3.1. Research Design and Data Collection
Our plan involves conducting an experiment to measure participants’ performance in source code review
tasks. We will first identify open-source pull requests suitable for the experiment based on criteria
set by related research works. Then, we will recruit participants and ensure they have the required
background to review the code under consideration through a survey. We expect to include both industry
professionals and experienced students as developers in our study. Participants will be seated in front
of computers and presented with a sequence of pull requests, deciding whether to accept or reject each.
Code snippets from pull requests will be randomly assigned labels indicating authorship by different
groups of contributors.

We plan to use the Tobii Pro Fusion Eye Tracker 4 to track participants’ gaze. Additionally, we intend
to record additional signals to explore the possibility of multimodal analysis including keyboard log,
cursor movement and comments/feedback on code and decision outcome. To avoid introducing social
desirability bias (Grimm, 2010) by participants, we plan to carefully design our pre-experiment briefing.
We will ensure that no mention of bias is made during the initial briefing to prevent influencing partici-
pants’ behavior. This approach will help us obtain more genuine responses and interactions during the
source code review tasks.

Once the experiment is conducted, we will conduct a thorough debriefing session with each participant
in the form of an interview. During this debriefing, we will explain the true purpose of the study and
the reason for withholding information about bias in the initial briefing. We will discuss the concept of
social desirability bias and how it could have impacted their behavior if they had been aware of it from
the start.

After explaining the rationale behind the deception, we will seek the participants’ consent post hoc. This
means obtaining their permission to use the data collected during the experiment, now that they are fully
informed about the study’s aims and methods. This process ensures ethical transparency and respects
participants’ autonomy, as they can choose whether to allow their data to be used in the study after being
fully informed. By implementing this strategy, we aim to gather more accurate and reliable data while

4https://www.tobii.com/products/eye-trackers/screen-based/tobii-pro-fusion

PPIG 2024

www.ppig.org 148

maintaining ethical standards in our research. We will obtain approval from our local institutional review
board (IRB) on our research methods before recruiting participants and commencing this study.

3.2. Data Analysis
After collecting the necessary data, we aim to explore various machine learning models to find the most
effective approaches for bias detection and prediction. We will start with simpler probabilistic models,
such as those proposed by Wall et al. (Wall et al., 2019), and gradually move towards designing more
complex multi-modal and transformer-based deep learning models.

Initially, we will implement and evaluate probabilistic models to establish a baseline performance for
bias detection. These models are known for their simplicity and interpretability, which will provide
valuable insights into the basic patterns and correlations present in our data.

Next, we will design and evaluate multi-modal machine learning models that can leverage the diverse
types of data we are collecting, including eye-tracking data, video recordings, and survey responses.
Given the multi-modal nature of our data, we anticipate that these models will outperform simpler,
single-modality machine learning algorithms, such as Markov Chains. The integration of different data
modalities is expected to capture more nuanced patterns of bias and provide a richer representation of
the participants’ cognitive processes.

We will also explore the use of advanced deep learning models, such as transformer-based architectures,
which have shown significant promise in handling complex, high-dimensional data. These models,
with their ability to process sequential and multi-modal data effectively, will be crucial in capturing the
temporal and contextual dependencies inherent in our data.

In addition, we will evaluate the performance of various machine learning models, such as Recurrent
Neural Networks (RNNs) and Conditional Random Fields (CRF), on the bias prediction task. RNNs
are particularly well-suited for sequential data and can capture temporal dependencies, while CRFs are
effective for structured prediction tasks, making them valuable for detecting patterns of bias in our data.

Beyond constructing and evaluating machine learning models, we intend to delve into psychological
theories that explain human decision-making processes. This interdisciplinary approach will help us
understand the underlying mechanisms of cognitive biases and provide a theoretical foundation for in-
terpreting our findings. By integrating insights from psychology, we aim to develop more robust and
explainable models that not only predict bias but also offer explanations for why certain patterns of bias
occur.

Ultimately, our goal is to develop a comprehensive framework for bias detection and prediction that
combines the strengths of machine learning with psychological theories. This framework will enable
us to identify and mitigate biases more effectively, contributing to the broader field of cognitive bias
research and its applications in various domains.

4. Expected Outcomes and Future Work
Upon successful completion of our study, we expect to have:

• conducted a user study to analyze developers’ gaze while reviewing code;
• collected insights from developers on in-group favoritism bias in code review processes; and
• developed a machine learning model capable of predicting the likelihood of bias in code review

based on how the reviewer interacts with the code.

The resulting model will leverage the comprehensive multi-modal data we collect, including eye-
tracking data, video recordings of facial expressions, and detailed interaction logs, to identify subtle
patterns indicative of bias. By analyzing these interaction patterns, our model will be able to provide
real-time feedback to reviewers and highlighting potential biases. This will not only enhance the fairness
and accuracy of code reviews but also contribute to a more objective and inclusive review process.

PPIG 2024

www.ppig.org 149

The successful implementation of our study will result in a machine learning model that can predict the
possibility of bias in code reviews, backed by rigorous data analysis. This model has the potential to
help in building a tool that significantly improves the quality and impartiality of software development
practices. Such a tool and a more in-depth theoretical interpretation of our finding will be possible
extensions of the envisioned study. Once possible occurrence of bias is predicted what to do with the
information and how or when to present this information will another question to investigate.

5. Conclusion
This proposal highlights the issue of cognitive bias in source code reviews, affecting software devel-
opment fairness and effectiveness. Research shows biases based on gender, ethnicity, and age can
negatively impact review outcomes. We propose using multi-modal machine learning to address this
problem. By analyzing eye-tracking data, video recordings, and interaction logs, we aim to detect bias
patterns.

Our experimental design involves recruiting participants to review open-source pull requests, using the
Tobii Pro Fusion Eye Tracker, and recording additional signals for multimodal analysis. Pre-experiment
briefings and thorough debriefings will ensure ethical transparency and participant consent.

We will explore various machine learning models to develop robust models that predict bias and can
be studied to offer insights into cognitive processes. Upon completion, we expect to develop a model
for predicting and addressing bias in code reviews. This can be used in creating training programs and
tools to help developers recognize and counteract their biases. This research aims to improve software
development practices, fostering a more equitable and efficient environment.

6. References
Aljehane, S. D., Sharif, B., & Maletic, J. I. (2023). Studying developer eye movements to mea-

sure cognitive workload and visual effort for expertise assessment. Proceedings of the ACM on
Human-Computer Interaction, 7(ETRA), 166:1–166:18. Retrieved from https://doi.org/
10.1145/3591135 doi: 10.1145/3591135

Bansal, A., Su, C.-Y., Karas, Z., Zhang, Y., Huang, Y., Li, T. J.-J., & McMillan, C. (2023). Modeling pro-
grammer attention as scanpath prediction. Retrieved from https://doi.org/10.48550/
arXiv.2308.13920

Boonprakong, N., Chen, X., Davey, C., Tag, B., & Dingler, T. (2023). Bias-aware systems: Exploring
indicators for the occurrences of cognitive biases when facing different opinions. In Proceedings
of the 2023 chi conference on human factors in computing systems (pp. 1–19). Retrieved from
https://doi.org/10.1145/3544548.3580917 doi: 10.1145/3544548.3580917

Chattopadhyay, S., Nelson, N., Au, A., Morales, N., Sanchez, C., Pandita, R., & Sarma, A. (2022). Cog-
nitive biases in software development. Communications of the ACM, 65(4), 115–122. Retrieved
from https://doi.org/10.1145/3517217 doi: 10.1145/3517217

Egelman, C. D., Murphy-Hill, E., Kammer, E., Hodges, M. M., Green, C., Jaspan, C., & Lin, J. (2020).
Predicting developers’ negative feelings about code review. In Proceedings of the acm/ieee 42nd
international conference on software engineering (pp. 174–185). Seoul, South Korea: ACM.
Retrieved from https://doi.org/10.1145/3377811.3380414 doi: 10.1145/3377811
.3380414

Ford, D., Behroozi, M., Serebrenik, A., & Parnin, C. (2019). Beyond the code itself: How program-
mers really look at pull requests. In 2019 ieee/acm 41st international conference on software
engineering: Software engineering in society (icse-seis) (pp. 51–60). Retrieved from https://
doi.org/10.1109/ICSE-SEIS.2019.00014 doi: 10.1109/ICSE-SEIS.2019.00014

Grimm, P. (2010, December). Social desirability bias. In Wiley international encyclopedia of marketing.
Chichester, UK: John Wiley & Sons, Ltd.

Huang, Y., Leach, K., Sharafi, Z., McKay, N., Santander, T., & Weimer, W. (2020). Biases and dif-
ferences in code review using medical imaging and eye-tracking: Genders, humans, and ma-
chines. In Proceedings of the 28th acm joint meeting on european software engineering confer-

PPIG 2024

www.ppig.org 150

ence and symposium on the foundations of software engineering (pp. 456–468). Retrieved from
https://doi.org/10.1145/3368089.3409681 doi: 10.1145/3368089.3409681

Kalamaras, I., Papadopoulos, S., Drosou, A., & Tzovaras, D. (2015). MoVA: A visual analytics tool
providing insight in the big mobile network data. In IFIP advances in information and communi-
cation technology (pp. 383–396). Cham: Springer International Publishing.

Mohanani, R., Salman, I., Turhan, B., Rodriguez, P., & Ralph, P. (2020). Cognitive biases in software
engineering: A systematic mapping study. IEEE Transactions on Software Engineering, 46(12),
1318–1339. Retrieved from https://doi.org/10.1109/TSE.2018.2877759 doi:
10.1109/TSE.2018.2877759

Murphy-Hill, E., Jaspan, C., Egelman, C., & Cheng, L. (2022). The pushback effects of race, ethnicity,
gender, and age in code review. Communications of the ACM, 65(3), 52–57. Retrieved from
https://doi.org/10.1145/3474097 doi: 10.1145/3474097

Nussbaumer, A., Verbert, K., Hillemann, E.-C., Bedek, M. A., & Albert, D. (2016). A frame-
work for cognitive bias detection and feedback in a visual analytics environment. In 2016 eu-
ropean intelligence and security informatics conference (eisic) (pp. 148–151). Retrieved from
https://doi.org/10.1109/EISIC.2016.038 doi: 10.1109/EISIC.2016.038

Pronin, E., Lin, D. Y., & Ross, L. (2002). The bias blind spot: Perceptions of bias in self versus others.
Personality and Social Psychology Bulletin, 28(3), 369–381. doi: 10.1177/0146167202286008

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science,
185(4157), 1124—1131.

Wall, E., Blaha, L., Paul, C., & Endert, A. (2019). A formative study of interactive bias metrics in
visual analytics using anchoring bias. In D. Lamas, F. Loizides, L. Nacke, H. Petrie, M. Winck-
ler, & P. Zaphiris (Eds.), Human-computer interaction – interact 2019 (Vol. 11747, pp. 555–
575). Springer International Publishing. Retrieved from https://doi.org/10.1007/
978-3-030-29384-0_34 doi: 10.1007/978-3-030-29384-0_34

Wall, E., Blaha, L. M., Franklin, L., & Endert, A. (2017). Warning, bias may occur: A proposed
approach to detecting cognitive bias in interactive visual analytics. In 2017 ieee conference on
visual analytics science and technology (vast) (pp. 104–115). Retrieved from https://doi
.org/10.1109/VAST.2017.8585669 doi: 10.1109/VAST.2017.8585669

PPIG 2024

www.ppig.org 151

Ethical Integration in Computer Science Education:
Leveraging Open Educational Resources and Generative Artificial Intelligence

for Enhanced Learning

Ranjidha Rajan
Computer Science Department

MSU Denver
rranjidh@msudenver.edu

Renato Cortinovis
Freelance Researcher

Italy
rmcortinovis@gmail.com

Abstract
In contemporary society, the extensive integration and dependence on computerized systems are evident
across various aspects of everyday life. The training and education of the developers responsible for
these systems should encompass more than just technical skills: a profound grasp of ethical
considerations and the societal impact of their work is considered essential. This paper outlines an
experimental approach utilizing adapted and newly developed Open Educational Resources (OER) to
familiarize computer science students with the ACM Code of Ethics and Professional Conduct. These
OERs, employing an underlying reusable pattern, propose assignments mandating the integration of
ethical considerations into software development practices within an Inquiry-Based Learning (IBL)
framework.

In the scope of these assignments, this study conducted a preliminary investigation into leveraging
Generative Artificial Intelligence (gen-AI) to augment student learning and self-efficacy. This was
achieved through the analysis of the data gathered from the assignments evaluation and a survey
encompassing Likert scale ratings and open-ended inquiries. Factor analysis helped identifying the key
themes ‘Use’, 'Tool Efficiency (TE)’, 'Concerns (C)’, 'Academic Integrity (AcI)’, and 'Tool
Convenience (TC)’, which reflect various aspects of student engagement and perceptions of gen-AI
tools. Structural Equation Modelling (SEM) further explored the relationships among these themes,
suggesting that a combined 'TE' and 'TC' factor significantly enhanced user engagement with gen-AI
tools. Conversely, the combined 'Concerns' and 'Academic Integrity' factors, i.e., concerns about
reliability and academic dependency, did not significantly inhibit the willingness of the students to
adopt gen-AI technologies.

Preliminary findings also indicate that gen-AI exhibits notable efficacy among students of moderate
proficiency, albeit demonstrating underutilization among academically advanced students. Conversely,
students categorized as lower-ranked tend to utilize gen-AI without exercising critical discernment.
These results underscore the necessity to carefully tailor these OER to accommodate diverse student
proficiency levels, thereby maximizing their educational efficacy.

1. Introduction
In contemporary society, the proliferation and reliance upon computerized systems pervades most facets
of daily life. It is widely acknowledged that the training and education of the developers behind these
systems extend beyond mere technical proficiency: a critical understanding of ethics and societal
implications is deemed imperative. The ACM Code of Ethics and Professional Conduct is an invaluable
resource that synthesises the key aspects in this regard. However, in our previous experience, many
students who are strongly technically inclined tend to underestimate the importance of considering
ethics and impact on social good of their work. Therefore, a first research question (RQ) for this study
was:

RQ1: What strategies could help familiarizing technically inclined computer science students
with the ACM Code of Ethics and Professional Conduct?

As we will discuss, in response to this research question, assignments were designed to integrate ethical
considerations into software development practices within an Inquiry-Based Learning (IBL)
framework. Students were tasked with applying the ACM Code principles across progressively complex
and broader scenarios. In order to support the students in these activities, we experimented the use of
gen-AI tools, which prompted the following further research inquiries:

PPIG 2024

www.ppig.org 152

RQ2: Which are the main factors influencing positively or negatively the students’ attitude in
using gen-AI tool for inquiry-based learning assignments in CS classrooms?

RQ3: What is the correlation between the quality of students prompts to genAI tools and their
performances in the specific IBL-base assignment and overall performance in learning?

The subsequent sections describe the learning assignments devised, the methodological approach
employed to address our research inquiries, and the preliminary findings gleaned from the initial two
pilot studies conducted.

2. Learning assignments
In order to familiarize students with the ACM Code, we mainly followed the approach of Fiesler et al.
(2021), and Peck (2017) among others, integrating ethical considerations into traditional programming
design and development assignments. This is also very similar to the CSG_ED approach of Goldweber
et al. (2013), helping CS students learn concepts of computing for social good, that is, how computer
and information technologies can be used to address social issues ranging from health, water resources,
poverty, climate change, human rights, etc.

We considered that the IBL model was particularly appropriate to incrementally foster a deeper and
broader understanding of ethical considerations and help students developing an autonomous research-
oriented attitude. For this study we adopted the IBL5E variation (Duran, L. and Duran, E., 2004)
articulated in the phases described in Table 1.

Phase Purpose

Engage Create interest and stimulate curiosity. Set learning within a meaningful context. Raise
questions for inquiry.

Explore Provide experience of the phenomenon or concept. Explore and inquire into students’
questions and test their ideas. Investigate and solve problems.

Explain Introduce conceptual tools that can be used to interpret the evidence and construct
explanations of the phenomenon. Construct multi-modal explanations and justify
claims in terms of the evidence gathered. Compare explanations generated by different
students/groups.

Elaborate Use and apply concepts and explanations in new contexts to test their general
applicability. Reconstruct and extend explanations and understanding using and
integrating different modes, such as written language, diagrammatic and graphic
modes, and mathematics.

Evaluate Provide an opportunity for students to review and reflect on their own learning and
new understanding and skills. Provide evidence for changes to students’
understanding, beliefs and skills.

Table 1 – Phases of the IBL5E model.

We have abstracted a generic schema for assignments based on the IBL5E model with guided and open
enquiry, where gen-AI has been integrated into the Elaborate phase, to extend/improve artefacts
previously developed in the Explore/Explain phases, as follows:

1. ENGAGE - Discuss the importance of ethics in computer science; critically read the ACM
Code of Ethics and Professional Conduct; debate motivating and intriguing ethical dilemmas
to realize that the application of the ACM Code is not necessarily straightforward: group
decision making in autonomous vehicles (Awad at al., 2018), matching decisions to relevant
aspects of the Code.

2. EXPLORE – Preliminarily develop an artifact [Program/UML, Diagram/ERD] about a system
[on a specified topic].

PPIG 2024

www.ppig.org 153

3. EXPLAIN [guided enquiry] - Extend the previous artifact to cater for specified ethical
implications – free support from the Internet, excluding gen-AI.

4. ELABORATE [open enquiry] – Freely identify further extensions/improvements to the artifact,
integrating additional (unspecified) aspects concerning ethics – free support from gen-AI tools.
Report your prompts to the tool.

The next two sections provide pertinent excerpts from the assignments utilized in our pilot studies,
exemplifying the overarching schema just described.

2.1. Personalized Ads Programming
This first assignment, just slightly adapted from an existing OER published by Fiesler et al. (2021), asks
students with very basic programming skills to incrementally develop a program to serve personalized
ads on a social platform. In a sequence of scenarios of increasing complexity, the ads program prompts
the user for information (in a real situation it would automatically extract information from the profile
and posts of the users) and then return text that describes ads based on their inputs. In a first scenario,
for example, the program provides text advertising dog food if the user has a dog. In another scenario,
the program provides advertisements for any product that includes dogs to extrovert people, and
advertisements for any product that includes cats to introvert people. In a third scenario the program
provides advertisements about more or less expensive products, based on the age of the user and the
estimated average income for the zip code where she lives. Here is a meaningful extract of the
assignment:

EXPLAIN – (Structured enquiry)

Explain in a short report, helping yourself also with information you may search on the Internet
(without using AI tools), how personalized ads work and the ethical implications, by answering
the questions:

 How do you feel about these kinds of inferences being used to influence your
behaviour?

 Are there ethical and unethical ways to use the technology of personalized
advertisement?

 […]

ELABORATE – (partially guided enquiry)

 Using the support of ChatGPT (or any genAI tool), create a short report (with your own
words, avoiding cut & paste) where you:

o identify a new case where a personalized ad led to ethical dilemmas,
o pinpoint the ethical issues involved,
o match them to the ACM ethical code,
o and discuss potential solutions.

 Include as an annex the specific prompts you submitted to ChatGPT and its responses.

2.2. Ethical Database Design
A second newly developed assignment asks students studying database design to develop an Entity
Relationship Diagram (ERD) for a simplified database of a medical clinic, incrementally enhancing it
by integrating aspects related to ethics. Here is a meaningful extract of the assignment:

EXPLORE – Look into how ethical guidelines from the ACM Code of Ethics could affect the
design of a database for a personalized healthcare clinic. Write a short report about it.

EXPLAIN – Sketch a first ERD of the database, trying to incorporate relevant ethical aspects.
Provide suitable comments to the schema, in particular making explicit any impact of the Code
of Ethics on the ERD. You are allowed to make use of the Internet, excluding gen-AI tools.

ELABORATE – Using ChatGPT or similar gen-AI tools, identify further enhancements to the
ERD by integrating additional ethical considerations. Document the prompts (queries)
submitted to the AI tool, present the extended ERD resulting from these interactions, and

PPIG 2024

www.ppig.org 154

provide clear comments showing how specific features of the ERD are linked to corresponding
items in the ACM Code.

3. Methodology: data collection and analysis
To address RQ1, an evaluation of the students' assignment submissions was conducted to gauge their
comprehension of ethical dimensions and their proficiency in effectively incorporating these principles
into their software development tasks. For example, in the second pilot study, the assessment schema
employed was as follows:

EXPLORE, EXPLAIN: check ERD correctness, discussion of relevant ethical considerations,
integration of ethical considerations into ERD.

ELABORATE: check ethical considerations extensions, corresponding ERD extensions.

To address RQ2, we collected data from Likert questions concerning the students’ attitude in using gen-
AI tools, and their answers to open-ended questions about their experience with the assignments. Data
from Likert questions were analysed and refined with factor analysis and subsequent thematic analysis
to reveal the main factors affecting their perceptions.

In this study, we employed Principal Component Analysis (PCA) as the extraction method for factor
analysis to identify underlying dimensions within the dataset (Wetzel, 2012). We utilized Promax
rotation with Kaiser Normalization to allow the factors to be correlated, enhancing interpretability in a
framework where constructs may be interrelated (Grieder & Steiner, 2022). The selection of variables
and the number of factors retained were based on their ability to meaningfully explain the covariance
among observed variables.

Using Structural Equation Modelling (SEM), the interrelationships among these themes were further
elucidated (Goldberger, 1972). The Maximum Likelihood (ML) estimation method was used to identify
the best-fitting model, a standard approach in SEM due to its efficiency and robustness.

Concerning RQ3, we collected the prompts submitted by the students to the gen-AI tool, which were
classified as Descriptive, Comparative, Inquisitive/Exploratory, Ethical/Philosophical Inquiry, Case
Study, Focused, and Instructional. Descriptive prompts aim at eliciting detailed narratives or
explanations (Cave et al., 2020). Comparative are prompts that encourage comparison between concepts
or examples (Sutton & Barto, 2018). Inquisitive/Exploratory are prompts designed to probe deeper
understanding or exploration of a topic (Lake et al., 2018). Ethical/Philosophical Inquiry are prompts
that delve into ethical considerations or philosophical questions (Bostrom, 2014). Case Study Focused
are prompts asking for specific examples, case studies, or applications (Silver et al., 2016). Instructional
are prompts that guide the AI in performing a specific task or generating content in a certain way,
reflecting the few-shot learning capabilities mentioned in AI research (Schick & Schütze, 2022).

Accordingly, each prompt was analysed using specific criteria where descriptive prompts asked for
explanations, comparative prompts involved comparisons, inquisitive prompts sought understanding or
exploration, ethical prompts focused on moral or ethical considerations, and instructional prompts
provided summaries or instructions. Walter (2024) claims that prompt classification is crucial for
understanding student learning with gen-AI tools, as it enables the identification of specific areas where
the tool enhances educational outcomes, allowing for targeted improvements and better support for
diverse learning needs. The prompt classification process was automated based on text analysis to label
the prompts accordingly. The classified data were then visualized using a pivot table and bar chart to
illustrate the distribution of prompt classifications by grade, providing insights into the cognitive and
analytical skills development of students at different educational levels. Finally, we correlated the
classification scores with their grades in the assignment.

4. Preliminary results and discussion
The analysis was carried out on a limited sample of 27 students. Concerning RQ1, the assignments’
evaluation showed that the proposed generic schema, providing students with the opportunity to
concretely apply the ACM code of ethics in progressively complex scenarios and with tools of
increasing power, supported the students in developing an increasing level of understanding moving

PPIG 2024

www.ppig.org 155

through the assignment phases. Students also explicitly appreciated the integration of IBL5E and gen-
AI. One student stated, for example: “I appreciate the school's interest in embracing innovations and
its dedication to enhancing teaching methods”, while another commented “These new teaching
methods, including the use of AI, should be incorporated more frequently into other lessons”.

Concerning RQ2, the examination of Likert scale data through factor analysis (Figure 1) facilitated the
identification of several themes. The pattern matrix resulting from Principal Component Analysis
(PCA) (Wetzel, 2012) with Promax rotation and Kaiser normalization reveals the underlying factor
structure of the dataset (Grieder & Steiner, 2022).

Figure 1 – Pattern matrix after removing irrelevant questions

Five distinct components were extracted, each representing a unique factor. Component 1 shows strong
loadings for Q12, Q18, Q19, Q20, and Q21, indicating a shared underlying factor. Q2, Q4, Q6, Q9,
Q16, Q17 were removed for better factor loading. Component 2 is defined by high loadings on Q5, Q3,
Q1, and Q7, suggesting another common factor. Component 3 includes significant loadings for Q10,
and Q13, highlighting a third distinct factor. Component 4 is characterized by loadings on Q15, and
Q14, with Q16 showing a particularly high negative loading. Component 5 has a notable loading for
Q8 and Q11 pointing to additional unique factors. Each component represents a different underlying
factor extracted from the data set, where the numbers indicate the strength of the association between
each question and the corresponding component. For instance, Q18 has a strong loading on Component
1 (0.912), suggesting it is closely related to that factor, while Q3 has a high loading on Component 2
(0.899). The matrix indicates which questions are grouped together under each component, helping to
identify patterns and underlying structures in the data. The rotation method used ensures that the
components are more interpretable by allowing them to be correlated. This pattern matrix effectively
elucidates the factor structure, with each component representing a distinct underlying dimension
measured by the variables in the dataset.

The resulting themes identified were 'Use', 'Tool Efficiency (TE)', 'Concerns (C)', 'Academic Integrity
(AcI)', and 'Tool Convenience (TC)'. These themes encompass diverse dimensions of student
engagement and perceptions pertaining to gen-AI tools. The survey questions were grouped based on
the previous themes identified. The sample for survey question grouping for TE is given in Figure 2.

Here is a meaningful extract of the assignment:

PPIG 2024

www.ppig.org 156

Figure 2 – Sample Thematic factors based on factor loadings

SEM analysis was conducted using the maximum likelihood estimation method. It yielded a log
likelihood of -84.41, suggesting a relatively good model fit (Figure 3). The variable "te_tc"
demonstrated a strong positive and statistically significant relationship with the dependent variable,
with a coefficient of 0.88 and a p-value of 0.001. This indicates that changes in "te_tc" are likely to
have a significant impact on “use”. In other words, the amalgamation of 'TE' and 'TC' significantly
impact on user engagement with gen-AI tools. Conversely, the variable "c_ai" showed a positive
relationship with a coefficient of 0.32, but this was not statistically significant with a p-value of 0.226,
showing that the influence by “c_ai” on "Use" is not strongly supported by the current sample size of
data. That is, the amalgamation of 'C' and ‘AcI' factors, indicative of apprehensions regarding reliability
and academic dependence, did not markedly impede students' propensity to adopt gen-AI technologies.

Figure 3 – Structural Equation Modelling

Concerning RQ3, the categorization of students’ prompts to ChatGPT resulted in the identification of
three distinct groups: firstly, the highest-performing students effectively showcased a tangible
integration of the ACM Code principles into their database design, solely relying on their own
capabilities without resorting to ChatGPT assistance. Secondly, students with moderate proficiency
levels attained comparable outcomes by utilizing ChatGPT, engaging in meaningful interactions that
facilitated their progress. Lastly, a minority of students with very limited abilities demonstrated minimal
interaction with GenAI: they just submitted the whole assignments directly to the tool without
personalized interventions. This supports the claim that gen-AI exhibits notable efficacy among
students of moderate proficiency, albeit demonstrating underutilization among academically advanced
students. Conversely, students categorized as lower-ranked tend to utilize gen-AI without exercising
critical discernment. These results underscore the necessity to carefully tailor these OER to
accommodate diverse student proficiency levels, thereby maximizing their educational efficacy.

The analysis of prompt classifications across different grades revealed distinct trends in the focus and
complexity of student inquiries (Figure 4). Grade 6 exhibits a higher frequency of descriptive prompts,
reflecting a focus on foundational understanding and detailed descriptions. Ethical and philosophical
inquiries are evenly distributed among Grades 4, 6, and 8, indicating a consistent engagement with
moral and ethical considerations across these levels. Grade 8, however, shows a notable increase in
inquisitive and exploratory prompts, suggesting a shift towards more critical and analytical thinking as
students advance. Instructional prompts are unique to Grade 4, perhaps indicative of an emphasis on
summarization and concluding thoughts at this stage. Interestingly, unclassified prompts appear
predominantly in Grades 4 and 8, with Grade 8 having the highest number, which could reflect the more

PPIG 2024

www.ppig.org 157

open-ended and complex nature of discussions at this level. These findings underscore the progression
in cognitive and analytical skills development as students move through different educational stages.

Figure 4 – Prompt classification samples

The data from the database design assignment and their analysis findings show that the majority of
prompts at lower grades, especially Grade 3, remain unclassified, indicating a need for more specific
guidance or focus in the questions posed. Higher grades tend to have more focused inquiries, with Grade
8 showing a balanced mix of inquisitive and ethical inquiries. This likely reflects the naturally expected
deeper reasoning exhibited by the most proficient students. However, further research is needed to
determine how best GenAI could contribute to improving critical thinking and understanding across all
students.

This analysis helps in understanding the developmental trends in cognitive and analytical skills among
students, and how they engage with ethical considerations in their academic tasks.

5. Conclusions
The utilization of an existing OER in the first pilot proved pivotal for the undertaken activity,
underscoring the significance of OER in both research and educational endeavours. This prompted our
decision to openly publish the resource developed in the second pilot as an OER, with further intentions
to create additional resources, capitalizing on the identified seemingly effective overarching framework.
The student reception of the assignments outlined has been positive, with active engagement noted and
an explicit appreciation for the IBL5E model and the incorporation of gen-AI. The data analysis

PPIG 2024

www.ppig.org 158

identified themes such as 'Use', 'Tool Efficiency', 'Concerns', 'Academic Integrity', and 'Tool
Convenience', which represent various aspects of student engagement and perceptions of generative AI
tools. SEM analysis revealed that the combination of 'Tool Efficiency' and 'Tool Convenience'
significantly enhanced user engagement, while 'Concerns' and 'Academic Integrity' did not substantially
deter students from adopting generative AI technologies. These insights highlight the complex interplay
between efficiency, convenience, and apprehensions in shaping students' adoption of generative AI
tools. Nonetheless, despite garnering some preliminary findings, these outcomes necessitate validation
and expansion through subsequent studies involving students from diverse contexts, larger sample sizes,
and varied assignments.

6. References
Awad, E., Dsouza, S., Kim, R. et al. (2018). The Moral Machine experiment. Nature 563, 59–64.

https://doi.org/10.1038/s41586-018-0637-6

Bostrom, N. (2014). Superintelligence: Paths, Dangers, Strategies. Oxford University Press.

Cave, S., Dihal, K. & Dillon, S. (2020). AI Narratives: A History of Imaginative Thinking about
Intelligent Machines. Oxford University Press.

Duran, L., and Duran, E. (2004). The 5E Instructional Model: A Learning Cycle Approach for Inquiry-
Based Science Teaching. The Science Education Review, 3(2), p49–58

Fiesler, C., Friske, M., Garrett, N., Muzny, F., Smith, J., and Zietz, J. (2021). Integrating Ethics into
Introductory Programming Classes. Proceedings of the ACM SIGCSE Conference on
Computer Science Education.

Goldberger, A. S. (1972). Structural Equation Methods in the Social Sciences. Econometrica, 40(6),
979–1001. https://doi.org/10.2307/1913851

Goldweber, M., Barr, J., Clear, T., Davoli, R., Mann, S., Patitsas, E., & Portnoff, S. (2013). A
Framework for Enhancing the Social Good in Computing Education: A Values Approach.
ACM Inroads, 4(1), 58-79.

Grieder, S., & Steiner, M. D. (2022). Algorithmic jingle jungle: A comparison of implementations of
principal axis factoring and promax rotation in R and SPSS. Behavior research methods, 54(1),
54–74.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building machines that learn
and think like people. Behavioural and Brain Sciences, 40, E253.

Peck, E. (2017, July 5). The Ethical Engine: Integrating Ethical Design into Intro Computer Science.
Blog, Bucknell HCI, 5.

Schick, T., & Schütze, H. (2022). True Few-Shot Learning with Prompts—A Real-World Perspective.
Transactions of the Association for Computational Linguistics; 10 716–731.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., & Hassabis, D.
(2016). Mastering the game of Go with deep neural networks and tree search. Nature,
529(7587), 484-489.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT Press.

Walter, Y. (2024). Embracing the future of Artificial Intelligence in the classroom: The relevance of AI
literacy, prompt engineering, and critical thinking in modern education. International Journal
of Educational Technology in Higher Education, 21(1), 1-29. https://doi.org/10.1186/s41239-
024-00448-3

Wetzel A. P. (2012). Factor analysis methods and validity evidence: a review of instrument
development across the medical education continuum. Academic medicine: journal of the
Association of American Medical Colleges, 87(8), 1060–1069.
https://doi.org/10.1097/ACM.0b013e31825d305d

PPIG 2024

www.ppig.org 159

Intention Is All You Need

Advait Sarkar
Microsoft Research, University of Cambridge, University College London

advait@microsoft.com

Abstract

Among the many narratives of the transformative power of Generative AI is one that sees in the world
a latent nation of programmers who need to wield nothing but intentions and natural language to render
their ideas in software. In this paper, this outlook is problematised in two ways. First, it is observed that
generative AI is not a neutral vehicle of intention. Multiple recent studies paint a picture of the “mech-
anised convergence” phenomenon, namely, that generative AI has a homogenising effect on intention.
Second, it is observed that the formation of intention itself is immensely challenging. Constraints, ma-
teriality, and resistance can offer paths to design metaphors for intentional tools. Finally, existentialist
approaches to intention are discussed and possible implications for programming are proposed in the
form of a speculative, illustrative set of intentional programming practices.

1. The “Intention Is All You Need” Picture of Programming with Generative AI
What is programming? Blackwell’s succinct and influential definition is that programming is any activity
exhibiting the property “that the user is not directly manipulating observable things, but specifying
behaviour to occur at some future time” (Blackwell, 2002). Behaviour is specified through an interface,
commonly a notation, which we call a programming language. Therein lies the source and objective of
all research in the psychology and design of programming: the study of the use and improvement of the
interfaces, notations, and languages for specifying behaviour.

The value of such study is called into question with the introduction of Generative Artificial Intelligence
(GenAI), which can be defined as any “end-user tool [...] whose technical implementation includes a
generative model based on deep learning”.1 GenAI captures the relationships between natural language
specifications of behaviour, and the translations of that behaviour into programming notation, implicit in
enormous training datasets. The power of translation thus captured can be stochastically replayed on de-
mand (Blackwell, 2020). What could this mean for research in the user-centred design of programming
languages? One perspective anticipates nothing less than its obsolescence:

“The programming barrier [with GenAI] is incredibly low. We have closed the digital
divide. Everyone is a programmer now - you just have to say something to the computer”2

“Up until now, in order to create software, you had to be a professional software devel-
oper. You had to understand, speak and interpret the highly complex, sometimes nonsensical
language of a machine that we call code. [... But with GenAI] We have struck a new fusion
between the language of a human and a machine. With Copilot, any person can now build
software in any human language with a single written prompt. [...] going forward, every
person, no matter what language they speak, will also have the power to speak machine.
Any human language is now the only skill that you need to start computer programming.”3

1There is no definitional consensus on this term. A rationale for the definition adopted here is given by Sarkar (2023d).
2Huang, 2023. (Source: https://www.reuters.com/technology/ai-means-everyone-can-now-be

-programmer-nvidia-chief-says-2023-05-29/, accessed July 2024.)
3Dohmke, 2024. (Source: https://www.ted.com/talks/thomas_dohmke_with_ai_anyone_can_be_a

_coder_now, accessed July 2024.)

1

PPIG 2024

www.ppig.org 160

https://www.reuters.com/technology/ai-means-everyone-can-now-be-programmer-nvidia-chief-says-2023-05-29/
https://www.reuters.com/technology/ai-means-everyone-can-now-be-programmer-nvidia-chief-says-2023-05-29/
https://www.ted.com/talks/thomas_dohmke_with_ai_anyone_can_be_a_coder_now
https://www.ted.com/talks/thomas_dohmke_with_ai_anyone_can_be_a_coder_now

“Since the launch of GPT-4 in 2023, the generation of whole apps from simple natural
language requirements has become an active research area. [...] Our vision is that by 2030
end users will build and deploy whole apps just from natural requirements.”4

“Programming will be obsolete. [...] the conventional idea of ‘writing a program’ is
headed for extinction [...] all programs in the future will ultimately be written by AIs, with
humans relegated to, at best, a supervisory role. [...] The engineers of the future will,
in a few keystrokes, fire up an instance of a four-quintillion-parameter model that already
encodes the full extent of human knowledge (and then some), ready to be given any task
required of the machine.”5

The promise of GenAI for programming, therefore, is to transform programming into an activity where
expertise in specialised notations and languages for specifying behaviour are unnecessary. One merely
has to say what one wishes the program to do, and GenAI does the rest. The interaction design challenges
of programming are solved.6 Intention is all you need.

There are many problems with this picture. There are compelling reasons for continuing to engage
with formal notations, even and perhaps especially when GenAI is in play (Sarkar, 2023d). Moreover,
language in general, and the language of prompts used to direct GenAI in particular, is most certainly not
a flawless, transparent route for the expression of intent. Johnny can’t prompt (Zamfirescu-Pereira et al.,
2023). Johnny can’t figure out what level of abstraction to write his prompts in, either (Liu et al., 2023;
Sarkar et al., 2022). Thinking about prompting is hard for Johnny, and thinking about thinking about
prompting is hard, too (Tankelevitch et al., 2024). Prompting “dialects” might evolve in much the same
way as specialised uses of natural language do in domains such as scientific and legal communication,
through disciplinary norms and professional consensus, and to acquire such language will require users
to undergo analogous processes of disciplinary and professional acculturation (Sarkar, 2023d). But these
problems are not the primary concern in this paper.

There is a rather more fundamental pair of problems with the idea that intention is all you need (to
program with GenAI): it assumes that GenAI does not interfere with intention. Moreover, it takes for
granted that intentions are easy to form. Both premises will be questioned in turn.

2. Mechanised Convergence: The Homogenising Effect of AI on Intention
Contrary to not interfering with intention, AI supplies intention. It does so in a way that can be described
as mechanised convergence (Sarkar, 2023b), drawing on Walter Benjamin’s concept of mechanical re-
production (W. Benjamin, 1935). Mechanised convergence describes the idea that the automation or
mechanisation of work leads to a convergence in the space of outputs. Standardisation is necessary for
factory logic to function. For a machine to be repeatable at speed, its inputs and outputs need to be
repeatable at speed, too. You can have any colour as long as it’s black.

Here is some of the evidence that GenAI has a mechanised convergence effect:

• Predictive text encourages predictable writing (Arnold et al., 2020). In an image captioning task,
when participants use predictive text entry systems, captions written with suggestions are shorter
and use fewer words that the system does not predict. A similar effect occurs in identifier names
when programmers use a GenAI tool such as GitHub Copilot to assist them in writing code (Lee

4Robinson et al. (2024)
5Welsh (2022)
6One is reminded of similar claims made during the early days of spreadsheets or about any number of visual programming

languages. E.g., Benjamin Rosen, a PC industry analyst for Morgan Stanley, later a key funder of Lotus and Compaq, noted in
1979 that “In minutes, people who have never used a computer are writing and using programs [...] the user need not know
anything about computers or programming in order to derive Visicalc’s benefits. You construct a Visicalc program much as
you would define a problem on a sheet of paper or a blackboard” (Rosen, 1979).

2

PPIG 2024

www.ppig.org 161

et al., 2024). This effect occurs even when the suggestions are merely visible and not actionable
(i.e., cannot be accepted using a keyboard shortcut).

• Similarly, a large study (n=293) of participants writing short stories with varying degrees of AI
assistance found that exposure to GenAI “ideas” leads to a reduced diversity of content (Doshi &
Hauser, 2023). Participants exposed to even a single GenAI suggestion produce stories similar to
the average of the other stories in the same experimental condition.

• A large study (n=758) of strategy consultants at BCG examined the effects of ChatGPT use on
a set of consultancy tasks (Dell’Acqua et al., 2023). The majority of participants with access to
ChatGPT retain a very high amount of its response – typically around 90% – in their submitted
work. Participants without access to ChatGPT produce ideas with more conceptual variation
than those with access, showing that usage of ChatGPT reduces the range of ideas generated. The
variation across responses produced by ChatGPT is smaller than what human participants produce
on their own.

• Large language models have a “homogenization effect” on creative ideation (Anderson et al.,
2024). In a creative ideation task, participants produce less semantically distinct ideas when
using ChatGPT. Moreover, participants feel less responsible for ideas produced with ChatGPT
assistance.

• A large study (n=115) finds that conversational search built on GenAI increases selective exposure
compared to conventional search (Sharma et al., 2024). Users engage in more biased information
querying with conversational search, and the bias is exacerbated when the model is itself “opin-
ionated” to reinforce the user’s views. The authors call this a “generative echo chamber”.

• Similarly, a large study (n=1506) of co-writing with GenAI found that using an “opinionated”
language model affects the opinions expressed in participants’ writing and moreover, actually
shifts their opinions as measured in a subsequent attitude survey (Jakesch et al., 2023). A related
effect, termed “drifting”, has been observed in novice programmers, where the tendency to accept
and adapt code generated by the system leads programmers away from a correct solution (Prather
et al., 2023).

Mechanised convergence signals an odd reversal (or perhaps intensification) of Dennett’s “intentional
stance” (Dennett, 1971), wherein we not only ascribe intention to these systems but also delegate it,
sometimes wilfully, other times unknowingly.

The intention supplied by GenAI through mechanised convergence has a complex source, combining
influences of its training data, and the biases and heuristics encoded by the system developers. However
at its core, mechanised convergence is the ultimate outcome of the old statistical logics of uncovering
underlying natural “laws” (Blackwell, 2020; Sarkar, 2023a). The statistical machine eliminates “noise”
(diversity) to predict “signal” (uniformity). The statistical machine is the triumph of the Enlightenment
aesthetic faith in nature’s having an underlying elegance or simplicity that is obscured from view by
imperfect forms. It should come as no surprise that machines that are built to search for Platonic ideals
reflect back to us a mechanically converged picture of the world, making quiddity of haecceity.

It is important to note that the effect on intent as demonstrated in these studies is an aggregate tendency
that likely does not square with individual phenomenal perceptions of GenAI use. At the granularity
of individual interactions, the experience of GenAI might well be as a passive translator, not active
supplier, of intent. The nudge towards standardised, centralised, averaged, generic, and statistically
optimised answers may be barely perceptible. Yet the data demonstrates that these nudges in fact have a
measurable cumulative effect on knowledge work.

As Winner sets out, artefacts have politics (Winner, 1980). The design features of a technology enable
certain forms of power, and the decision to adopt a particular technology requires certain power relations
to be enacted. Putting it in Winner’s terms, convergence is the politics of AI, the artefact.

3

PPIG 2024

www.ppig.org 162

As McLuhan sets out, the medium is the message (McLuhan, 1964). There is an effect of a particular
medium, be it typography, radio, or television, on the human sensorium that is quite distinct from any
particular content being conveyed through that medium. The effect of the medium overwhelms the
content and makes it incidental. Putting it in McLuhan’s terms, convergence is the message of AI, the
medium.

McLuhan predicted that electric technology and programmability would reverse the convergence ten-
dencies of factory logic. He gives the example of a programmable tailpipe machine: “A new automatic
machine for making automobile tailpipes [...] starting with lengths of ordinary pipe, it is possible to
make eighty different kinds of tailpipe in succession, as rapidly, as easily, and as cheaply as it is to make
eighty of the same kind. And the characteristic of electric automation is all in this direction of return
to the general-purpose handicraft flexibility that our own hands possess. The programming can now
include endless changes of program.”

Taken to its logical conclusion, McLuhan makes a claim that is strikingly similar to the narrative that
intention is all you need: “the older mechanistic idea of “jobs,” or fragmented tasks and specialist slots
for “workers,” becomes meaningless under automation. [...] The very toil of man now becomes a kind
of enlightenment. As unfallen Adam in the Garden of Eden was appointed the task of the contemplation
and naming of creatures, so with automation. We have now only to name and program a process or a
product in order for it to be accomplished. Is it not rather like the case of Al Capp’s Schmoos? One
had only to look at a Schmoo and think longingly of pork chops or caviar, and the Schmoo ecstatically
transformed itself into the object of desire. Automation brings us into the world of the Schmoo. The
custom-built supplants the mass-produced.” As we have seen, the vast programmability of GenAI does
not necessarily result in a “return to [...] general-purpose handicraft flexibility”, rather, it has enabled
a newer, subtler, and more pervasive form of the “fragmentalized and repetitive routines of the mechan-
ical era”. Through the mechanised convergence of knowledge work through GenAI, the principle of
interface design becomes WYGIWYG – What You Get Is What You Get.

Postman, who builds on McLuhan, more accurately reappraised the effect of the electric age on intention
(Postman, 1985). He explains that the information age has resulted not in an Orwellian dystopia where
intentions are surveilled and constrained, but rather a Huxleyan one, where intentions are numbed:
“What Orwell feared were those who would ban books. What Huxley feared was that there would be no
reason to ban a book, for there would be no one who wanted to read one. Orwell feared those who would
deprive us of information. Huxley feared those who would give us so much that we would be reduced
to passivity and egoism. Orwell feared that the truth would be concealed from us. Huxley feared the
truth would be drowned in a sea of irrelevance. Orwell feared we would become a captive culture.
Huxley feared we would become a trivial culture [...]”. We inhabit not Foucault’s society of discipline
(Foucault, 1977; O’Neill, 1986), but Deleuze’s society of control (Deleuze, 1992).

This scenario is undesirable, not least because mechanised convergence implies a reduction in the rate
at which new ideas are generated, and an increase in repetition and replay of existing ideas. What kind
of culture springs from the consumption and emission of an increasingly convergent set of increasingly
recycled ideas? A derivative, “stuck” culture, is the diagnosis of technology critic Paul Skallas.7 Even
for GenAI itself, the indications are that the roads of autophagy lead to madness; the roads of recursion
lead to cursed collapse (Alemohammad et al., 2023; Shumailov et al., 2024; Bohacek & Farid, 2023;
Gerstgrasser et al., 2024).

Mechanised convergence, as a tendency of automation more broadly, creates a crisis of intentionality: a
culture that has lost the capacity to intend, does not realise, and does not care.

7https://lindynewsletter.beehiiv.com/p/culture-stuck, accessed July 2024. Related is the con-
cept of “refinement culture”; “Refinement culture can be summarized as a general streamlining and removal of any
unique characteristics. Refinement Culture is one dimensional and removes variety from the environment. It’s opti-
mized.” https://lindynewsletter.beehiiv.com/p/refinement-culture, accessed July 2024, https://
medium.com/@lindynewsletter/refinement-culture-51d96726c642, accessed 2024.

4

PPIG 2024

www.ppig.org 163

https://lindynewsletter.beehiiv.com/p/culture-stuck
https://lindynewsletter.beehiiv.com/p/refinement-culture
https://medium.com/@lindynewsletter/refinement-culture-51d96726c642
https://medium.com/@lindynewsletter/refinement-culture-51d96726c642

3. Interlude: Babbage’s Intentional Programmer
Describing what GenAI does to intention as a “crisis” implies that we need to do something about it.
Indeed, what we need to do about it is to promote the active cultivation of the capacity to intend.8

Since this is PPIG, we can start by considering the intentions of programmers. What the tendency for
mechanised convergence tells us is that, prior to specifying behaviour, programming must be about
forming an intention for behaviour. A definition of programming that centres intention, rather than
specification, evokes a rather older philosophy of programming that we can draw from the crisis in
theology at the time of Babbage.

Science (more precisely, natural philosophy) in post-Enlightenment Britain at the time of Babbage was
grappling with the apparent contradiction of divine miracles – acts of God outside the laws of nature
created by God – which Hume had famously argued could not be rationally supported (Hume, 1748).
In aiming to discover mathematical laws such as those of Newton, which could accurately describe and
predict nature, natural philosophers operating within the frameworks of Deism and Christianity struggled
to reconcile their work and faith.

Babbage found in his Difference Engine the possibility for reinterpreting miracles as part of the natural
divine order. Using a “feedback mechanism” that connected two gear wheels, Babbage was able to
encode programs that, after a certain number of iterations, would change their behaviour. For example,
he would demonstrate a program that counts the integers 1, 2, 3 ... up to 100, at which point the
program would change and start counting in steps of two: 102, 104, 106 ... etc. In demonstration-
sermons delivered to rapturous audiences, he used this example to explain his theory of God as a divine
programmer (Snyder, 2012). A miracle was thus explained as a shift in the program. God’s intervention
to perform apparent miracles was not an aberration against universal, constant laws – it was merely the
manifestation of a deeper and misunderstood universal law, a deeper plan, a deeper intention.

It is instructive that Babbage’s conception of programming and intention centred around shifts, or de-
viations, from the expected. A machine that continues to execute the same predictable behaviour is not
a program, it is simply a machine. It is in the departure from convergent behaviour that evidence of
programming emerges as activity and divinity. For Babbage, to converge is human, to deviate divine. To
execute is human, to program divine. To specify is human, to intend divine.

4. Sources of Intention: Constraints, Materiality, and Resistance
Returning to our objective – to promote the active cultivation of the capacity to intend – it is worth briefly
exploring a few perspectives on the sources of intentions.

Much intention appears to arise as a result of interaction with the external world. Practitioners of creative
arts and research in creativity have long noted the role of constraints in shaping and facilitating creativity
(Stokes, 2005; May, 1975). Materiality and resistance are essential to craftsmanship; any material,
by virtue of its properties and resistances, participates in an ongoing dialogue with the craftsman’s
intentions (Basman, 2016). According to material engagement theory9 (Malafouris, 2019), “Our forms
of bodily extension and material engagement are not simply external markers of a distinctive human
mental architecture. Rather, they actively and meaningfully participate in the process we call mind”. As
such, the role of material as a source of intention can be seen as a form of extended cognition, or at the
very least external cognition (Turner, 2016), notwithstanding challenges to these ideas (Rupert, 2004).

A sculptor must consider how pliable or fragile their material is, what tolerances and fine details can
be accomplished, how gravity will constrain the scale and orientation of their figures. A carpenter must
consider the grain of their wood, where cuts and incisions can be made. A painter using watercolours
must consider and exploit the additive translucency of that medium, one using oils must consider the
opacity of theirs. It is telling that the archetypical dimension in the Cognitive Dimensions of Notations

8Much as R. Benjamin (2024) calls for us to cultivate the capacity to imagine.
9Thanks to Ava Scott for identifying this connection.

5

PPIG 2024

www.ppig.org 164

(Green, 1989) is viscosity, a metaphor rooted in materials and resistances, aiming to bridge them with
the seemingly immaterial and disembodied world of notations.

Some intentions even rejoice in the contradiction of others: for example, the objective of subversive
gameplay styles is to ignore the received goals of the game and invent one’s own (Flanagan, 2009), it
is playing the infinite game whose objective is to continue playing, not the finite game whose objective
is to win (Carse, 1986). Solving the continuous puzzles posed by these resistances, having a vision
pushed, pulled, and evolved, is the pleasure and intentionality of craftsmanship. These are not destructive
resistances that hinder the realisation of an intention; they are productive ones that facilitate it.

Exploratory programming (Kery & Myers, 2017) exemplifies how the materialities and resistances of
programming are exploited to shape intention. In exploratory programming, the programmer’s goal is
unknown or ill-defined. The objective of the process is to discover or create an intention, to formulate a
problem. The formulation of a problem co-exists with and cannot be separated from its solution (Rittel &
Webber, 1973; Sarkar, 2023c). This is also the case in the end-user programming activity of interactive
machine learning, or interactive analytical modelling (Sarkar, 2016b), where the goal is ill-defined and
the objective is to create one, through a constructivist loop of interaction between ideas and experiences
(Sarkar, 2016a).

There have been proposals to design GenAI systems that introduce productive resistances as catalysts
for the development of intention. Rather than an assistant, AI can act as a critic or provocateur (Sarkar,
2024; Sarkar et al., 2024). AI can be antagonistic (Cai et al., 2024). AI can cause cognitive glitches
(Hollanek, 2019). AI can act as cognitive forcing functions (Buçinca et al., 2021). These proposals are
counter to traditional narratives of system support, system disappearance, and system non-interference.
They can be seen as successors to previous counternarratives raised by researchers such as critiques
of the doctrines of simplicity and gradualism (Sarkar, 2023c), critiques of seamlessness (Chalmers &
MacColl, 2003), critiques of reversible interactions (Rossmy et al., 2023), the case for design frictions
and microboundaries (Cox et al., 2016), reframing of ambiguity as design resource (Gaver et al., 2003),
and calls for attention checks in AI use (Gould et al., 2024).10

The concept of resistance could be key to framing the design objectives for intentional GenAI tools. Our
current explorations of improving critical thinking with GenAI (e.g., Sarkar et al. (2024)) are strictly
additive: let’s augment AI interaction and output with prompts, text, visualisations, etc. that get the user
thinking. However, this approach increases the cognitive burden by asking users to consume and reflect
on more information. We know that people don’t always enjoy, or want, more information. Particularly
when it comes to the user interfaces of discretionary software, they usually want less (Carroll & Rosson,
1987; Sarkar, 2023c). The additive approach may be starting by fighting a losing battle, one in which we
try to design the smallest, most stimulating, most rewarding “consumable” that creates user reflection,
without incurring undesirable attentional costs. The idea of resistance provides a different starting point.
How can we build GenAI tools with inherent, productive resistances that are part of working with the
tool, not an additional thing that users need to “pay” attention to? How can the experience of resistances
in the interface feel more like the pliability of clay, or the translucency of paint? This is an open avenue
for future work.

10It is worth observing that while such counternarratives often involve calls for greater, more critical, and more reflective
user engagement and participation with technology, it should not be assumed that intentionality always entails participation or
action. Observation itself is not intrinsically passive. This point is well made by Pfaller (2017): “Two philosophical premises
silently played a decisive role in this triumphal march of participation: first, the idea that the relation between transmitter
and receiver represents a hierarchy and that the elimination of this hierarchy therefore has to amount to a democratisation;
and secondly, the idea that it is more desirable for spectators to participate than to spectate [... however,] the relation
between transmitter and receiver does not always represent a hierarchy. And when it does, then it is not always in favour
of the transmitter [...] This is why it is misleading to believe that activating the audience in art is automatically and always
tantamount to their liberation. Because could not the exact opposite be the case: could the enthusiasm for joining in produced
by art not deprive people of the necessary refractoriness that they would need in political life in order not to be immediately
enthused by every neoliberal or reactionary or even fascist appeal to ‘actively’ join in, and pursue this with a feeling of
liberation?”

6

PPIG 2024

www.ppig.org 165

5. Existentialist Approaches to Intention
So far we have been considering intention at relatively small scale: instances of knowledge work and
GenAI use. But intentions, like goals, form hierarchies. Intentions are not isolated and independent,
they are related and convergent. To what do they converge? At this point we shall make a somewhat
abrupt leap outwards and consider the most expansive scope of intention – as enacted over the course of
an entire life.

An evolutionary account might attempt to trace human intentions back to fundamental physiological
concerns: we form intentions to continue survival, to avoid fear, to ensure comfort, to maximise pleasure,
to minimise pain. These can certainly account for some intentions. The concept of intention has much
in common with free will – loosely defined, one’s capacity to act differently to how one did, in fact,
act. Free will is not the same as intention, but it can be viewed as a precondition for true intention.
Neuroscientific work purporting to demonstrate (a lack of) free will has been criticised by philosophers
because (among other objections), we do not have a suitably good picture that connects short-term
choices dominated by low-level psychological phenomena (such as choosing to push the left button or
the right button) to the complex, long-term, highly planned and goal-oriented intentions (such as the
intention to commit a crime) that pose the truly consequential ethical challenges to free will (Mele,
2019). The evolutionary account is part of a broader category of teleosemantic theories of intention
(Jacob, 2023) according to which design (evolutionary or artificial) supplies a function (τέλος), which
in turn supplies intention.

In considering whether human intention can truly be reduced to evolutionary or functional needs, I
am drawn to the argument made by feminist anthropologist Payal Arora in her closing keynote for the
2022 CHI conference (Arora, 2022). She criticizes Maslow’s famous hierarchy of needs that places
physiological and safety needs at the bottom, rising to esteem and self-actualisation at the top. The
conventional reading is that needs at the bottom of the pyramid need to be satisfied, the foundation of
the pyramid needs to be built, before one can proceed to the higher levels. This is a fairly influential
way of thinking and often dictates the way in which social aid and rescue efforts are prioritised: focus
on food, water, and shelter first, and joy, play, growth, education, and dignity later. Arora finds that this
picture does not correspond with her observations in her extensive ethnographic work with precarious,
oppressed, and underprivileged groups. Instead, she proposes that the pyramid is upside down. What she
finds is that self-actualisation is what people need first, and are willing to sacrifice safety needs to get it.
People leave secure work when the nature of that work threatens their dignity, even if this places them in
financial hardship. People leave homes where they cannot express their identity, or are not accepted for
who they are, even if this might leave them without a roof over their head. A line from the poet James
Oppenheim captures the sentiment:

“Our days shall not be sweated from birth until life closes —
Hearts starve as well as bodies: Give us Bread, but give us Roses.”

If not entirely upside down, then at the very least Maslow’s hierarchy is not a unidirectional ladder to
climb, but a set of considerations and influences that are continually negotiated and traded-off. Physiol-
ogy and evolution are part of intention formation, but far from the entire picture. Where can we look for
a perspective on intention that aligns with Arora’s observations? Moreover, is there an approach that not
only identifies the source of intention, but prescribes a method for cultivating it?

Elaborating the consequences of the idea that the active cultivation of intention is the core virtue in an
inherently meaningless world is precisely the project of existentialist philosophy.

The absence of any inherent purpose to life is the starting point. Per Sartre (1943), “existence precedes
essence”; individuals first exist without purpose and must subsequently forge their essence, or identity,
through their actions. Angst, or existential anxiety, arises from the realization of one’s freedom and the
infinite possibilities it entails (Kierkegaard, 1844). Existentialists see angst as a motivator rather than an
obstacle.

7

PPIG 2024

www.ppig.org 166

Authenticity is one expression of existentialist intention. It is the pursuit of living in accordance with
one’s true self and values, rather than conforming to societal norms, and is essential for genuine existence
(Heidegger, 1927). Authenticity requires a conscious effort to understand and act upon personal convic-
tions, even in the face of adversity or societal pressure (Kierkegaard, 1843; de Beauvoir, 1948). Other
sources of intentionality, besides authenticity, go beyond the individual. Kierkegaard’s (Kierkegaard,
1849) “leap of faith” suggests that to escape from existential despair requires acknowledging the limits
of rational reflection and an individual’s relationship with the divine. Moreover, to seek engagement
with the world is to step beyond oneself, to interact with others, and to find and create meaning through
these actions (Jaspers & Saner, 1932). Similarly, de Beauvoir (1948) points out that our individual
subject-like freedom is complemented by an object-like unfreedom (“facticity”), deriving an ethics of
freedom that advocates for actions that respect the freedom of others.

Camus (1942) counsels individuals to accept “the absurd”: the tension between the human search for
meaning and a universe that is silent in response, to recognize the lack of inherent meaning in the
world and to take on the task of creating their own purpose. Camus rejects “solutions” to the absurd
proposed by prior philosophers, such as Kierkegaard, as “philosophical suicide”. To Camus, seeking
overarching meaning despite the absurd is seeking to resolve, minimise, sidestep, or ignore the absurd,
not acknowledging it.

Camus rejects a forced imposition of meaning where there is none. A leap of faith is a form of escape.
Incidentally, a forced imposition of meaning is precisely the modus operandi of GenAI: for language to
be produced by arithmetic means it is necessary to encode language in a uniform, rational vector space.
Sense and nonsense alike are thus enumerated and made commensurable. King−Man+Woman=Queen
(Mikolov et al., 2013). Before carefully designed guardrails (themselves a form of escape) made it
more difficult to do so, it was easy to elicit answers to nonsense questions such as “what colourless
green ideas sleep furiously?” from language models. Furthermore, GenAI is an essential component
of an emerging pseudoreligious meta-narrative of escape identified by Gebru & Torres (2024): “What
ideologies are driving the race to attempt to build AGI? [...] we trace this goal back to the Anglo-
American eugenics movement, via transhumanism. [...] we delineate a genealogy of interconnected and
overlapping ideologies that we dub the ‘TESCREAL bundle,’ where the acronym ‘TESCREAL’ denotes
‘transhumanism, Extropianism, singularitarianism, (modern) cosmism, Rationalism, Effective Altruism,
and longtermism’”.

Camus’ existentialist view offers a non-escapist alternative that stares meaninglessness in the face and
from it derives freedom. This freedom is both liberating and burdensome. We are at liberty to choose,
but are also responsible for bearing the burden of the consequences. The lightness of being can thus be
unbearable. It is through confronting this anxiety that individuals can make deliberate and meaningful
choices, shaping their intentions, and by extension, their essence.

GenAI has implications for the intention of professional programmers and casual ones alike. The in-
troduction poses the question “what is programming?”, and we can now see a second reading of this
question which asks not for a definition of an activity, but of an aspiration or identity. As GenAI solves
the problem of control, of specifying behaviour, the aspiration shifts to intent. Intent precedes control.
To be a programmer is therefore not to be one who specifies behaviour, but one who forms authentic,
meaningful intentions for behaviour.

6. Speculative Scenarios for Intentional Programming
The optimism of the “intention is all you need” narrative does posit a legitimate observation concerning
the behavioural economics of software production. GenAI makes the production of bespoke software
vastly cheaper. One can view existentialism as a response to the loss of the “grand narratives” of moder-
nity. But software has still been constrained by the grand narratives of capitalism and utility – until now.
To write a program required investment of time and hard-earned expertise, exerting pressure on programs
to be valuable, robust, and reusable. Where they did not place an outright barrier, the investment costs
of programming disincentivised exploration, error, and disposal. Within this frame story hitherto sits

8

PPIG 2024

www.ppig.org 167

the universe of programmer psychology and behaviours: from authoring code to code comprehension,
from knowledge sharing and documentation to debugging, from learning barriers to attention invest-
ment, from API design to autocomplete. Almost the entire diversity of experience of programmers,
professional or casual, that our research community has so carefully documented and explained for the
last half-century, has dwelt in the shadow of the market’s invisible hand.

As the hand is withdrawn, one might ask how programmers can respond, in a microcosm of the existen-
tial dilemma, to the liberating yet burdensome freedom granted by GenAI. As far as practical advice (i.e.,
“implications for design[ing your life]”) is concerned, existentialists advise embracing one’s freedom to
shape life, living authentically, accepting the absurd, confronting anxiety, and seeking engagement with
the world as ways to form meaningful intentions. What this might mean for programmers, and interac-
tion with GenAI, can be sketched in a few speculative scenarios:

• Intentional coding retreats: The programmer steps away from her standard way of working to
participate in an intentional coding retreat. Here, the programmer reconnects with the craft of
coding without the assistance of AI tools. This allows the programmer to explore and reaffirm
personal coding styles and problem-solving approaches. For example, a programmer accustomed
to relying on AI for debugging might rediscover the satisfaction of manually untangling complex
code, thus reaffirming their individual capability and creative freedom.

• AI as muse: AI suggests an unusual, contradictory, or incorrect algorithmic approach, which the
programmer then refines and transforms with personal insights and expertise. The tool is not a
crutch but a source of inspiration.

• Programming with provocations: programming environments include prompts or questions to
stimulate deeper thinking about the purpose and potential impact of the code being written. This
can help programmers reconnect with their motivations and aspirations.

• Programming with constraints: intentional constraints are introduced to programming projects,
much like the practices of constrained writing.11 Programmers already practice genres of con-
strained programming for pleasure, such as “code golf” (writing the shortest possible program
with a certain behaviour) or “quines” (inputless programs that produce only their own source code
as output). By deliberately limiting certain resources or imposing unique challenges, programmers
can stimulate creativity and craft intentional solutions.

• Deviation practice: in the education of professional programmers, exercises are developed that
require intentional deviation from established patterns. By practising the precise skill of breaking
away from standard solutions, programmers may more readily acquire the conscious muscle and
desire for forming unique intentions and exploring novel paths.

• Intentionality metrics: tools display metrics that evaluate the degree of human intention in the
creative process (noting that these metrics are necessarily reductionist proxies and may become
subject to Goodhart’s/Campbell’s law). For example, a generative design tool might analyse the
uniqueness of user queries and the divergence of the output from standard templates. Visibilising
the invisible effects of mechanised convergence may encourage users to engage more deeply with
the work and make conscious, deliberate, individual choices.

• Participatory AI artefacts: artefacts are intentionally left incomplete by AI, requiring human par-
ticipation12 to finalise. For instance, a participatory tool generates the outline of a web design but
leaves decisions about colour schemes and typography to the user. Conversely, a tool refuses to
generate an outline, requiring the user to form a rough intention independently, before assisting
by filling in details.

11E.g., see discussion of conceptual writing in Sarkar (2023b).
12though not “collaboration” (Sarkar, 2023a)

9

PPIG 2024

www.ppig.org 168

These speculations are not meant to be concrete proposals, but rather simply representative ideas of
a future where the existentialist values of freedom, authenticity, and intentionality are preserved and
enhanced through GenAI. They are limited in vision, representing only the lines of sight from where we
stand today, and unable to anticipate the adjacent possibles of where we might travel.

7. Conclusion
Programming is undeniably changing under the influence of GenAI. Intention appears to be all one needs
to create software. But the notion that GenAI offers a neutral, unencumbered path to realising intentions
is a mirage. Contrary to the assumption that GenAI merely executes human intentions, it also shapes
them. At the very least, GenAI can induce “mechanised convergence”, homogenising creative output,
and reducing diversity in thought. There is therefore a risk of creating a “stuck” culture that recycles an
old set of convergent ideas instead of fostering a new set of divergent ones.

In seeking a way through this problem we have encountered a variety of sources that we can draw upon
to precipitate the active cultivation of intention: evolutionary pressures, the need for dignity and self-
actualisation, constraints, subversion, materiality, and resistance. Finally, we discussed how the problem
of intention resonates with the existentialist pursuits of freedom, identity, and authenticity. While this
discussion of existentialism is necessarily cursory, limited, flawed, and provisional, its aim has been to
situate the problems posed by GenAI to intentionality in the broadest possible scope.13

Programming must go beyond specification and embody the active cultivation of intentions. Existen-
tialist philosophy offers a proactive, prescriptive framework for understanding the formation of human
intentions as a process that ought to be held as deeply personal, ethically charged, and fundamentally
free. It teaches us that to be human is to be involved in a continuous project of becoming. After all –
one is not born, but rather becomes, a programmer.

8. Acknowledgements
Thanks to Sean Rintel and Lev Tankelevitch for helping review drafts of this paper. I am especially
grateful to Ava Scott and Richard Banks for their generous and helpful reflections.

References
Alemohammad, S., Casco-Rodriguez, J., Luzi, L., Humayun, A. I., Babaei, H., LeJeune, D., . . . Bara-

niuk, R. G. (2023). Self-Consuming Generative Models Go MAD. Retrieved from https://
arxiv.org/abs/2307.01850

Anderson, B. R., Shah, J. H., & Kreminski, M. (2024). Homogenization effects of large language
models on human creative ideation. arXiv preprint arXiv:2402.01536.

Arnold, K. C., Chauncey, K., & Gajos, K. Z. (2020). Predictive text encourages predictable writing. In
Proceedings of the 25th International Conference on Intelligent User Interfaces (p. 128–138). New
York, NY, USA: Association for Computing Machinery. Retrieved from https://doi.org/
10.1145/3377325.3377523 doi: 10.1145/3377325.3377523

Arora, P. (2022). FemWork: Critical Pivot towards Design for Inclusive Labor Futures. In 2022 CHI
Conference on Human Factors in Computing Systems (Closing Keynote).

Basman, A. (2016). Building software is not a craft. Proceedings of the Psychology of Programming
Interest Group, 142.

Benjamin, R. (2024). Imagination: A manifesto (a norton short). WW Norton & Company.

Benjamin, W. (1935). The work of art in the age of mechanical reproduction, 1936. New York.

Blackwell, A. F. (2002). What is programming? In PPIG (Vol. 14, pp. 204–218).

13Camus (1942) describes existence (suicide) as the only truly serious philosophical problem.

10

PPIG 2024

www.ppig.org 169

https://arxiv.org/abs/2307.01850
https://arxiv.org/abs/2307.01850
https://doi.org/10.1145/3377325.3377523
https://doi.org/10.1145/3377325.3377523

Blackwell, A. F. (2020). Objective functions:(in) humanity and inequity in artificial intelligence. Science
in the ForeSt, Science in the PaSt, 191.

Bohacek, M., & Farid, H. (2023). Nepotistically trained generative-ai models collapse. Retrieved from
https://arxiv.org/abs/2311.12202

Buçinca, Z., Malaya, M. B., & Gajos, K. Z. (2021, apr). To Trust or to Think: Cognitive Forc-
ing Functions Can Reduce Overreliance on AI in AI-assisted Decision-making. Proc. ACM Hum.-
Comput. Interact., 5(CSCW1). Retrieved from https://doi.org/10.1145/3449287 doi:
10.1145/3449287

Cai, A., Arawjo, I., & Glassman, E. L. (2024). Antagonistic AI. arXiv preprint arXiv:2402.07350.

Camus, A. (1942). The myth of sisyphus (J. O’Brien, Trans.). France: Éditions Gallimard (in French),
Hamish Hamilton (in English).

Carroll, J. M., & Rosson, M. B. (1987). Paradox of the active user. In Interfacing thought: Cognitive
aspects of human-computer interaction (pp. 80–111).

Carse, J. P. (1986). Finite and infinite games. New York, NY: Free Press.

Chalmers, M., & MacColl, I. (2003). Seamful and seamless design in ubiquitous computing. In
Workshop at the crossroads: The interaction of HCI and systems issues in UbiComp (Vol. 8).

Cox, A. L., Gould, S. J., Cecchinato, M. E., Iacovides, I., & Renfree, I. (2016). Design frictions for
mindful interactions: The case for microboundaries. In Proceedings of the 2016 CHI conference
extended abstracts on human factors in computing systems (pp. 1389–1397).

de Beauvoir, S. (1948). The ethics of ambiguity (B. Frechtman, Trans.). Citadel Press Publishing, A
Subsidiary of Lyle Stuart Inc.

Deleuze, G. (1992). Postscript on the societies of control. October, 59, 3–7. Retrieved 2024-06-04,
from http://www.jstor.org/stable/778828

Dell’Acqua, F., McFowland, E., Mollick, E. R., Lifshitz-Assaf, H., Kellogg, K., Rajendran, S., . . .
Lakhani, K. R. (2023). Navigating the jagged technological frontier: Field experimental evidence of
the effects of ai on knowledge worker productivity and quality. Harvard Business School Technology
& Operations Mgt. Unit Working Paper(24-013).

Dennett, D. C. (1971). Intentional systems. The journal of philosophy, 68(4), 87–106.

Doshi, A. R., & Hauser, O. (2023, Aug). Generative artificial intelligence enhances creativity but
reduces the diversity of novel content.
(Available at SSRN: https://ssrn.com/abstract=4535536 or http://dx.doi.org/10.2139/ssrn.4535536)

Flanagan, M. (2009). Critical play. London, England: MIT Press.

Foucault, M. (1977). Discipline and punish. New York, NY: Pantheon Books.

Gaver, W. W., Beaver, J., & Benford, S. (2003). Ambiguity as a resource for design. In Proceedings of
the SIGCHI conference on Human factors in computing systems (pp. 233–240).

Gebru, T., & Torres, É. P. (2024). The TESCREAL bundle: Eugenics and the promise of utopia through
artificial general intelligence. First Monday.

Gerstgrasser, M., Schaeffer, R., Dey, A., Rafailov, R., Sleight, H., Hughes, J., . . . Koyejo, S. (2024). Is
model collapse inevitable? breaking the curse of recursion by accumulating real and synthetic data.
Retrieved from https://arxiv.org/abs/2404.01413

11

PPIG 2024

www.ppig.org 170

https://arxiv.org/abs/2311.12202
https://doi.org/10.1145/3449287
http://www.jstor.org/stable/778828
https://arxiv.org/abs/2404.01413

Gould, S. J. J., Brumby, D. P., & Cox, A. L. (2024). Chattl;dr – you really ought to check what
the llm said on your behalf. In Extended abstracts of the 2024 chi conference on human factors in
computing systems. New York, NY, USA: Association for Computing Machinery. Retrieved from
https://doi.org/10.1145/3613905.3644062 doi: 10.1145/3613905.3644062

Green, T. R. (1989). Cognitive dimensions of notations. People and computers V , 443–460.

Heidegger, M. (1927). Being and time (J. Macquarrie & E. Robinson, Trans.). SCM Press.

Hollanek, T. (2019). Non-user-friendly: Staging resistance with interpassive user experience design. A
Peer-Reviewed Journal About, 8(1), 184–193.

Hume, D. (1748). An enquiry concerning human understanding.

Jacob, P. (2023). Intentionality. In E. N. Zalta & U. Nodelman (Eds.), The Stanford encyclopedia of
philosophy (Spring 2023 ed.). Metaphysics Research Lab, Stanford University. https://plato
.stanford.edu/archives/spr2023/entries/intentionality/.

Jakesch, M., Bhat, A., Buschek, D., Zalmanson, L., & Naaman, M. (2023). Co-Writing with
Opinionated Language Models Affects Users’ Views. In Proceedings of the 2023 CHI Confer-
ence on Human Factors in Computing Systems. New York, NY, USA: Association for Comput-
ing Machinery. Retrieved from https://doi.org/10.1145/3544548.3581196 doi:
10.1145/3544548.3581196

Jaspers, K., & Saner, H. (1932). Philosophie (Vol. 1). J. Springer Berlin.

Kery, M. B., & Myers, B. A. (2017). Exploring exploratory programming. In 2017 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC) (pp. 25–29).

Kierkegaard, S. (1843). Fear and trembling. Denmark: First authorship (Pseudonymous). (Published
in English in 1919 – first translation)

Kierkegaard, S. (1844). The concept of anxiety (R. Thomte, Trans.). Denmark. (Published in English
in 1946)

Kierkegaard, S. (1849). The sickness unto death.

Lee, M., Blackwell, A., & Sarkar, A. (2024). Predictability of Identifier Naming with Copilot: A Case
Study for Mixed-Initiative Programming Tools. Proceedings of the 35th Annual Conference of the
Psychology of Programming Interest Group (PPIG 2024).

Liu, M. X., Sarkar, A., Negreanu, C., Zorn, B., Williams, J., Toronto, N., & Gordon, A. D. (2023). “What
It Wants Me To Say”: Bridging the Abstraction Gap Between End-User Programmers and Code-
Generating Large Language Models. In Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems. New York, NY, USA: Association for Computing Machinery. Retrieved from
https://doi.org/10.1145/3544548.3580817 doi: 10.1145/3544548.3580817

Malafouris, L. (2019). Mind and material engagement. Phenomenology and the cognitive sciences,
18(1), 1–17.

May, R. (1975). The courage to create. New York, NY: WW Norton.

McLuhan, M. (1964). Understanding media: The extensions of man. McGraw-Hill. (First edition)

Mele, A. (2019). Free will and neuroscience: decision times and the point of no return. In Free will,
causality, and neuroscience (pp. 83–96). Brill.

12

PPIG 2024

www.ppig.org 171

https://doi.org/10.1145/3613905.3644062
https://plato.stanford.edu/archives/spr2023/entries/intentionality/
https://plato.stanford.edu/archives/spr2023/entries/intentionality/
https://doi.org/10.1145/3544548.3581196
https://doi.org/10.1145/3544548.3580817

Mikolov, T., Yih, W.-t., & Zweig, G. (2013). Linguistic regularities in continuous space word represen-
tations. In Proceedings of the 2013 conference of the north american chapter of the association for
computational linguistics: Human language technologies (pp. 746–751).

O’Neill, J. (1986). The disciplinary society: from weber to foucault. British Journal of Sociology,
42–60.

Pfaller, R. (2017). Interpassivity: The aesthetics of delegated enjoyment. Edinburgh University Press.

Postman, N. (1985). Amusing ourselves to death. Viking Books.

Prather, J., Reeves, B. N., Denny, P., Becker, B. A., Leinonen, J., Luxton-Reilly, A., . . . Santos, E. A.
(2023, nov). “it’s weird that it knows what i want”: Usability and interactions with copilot for novice
programmers. ACM Trans. Comput.-Hum. Interact., 31(1). Retrieved from https://doi.org/
10.1145/3617367 doi: 10.1145/3617367

Rittel, H. W., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy sciences,
4(2), 155–169.

Robinson, D., Cabrera, C., Gordon, A. D., Lawrence, N. D., & Mennen, L. (2024). Requirements are
all you need: The final frontier for end-user software engineering. arXiv preprint arXiv:2405.13708.

Rosen, B. M. (1979). VISICALC: Breaking the Personal Computer Bottleneck. http://bricklin
.com/history/rosenletter.htm. (Accessed 06-08-2024)

Rossmy, B., Terzimehić, N., Döring, T., Buschek, D., & Wiethoff, A. (2023). Point of no undo:
Irreversible interactions as a design strategy. In Proceedings of the 2023 chi conference on human
factors in computing systems (pp. 1–18).

Rupert, R. D. (2004). Challenges to the hypothesis of extended cognition. The Journal of philosophy,
101(8), 389–428.

Sarkar, A. (2016a). Constructivist Design for Interactive Machine Learning. In Proceedings of the
2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems (p. 1467–1475).
New York, NY, USA: Association for Computing Machinery. Retrieved from https://doi.org/
10.1145/2851581.2892547 doi: 10.1145/2851581.2892547

Sarkar, A. (2016b). Interactive analytical modelling (Tech. Rep. No. UCAM-CL-TR-920). Uni-
versity of Cambridge, Computer Laboratory. Retrieved from https://www.cl.cam.ac.uk/
techreports/UCAM-CL-TR-920.pdf doi: 10.48456/tr-920

Sarkar, A. (2023a). Enough With “Human-AI Collaboration”. In Extended Abstracts of the 2023 CHI
Conference on Human Factors in Computing Systems. New York, NY, USA: Association for Com-
puting Machinery. Retrieved from https://doi.org/10.1145/3544549.3582735 doi:
10.1145/3544549.3582735

Sarkar, A. (2023b). Exploring Perspectives on the Impact of Artificial Intelligence on the Creativity
of Knowledge Work: Beyond Mechanised Plagiarism and Stochastic Parrots. In Proceedings of the
2nd Annual Meeting of the Symposium on Human-Computer Interaction for Work. New York, NY,
USA: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/
3596671.3597650 doi: 10.1145/3596671.3597650

Sarkar, A. (2023c). Should Computers Be Easy To Use? Questioning the Doctrine of Simplicity in
User Interface Design. In Extended Abstracts of the 2023 CHI Conference on Human Factors in
Computing Systems. New York, NY, USA: Association for Computing Machinery. Retrieved from
https://doi.org/10.1145/3544549.3582741 doi: 10.1145/3544549.3582741

13

PPIG 2024

www.ppig.org 172

https://doi.org/10.1145/3617367
https://doi.org/10.1145/3617367
http://bricklin.com/history/rosenletter.htm
http://bricklin.com/history/rosenletter.htm
https://doi.org/10.1145/2851581.2892547
https://doi.org/10.1145/2851581.2892547
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-920.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-920.pdf
https://doi.org/10.1145/3544549.3582735
https://doi.org/10.1145/3596671.3597650
https://doi.org/10.1145/3596671.3597650
https://doi.org/10.1145/3544549.3582741

Sarkar, A. (2023d). Will Code Remain a Relevant User Interface for End-User Programming with
Generative AI Models? In Proceedings of the 2023 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software (p. 153–167). New York, NY,
USA: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/
3622758.3622882 doi: 10.1145/3622758.3622882

Sarkar, A. (2024, sep). AI Should Challenge, Not Obey. Communications of the ACM. Retrieved from
https://doi.org/10.1145/3649404 (Online First) doi: 10.1145/3649404

Sarkar, A., Gordon, A. D., Negreanu, C., Poelitz, C., Srinivasa Ragavan, S., & Zorn, B. (2022, Septem-
ber). What is it like to program with artificial intelligence? In Proceedings of the 33rd Annual
Conference of the Psychology of Programming Interest Group (PPIG 2022).

Sarkar, A., Xu, X. T., Toronto, N., Drosos, I., & Poelitz, C. (2024). When Copilot Becomes Autopilot:
Generative AI’s Critical Risk to Knowledge Work and a Critical Solution. In EuSpRIG Proceedings.

Sartre, J.-P. (1943). Being and nothingness (H. E. B. (1st English translation) & S. R. (2nd English trans-
lation), Trans.). France: Éditions Gallimard, Philosophical Library. (Published in English in 1956)

Sharma, N., Liao, Q. V., & Xiao, Z. (2024). Generative Echo Chamber? Effect of LLM-Powered Search
Systems on Diverse Information Seeking. In Proceedings of the CHI Conference on Human Factors
in Computing Systems. New York, NY, USA: Association for Computing Machinery. Retrieved from
https://doi.org/10.1145/3613904.3642459 doi: 10.1145/3613904.3642459

Shumailov, I., Shumaylov, Z., Zhao, Y., Papernot, N., Anderson, R., & Gal, Y. (2024). Ai models
collapse when trained on recursively generated data. Nature, 631(8022), 755–759.

Snyder, L. (2012). The philosophical breakfast club. New York, NY: Broadway Books.

Stokes, P. D. (2005). Creativity from constraints: The psychology of breakthrough. Springer Publishing
Company.

Tankelevitch, L., Kewenig, V., Simkute, A., Scott, A. E., Sarkar, A., Sellen, A., & Rintel, S. (2024).
The Metacognitive Demands and Opportunities of Generative AI. In Proceedings of the CHI Con-
ference on Human Factors in Computing Systems. New York, NY, USA: Association for Com-
puting Machinery. Retrieved from https://doi.org/10.1145/3613904.3642902 doi:
10.1145/3613904.3642902

Turner, P. (2016). Distributed, external and extended cognition. HCI Redux: The Promise of Post-
Cognitive Interaction, 75–98.

Welsh, M. (2022, dec). The end of programming. Commun. ACM, 66(1), 34–35. Retrieved from
https://doi.org/10.1145/3570220 doi: 10.1145/3570220

Winner, L. (1980). Do artifacts have politics? Daedalus, 121–136.

Zamfirescu-Pereira, J., Wong, R. Y., Hartmann, B., & Yang, Q. (2023). Why Johnny Can’t Prompt:
How Non-AI Experts Try (and Fail) to Design LLM Prompts. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems. New York, NY, USA: Association for Com-
puting Machinery. Retrieved from https://doi.org/10.1145/3544548.3581388 doi:
10.1145/3544548.3581388

14

PPIG 2024

www.ppig.org 173

https://doi.org/10.1145/3622758.3622882
https://doi.org/10.1145/3622758.3622882
https://doi.org/10.1145/3649404
https://doi.org/10.1145/3613904.3642459
https://doi.org/10.1145/3613904.3642902
https://doi.org/10.1145/3570220
https://doi.org/10.1145/3544548.3581388

How Do Developers Approach Their First Bug in an Unfamiliar Code Base?
An Exploratory Study of Large Program Comprehension

Andreas Bexell
Ericsson | Lund University

andreas.bexell@ericsson.com

Emma Söderberg
Lund University

emma.soderberg@cs.lth.se

Christofer Rydenfält
Lund University

christofer.rydenfalt@design.lth.se

Sigrid Eldh
Ericsson | Mälardalen Uni. | Carleton Uni.

sigrid.eldh@ericsson.com

Abstract
Program comprehension is a significant part of developing software; studies suggest that developers
spend 50-70% of their time comprehending program code. Program comprehension and code com-
prehension have been the topics of numerous research studies, but the vast majority of these studies
focus on the comprehensibility of statements or functions, and give little guidance for how to support
comprehension of the large programs common in the industry.

In this paper, we present an exploratory study focusing on practitioners’ comprehension of large pro-
grams in the context of approaching their first bug in an unfamiliar code base. We carried out a study
where we interviewed five professional programmers with experience in software development of large
programs. The interviews were focused on the subjects’ attitudes, their strategies, frustrations they
experienced and any opportunities in this area. We found that our participants employ several differ-
ent strategies, including for example reproduction, localization and simulation, when approaching an
unfamiliar code base. We see a potential relationship between these strategies and factors such as pro-
fessional experience. Our results indicate that large program comprehension may be a fruitful area for
further study, and we outline and discuss some of these opportunities.

1. Introduction
Program comprehension is an important part of the work of a programmer. Studies based on instru-
mentation of tools used by practitioners report time spent on program comprehension in the range of
approximately 58% (Xia et al., 2018) to 70% (Minelli, Mocci, & Lanza, 2015). Program comprehen-
sion takes substantial time while developing software. Improved assistance in this area has the potential
to create a significant impact for programmers.

Understanding large programs poses additional challenges to understanding medium-sized programs or
individual statements of code. It is reasonable for the goals of many program comprehension stud-
ies to address code snippets, which have the size of approximately 10-100 lines of source code (LoC)
and can be viewed as self-contained programs. However, there is little guidance to be found when
seeking to understand more about the comprehension of larger programs typically found in the indus-
try. How do programmers orient themselves in such large systems? For instance, Von Mayrhauser
et al. (Von Mayrhauser, Vans, & Howe, 1997) describe comprehension of sufficiently large programs
as “understanding will, of necessity, be partial”. They further question whether code comprehension
studies of novices working on a general understanding of small programs apply to “professional main-
tenance tasks [...] on large scale software”. We believe that it is reasonable that comprehension of large
programs may differ from comprehension of code snippets, and that this is an area worthy of more study.

In this study, we specifically address comprehension of large programs, where the size of the program
could for example be the Linux kernel that consists of 30 MLoC. Such a large program has complex
dependencies and relations between components, which is necessary and a prerequisite to comprehend
before many programming tasks can be carried out. Programmers often need to understand large pro-

PPIG 2024

www.ppig.org 174

grams in unfamiliar code bases numerous times during their careers, e.g., when joining a new team or
integrating with an unfamiliar system. We address the research question (RQ) How do professional
programmers approach their first bug in an unfamiliar large program? We seek an answer to this ques-
tion via semi-structured interviews with five practitioners, where we focus on attitudes towards large
program comprehension, strategies, frustrations, and opportunities for improvement.

Our contribution is that we find several different strategies employed by these practitioners when starting
to comprehend a large program in an unfamiliar code base. We also find indications that strategies
change and evolve with experience. Furthermore, we find that there may be an untapped potential for
improved tools support for large program comprehension.

The rest of this paper is structured as follows: we start with a description of the method in Section 3,
then the results in Section 4, before we cover threats in Section 5, discuss our findings in relation to
related work in Section 6, and conclude in Section 7.

2. Related work
Approaching one’s first bug in an unfamiliar large program is an activity that requires acquiring a certain
level of comprehension of the program and its structure, as well as being able to locate the bug in it. In
this section, we present an overview of related work in the areas of program comprehension and code
comprehension, with a brief comparison between these closely related topics. Next, we present related
work on bug (fault) localization.

2.1. Program Comprehension & Code Comprehension

19
75

-19
80

19
80

-19
85

19
85

-19
90

19
90

-19
95

19
95

-20
00

20
00

-20
05

20
05

-20
10

20
10

-20
15

20
15

-20
20

0

10

20

30

40 Program comprehension (Bidlake, Aubanel, & Voyer, 2020)
Code comprehension (Wyrich, Bogner, & Wagner, 2023)

Figure 1 – A graph of publication dates of included papers in the meta-studies of “mental represen-
tations of programs” and “code comprehension” indicate a turn in research attention from the first
towards the latter.

Studies on program comprehension tend to focus on the programmers’ mental models and understanding
of an entire program (Bidlake et al., 2020), while code comprehension studies tend to use code snippets
selected to fit the needs of the study, for instance, to strike a balance between simplicity and complex-
ity (Wyrich et al., 2023). Recent mapping studies of program and code comprehension indicate a turn
in the field of software comprehension from mental representations of programs, reported by Bidlake et
al. (Bidlake et al., 2020), to code comprehension, reported by Wyrich et al. (Wyrich et al., 2023); see
Figure 1. This study falls in the domain of program comprehension, rather than in code comprehension,
with a special focus on large programs.

Siegmund (Siegmund, 2016) summarizes program comprehension to these points; (1) getting an

PPIG 2024

www.ppig.org 175

overview of a large program or software architecture, (2) understanding type structures and call hier-
archies, (3) understanding the relationship between components, and (4) identifying the developers who
are responsible for a component. Our study focuses on the first and third items.

Siegmund describes the top-down comprehension model, bottom-up comprehension model, and the
combination of the two in the integrated comprehension model. She notes that if programmers are
encountering areas they are not familiar with, they resort to executing the program sequence by sequence.
However, she does not explore how programmers create their own orientation in the large program, and
how they explore unfamiliar areas in the program to solve a particular task.

Kulkarni provides a case description by narrating their experience of starting work with a new large
code base. (Kulkarni, 2016). They reflect on their use of bottom-up and top-down comprehension, and
on their conscious use of Brook’s, Soloway’s and Shneiderman’s models (Brooks, 1978; Soloway &
Ehrlich, 1984; Shneiderman & Mayer, 1979) Kulkarni concludes that no one strategy is all-embracing,
but that several approaches are needed.

Wuilmart et al. (Wuilmart, Söderberg, & Höst, 2023) interview four professionally active programmers
and indicate that to gain sufficient comprehension of a large program, programmers may need to consult
with other programmers and sources outside of the source code. They further found that the interviewed
programmers would typically approach a new code base top-down followed by experimentation with
different ways of running the program.

2.2. Bug localization and Fault localization
When beginning work with a new code base, a common problem is to find a good starting place.
(Tempero & Ralph, 2018) discusses the “where to start” question. They note that most “program com-
prehension” research is done on an “implementation” level – the understanding of statements. This is
contrasted with “design comprehension”, as in understanding the internal relations of a program.

Locating a bug in a large program requires specific strategies. This has been studied by Katz and An-
dersson (Katz & Anderson, 1987), by Vessey (Vessey, 1985), and Decasse and Emde (Decasse & Emde,
1988), who each enumerate a set of strategies employed by programmers when locating bugs in software
programs. Later, Romero et al. (Romero, Du Boulay, Cox, Lutz, & Bryant, 2007) has coded strategies
from observations of programmers’ behaviour when debugging software.

In the 1990s, research on bug localization took a turn for the study of automatic bug localization tech-
niques see (Wong, Gao, Li, Abreu, & Wotawa, 2016) and (Wang, Galster, & Morales-Trujillo, 2023),
and new theories on strategies for human debuggers after that are scarce. The gap between recent grad-
uates’ experience with large code bases compared to the industry’s expectations is addressed in (Shah,
Yu, Tong, & Raj, 2024). The fact that there is an expectation from the industry may indicate that expe-
rienced software developers engage with unfamiliar large code in a manner different from students. We
study professionally active developers working with large programs.

Collecting data from 102 professional developers, Hirsch and Hofer suggest that localizing bugs in
programs is more time-consuming than fixing them. They conclude that more research may be needed
specifically on bug localization. (Hirsch & Hofer, 2021)

Alaboudi and LaToza perform an analysis of the activities developers engage in during video-recorded
debugging sessions (Alaboudi & LaToza, 2023). This results in a comprehensible enumeration of what
observable activities programmers engage in (Edit, Navigate, Test). This study collects retold experi-
ence, and may additionally capture some of the strategies that may result in the activities enumerated by
Alaboudi and LaToza.

3. Method
To address our research question, we designed an interview study focused on the following topics in
relation to large program comprehension; the attitudes with which programmers approach an unfamiliar
code base, what strategies they employ to orient themselves to solve their first bug there, what frustra-

PPIG 2024

www.ppig.org 176

Table 1 – The mapping of topics and questions in the interview protocol. See also Appendix A.

Topic Question(s)
Attitudes "[...] how do you feel?"
Strategies "What do you do [...]?"

"What strategies do you employ [...]?"
"What tools do you employ?"

Frustrations "What trouble do you get into?"
Opportunities "What would you want [...]?"

Table 2 – Overview of interview participants. Exp - years of professional programming experience,
CB - number of new code bases the participant has been introduced to, Lang - number of program-
ming languages the participant has professional capacity in.

Participant Age Gender Exp CB Lang
S1 40 non-binary 27 15 15
S2 47 male 20 15 5
S3 43 male 18 30 5
S4 26 female 2 2 6
S5 37 male 22 20 5
Avg/Med 38/43 17/22 16/15 7/5

tions they encounter, and what opportunities for improvement they identify.

3.1. Data Collection
We used semi-structured interviews (Robson, 2011) as a means to collect the data needed to address our
research question. The interview protocol was designed to enable directed content analysis (Hsieh &
Shannon, 2005) to collect information about the participants’ professional experience and their experi-
ence of large program comprehension with a focus on attitudes, strategies, frustrations, and opportunities
(Table 1). The interview protocol is included in Appendix A.

We recruited five participants, described in Table 2. The participants were all programmers with 2-27
years of professional software development experience from more than one company. All five have
started working with new large programs at least twice during their respective careers. All of them are
Swedish and have worked in large software development companies in Sweden.

Before the interviews, the participants were informed of the topic of the study and the members of the
research group. Participants were promised that any publications would be in a manner so that the
identity of the participants would be protected. The raw data is available only to external auditors. The
participants were informed of their right to opt-out of the study at any time, without penalty. Each of the
participants signed a consent form to this effect.

The interviews were executed in Swedish. They were conducted via remote link with audio and video.
The interviews were recorded (except the first interview, when the recording failed). In addition, physical
notes were taken during the interviews.

3.2. Data Analysis
Data extraction was carried out by the first author. The recordings were automatically transcribed using
Microsoft Teams auto-transcription. The transcriptions were used as a guide to listen to the recordings
to extract quotes according to directed content analysis, related to the topics in Table 1). Initially, at least
one quote per participant and topic was extracted. During this process, the quotes were translated from
Swedish to English.

The extracted quotes were reviewed and discussed together with the second author. Especially the

PPIG 2024

www.ppig.org 177

Figure 2 – The activities mentioned by the participants, with order corresponding to the order in
which each activity was mentioned in the interview.

quotes connected to strategies were reviewed in more detail as it became clear that participants undertake
several different activities. The interviews were revisited by the first author to code the activities using
conventional content analysis (Hsieh & Shannon, 2005). The coded activities of bug localization in an
unfamiliar large program were mapped to activities described in the literature (see Table 3).

4. Results
Here, we present the results of our interview study. We focus the analysis of the interview material on
the four topics presented in Section 3; attitudes, strategies, frustrations, and opportunities.

4.1. Attitudes
We found that our participants approach an unfamiliar codebase with a mix of anticipation and caution.
Several participants described feelings of vulnerability, like a feeling of being overwhelmed (“It’s a mix
of fun and overwhelming”, S1) or nervous (“Until I’ve checked out [the code] I’m quite calm. [...] That
is something I have learned with time because you are very, very nervous. What am I getting into?”,
S5). One participant mentioned that a mentor can help to relieve the feeling of being lost (“When you
have a mentor, it’s easier [...] Otherwise, just ’here’s the code base, here’s a computer, find out what’s
happening’ that’s much more frightening, because I’m, like, what file should I even open first?”, S4).

We also noticed that there appears to be a risk of friction in terms of expectations (e.g., “many places
have these - ’we’ve always done like this’ [...] can drive you crazy in the beginning”, S1). To spare some
frustration, participants recount strategies to contain expectations, for instance, to refrain from a personal
investment to reduce the feeling of ownership (“May be a good idea to cool it in the beginning, to wait
and see - there may be a good reason”, S1. The structure of the work may already create some of this
distance. For instance, one participant described the role you have as a consultant where you are more a
visitor in the code base which may create a different relation to code ownership (“As a contractor, you
have the benefit of not being a part of company politics, but you can be objective and try to solve the
problem. The client’s problem, that is.”, S3).

4.2. Strategies
Our participants mention strategies composed of a series of activities, illustrated in Figure 2 with the
order they were mentioned by participants. Some of the activities are shared between participants, while
others are mentioned to a lesser extent and some are mentioned only by a single participant.

Reproduce: To “reproduce” a bug means to be able to provoke and observe a bug, ideally in a predictable
manner. This is a common entry point (“It’s important to know exactly what the bug is [...] So that’s the
first thing, to find out exactly what the bug results in and see if it can be reproduced.” S5). Reproducing

PPIG 2024

www.ppig.org 178

a bug can either be by running a test case that fails or by following a specific procedure (“We need to
start by reproducing this bug I’m meant to solve [...] best case, there is a failing test case ... or maybe
I need to use the product according to some instructions to make it exhibit this problem.” S1, “I mean,
it’s a bug, it’s reproducible. Yes: you press a button or play a video or something [...]. And you see: this
happens, that shouldn’t. [...] Then I can dig from there.” S2). How to reproduce a bug is often a core
part of a bug report, and several subjects state they start their understanding of the bug by reproducing
it. This might also provide an opportunity to introduce oneself to the interaction with the program.

Localize: When finding a bug in a large and unfamiliar code base, it is important to try to shrink the area
of investigation to a manageable size. “Localization” is the act of trying to limit the area of interest and
demarcate a part of the code that is relevant to a specific task (“try to come down from the problem is
located somewhere in these hundred thousand lines to [...] ... 1000. A workable number”, S1). We find
a mix of different approaches to localization: S1 and S4 search for string constants (“Search for strings
or something [...] they are searchable and somewhat unique. When you don’t know naming, schema,
folder structures and so on.” S1) and keywords (“ I search the code base for keywords.” S4) in the
source code and work from there, in a bottom-up approach. S3 starts with a top-down approach from
architectural overviews but is ready to switch to a bottom-up approach (“If you’re lucky, there’s some
kind of architecture you can look at [...] Or you have to discuss it with someone or ask [...] otherwise,
you’ll have to search the files manually”, S3). S2 focuses on the data flow and tries to trace it through
the program to localize its source (“The incoming data is wrong. OK, then we need to find who feeds
that data and what is wrong with it.”, S2) , while S5 focuses on the control flow and tries to locate a
central point of the system to trace their way outwards from there. (“I mean, a juncture, a manager,
whatever where you don’t need to go further backwards or forwards. Here I can start working without
familiarizing myself with too much.”, S5).

Inspect: The source code of a software system is only part of what is needed to understand how it
behaves. To be able to alter the behaviour of the running software, or identify anomalies, the data the
code operates on needs to be observed. To systematically observe a part of the code along with its data,
as it runs is to “inspect” the program. The subjects refer to stepping and breakpoints, that is, using
a debugger to execute the program one instruction at a time, being able to inspect changes in its state
for each step (“I step and see what value all the variables have and let it run and [...] begin clicking a
few buttons to see where the flow takes me.", S5; “I’ve got a point before the crash/error/bug manifests.
If possible, one can set a breakpoint there” S1). However, using a debugger is not always possible
(“Systems very seldom are like ‘well, you just click these buttons in the IDE and run this and then
switch to a debug perspective’ ”, S2). S1 and S2 express experiences of situations where a debugger is
unavailable and the, in their opinions, less ideal strategies of using printouts of partial states while the
program runs in a normal manner (“otherwise, one may go old school and print to trace out some data
and see how it changes”, S1; “Sadly, it often becomes printf. [...] We suspect these variables have the
wrong values, and in the end, well, we have to print the values and look at them”, S2).

Recognize: Software source code often forms patterns. Many parts of the code may do similar things,
and will over time tend to do similar things in similar ways. Common expressions of code are sometimes
referred to as “idioms”. Some idioms have proved to be based on misunderstandings and may not work
as intended; such are sometimes referred to as “anti-patterns”. A sufficiently experienced programmer
may be able to recognize anti-patterns or mistakes in idioms simply by looking at them (“... And there
you say ’This can probably go wrong’ [...] ’This is the special case’ [...] that’s experience, right?”, S3).

Simulate: Every programmer needs to make a mental model of the execution flow of a program to be
able to understand it. This mental model can range from superficial to detailed. Making an exhaustive
analysis of the program flow under different circumstances amounts to simulating the program execution
in one’s mind (“You more or less run the code in your head, and then you see it.”, S3). A programmer
with a sufficiently detailed mental representation of the program may be able to simulate several program
runs and thereby reveal conditions under which the program executes abnormally or in an undesired

PPIG 2024

www.ppig.org 179

manner.

Contextualize: To understand what goes wrong in a piece of code, it may be helpful to know in what
environment that code is written and how it connects to other parts of the system. A panoramic overview
of the context of the code can be beneficial to large program comprehension. S4 collects and documents
the context of the source code and draws a map for further reference (“I paint a small picture of that
area. Step one is getting an overview of the full code base. [...] What does a flow look like? So it became
a small flow chart. On paper.”, S4).

Table 3 – Bug localization strategies

(Katz & Anderson, 1987) (Vessey, 1985) (Decasse & Emde, 1988) (Romero et al., 2007)

Reproduce "testing [the] system" "Determine problem" "checking computational
equivalence of intended
program and actual one"

"Following execution"

Localize "locating the erroneous
component of [the] sys-
tem"

"Locate error" "filtering" "Causal reasoning"

Simulate "Mentally process data
through program"

"Hand simulation"

Inspect "Examine program con-
trol"

Contextualize "Gain familiarity" "Comprehension"

Recognize "recognizing stereotyped

errors"

4.3. Frustrations
Two points of frustration stood out in the interviews:

Tedious Tool Setup: A common frustration among our participants concerns the tool setup where they
expect to encounter trouble, for instance, regarding how to set up a functioning build process (“Often-
times it may be hard to understand how to even build the software”, S3). A related point of frustration is
lacking support for debugging (“It’s very uncommon with systems where you just click a few buttons in
the IDE, and it starts and runs and you can just switch to a debug perspective.”, S2; “Integrated debug-
gers are still not standard, surprisingly”, S1), or the need for a time-consuming setup to get working
debug support (“Sometimes it takes time to get the break-point functionality up and working, so that
the code stops where you are interested. I really miss that”, S5). More generally, developers may feel
abandoned when it comes to tooling (“Tools and that kind of stuff are often kind of neglected.”, S2).

Lack of Visualization: Another point of frustration mentioned was connected to support for visualiza-
tion and the lack of having up-to-date versions of unified modelling language (UML) diagrams (“The
way I see it, to have a UML diagram and keep it updated can for a team be hard”, S4). In some cases
a solution may be available but company policies connected to protection of intellectual property may
prohibit their use (“I have looked a lot at available [UML generator] tools. But I never quite understand
if they upload stuff, you know, they may be online, and then I’m not allowed to use them.”, S4).

4.4. Opportunities
Related to the frustrations several intervention opportunities emerged from the analysis of the interviews.

Quick and Easy Developer Tool Setup: Many of the more experienced programmers in this study have
experienced situations where the tool chain is incomplete or dysfunctional. It may be hard to build the
project from the IDE, it can be hard to trigger the test cases, or complicated to get code indexation and
debugging to work. A more ready-to-go and simpler development setup is an area of opportunities for
improvement, and might over a sufficiently large developer base provide a good return on investment
(“I mean, pull up visual studio code, check out the code, press the button with the icon and then run in
debug mode. [...] I think that would have made things easier.”, S2).

PPIG 2024

www.ppig.org 180

Backward-Stepping Debugging: A debugger is a tool that allows running a program one step at a time,
and allows for inspection and alteration of its state between the steps. Typically, a debugger can only
run the program forwards along a single path. Backing up, to see for example where a state originated
from, is usually not possible. Yet, this could make an appreciated feature (“I think some kind of runtime
that could record an execution. [...] It would be like single-stepping after the fact. [...] Back and forth”,
S2).

Runtime Visualization: When using a debugger, it is important to continuously evaluate the state of
the running program, but this could be further aided by tools (“Some kind of visualization tool [...] like
being able to see how the data changes”, S1). Furthermore, it is important to keep track of where, in
the source code, the program is currently executing, and what path it has taken to get to this point (“See
that OK, we enter this function with erroneous parameters, why is that? Who is calling?”, S1; “I think
the data is wrong, but who is calling with this data? I sort of want to find the call graph, and that can
be rather tricky.”, S2). Visualizations of a program’s runtime paths and state change behaviour could
provide an accessible overview and elevate a programmer’s understanding of the runtime behaviour of
the code.

Static Visualization: A programmer working on a large program needs a mental model of how the parts
of that program interconnect. When probed about the process of creating such a model, the participants
in this study mentioned mental visualizations with relations, in the shape of UML and block diagrams
(“You know, a big part is some kind of visualization of the architecture, so you can see how the big
blocks are connected ... like a block diagram.”, S3). One subject express a wish for a tighter integration
of UML into the IDE to be able to use it for navigation (“In a dream world, I would have an interactive
UML diagram that is already in place. [...] Be able to click around in the UML diagram instead.”, S4).

Event Tracking: An event-based architecture differs from an object-oriented or a functional architecture
in that functions may alter their behaviour in response to the properties of the data — “event” — being
processed. These events are typically queued before being sent for processing. When looking at the
runtime behaviour of such code, we will see multiple calls to the event processing function from the
queue handler, but it will often be hard to know where the event was sent from. When debugging, an
erroneous event may be identified, but tracing the origin of an event may be hard. Marking events with
their origin may simplify tracing it (“An easy way would be. [...] I queue the [event] object, and later
when the event gets [processed], you can see the object that created it, S5).

4.5. Summary

RQ: How do programmers approach the task of resolving their first bug?

We find that different programmers may have different strategies. While there is a significant
overlap in the activities they mention, it is clear, even from this small sample, that not all pro-
grammers approach bug fixing in an unfamiliar large code base the same way.
We also find that four of the five programmers in our study think they would benefit, in this task,
from visualization tools aiding navigation or run time monitoring.

5. Threats to Validity
We base our analysis and definitions of threats to validity on Feldt and Magazinius (Feldt & Magazinius,
2010).

Conclusion validity. We conduct an exploratory study, meaning our conclusions should be taken as
indicators and inspiration for further study, rather than as verifiable truth.

Construct validity We explore initial code base comprehension by conducting interviews. This limits
the results in several ways: a) it only collects strategies that are conscious, b) it only collects actions the
subject can remember, c) it only collects actions the subject wants to talk about. A method to investigate

PPIG 2024

www.ppig.org 181

strategies in initial code base comprehension is to observe the programmers’ behaviour in the wild, as
done in for example (Alaboudi & LaToza, 2023), however, to uncover strategies this may need to include
think-aloud methods, that may in turn be invasive and affect the results.

External validity/transferability. The interview subjects were arbitrarily selected from the network of the
first author in the geographical region of the authors, using convenient sampling. As such, they might be
influenced by local factors and practices. The interview study is further quite small: only five subjects.
The results from the interviews may not generalize to other contexts. The results of this exploratory
study should be considered inspirational, rather than a ground truth of the experiences of a programmer
community.

Credibility. The credibility of our findings comes down to the credibility of our subjects. As such, the
credibility hinges upon the internal validity (in particular response bias) and the construct validity. Since
the topic and questions are uncontroversial, we have no reason to believe our subjects have systematically
tried to mislead us.

Dependability. We are confident that a similar Problem Exploration study would lead to similar diversity
in results in terms of attitudes, strategies and frustrations, but we expect there is more to find here. A
set of subjects with a different background may see or emphasize other opportunities.

Confirmability. The results from the Problem Exploration are influenced by the interview guide, but
the answers are the subjects’ own. The data analysis is done responsively and reactively, carefully
considering what the subjects have said and how the answers correlate.

6. Discussion
Approaching a new large code base in a professional setting is an endeavour. The programmers we
talked to find it fun and overwhelming, but it is also something they describe as frightening and that
makes them very, very nervous. A software programmer needs to learn to orient – to find their way
around – the new code base. It is unsurprising, then, that they express the need for someone to [...]
guide them.

The programmers we have interviewed seem to have well-formed strategies made up of a string of
activities they follow when they undertake to fix their first bug in a new code base. Some activities are
shared among the programmers, but not all. It is clear, even from this small convenient sample, that not
all programmers employ the same strategy.

A common frustration seems to be that current tools are perceived as unreliable – or at least as cumber-
some to get and keep in a reliable state. They seem to have limited support for the different strategies
employed by the programmers. Indeed, several programmers mention activities specifically executed to
work around the limitations in the tool support.

The tools available to the programmers do not feature integrated visualisation to support the construction
of mental models or aid navigation in code bases. Reliable integrated visualisation of static and dynamic
aspects of the code is requested as a means of facilitating code base comprehension.

6.1. Directions for Future Work
We see several possible directions for future work:

Effective visualizations for large program comprehension. The experience of starting working with
a new code base may be comparable to finding oneself in a new and unfamiliar physical space. To find
one’s way around a new and unfamiliar landscape, it comes as no surprise that many of the programmers
we interviewed want a map to navigate by. What should such a map look like in practice? What kinds
of questions should it be capable of answering? While UML is mentioned by some of the subjects in
this study, there are more alternatives. Hawes et al. use a territory map metaphor to visualize large code
bases and their internal dependencies (Hawes, Marshall, & Anslow, 2015). Mortara et al. use the city as
a metaphor (Mortara, Collet, & Dery-Pinna, 2021), and Hori et al. visualize source code structure in as

PPIG 2024

www.ppig.org 182

a house (Hori, Kawakami, & Ichii, 2019).

Understanding the experience of shared code spaces. With the analogy of travelling, some of the
programmers we interviewed plan to stay a while in a new code base, while others clearly see themselves
as temporary visitors. Perhaps in relation to this intention, we saw a variation of frustration with a
slight tendency towards an increase when the code base is about to become a new “home”. We see an
interesting parallel to the work by Church et al. (Church, Söderberg, & Höst, 2023), in how ownership
plays a role in the relationship to the shared space of a code base. How do programmers relate to code
ownership? How does a feeling of code ownership emerge?

Understanding how experience shapes preferences. Our participants steered towards UML when
asked about what they visualized or wanted to be visualized. With our sample of programmers being
concentrated to a certain geographical region, where the likelihood of a similar educational background
is high, we speculate that this affinity to UML may be due to a similar educational background. The
notion that our experiences in the programming context will bias our preferences, is not new. Meyerovich
et al. (Meyerovich & Rabkin, 2012) have studied this aspect in the setting of programming language
adoption. How do programming experience influence preferences for programming tools?

Effect of live programming on code base comprehension. Live programming (Tanimoto, 2013;
Church, Söderberg, Bracha, & Tanimoto, 2016), focused on immediate feedback about program state
and runtime information, provides properties that may assist based on what we found in our problem
exploration. Our participants expressed a need for visualization and seeing connections between the
visualisation and the code. They further expressed a need for debugging support for a deeper under-
standing of code behavior. Live programming has been found to have a positive effect in an educational
setting (Huang, Ferdowsi, Selvaraj, Soosai Raj, & Lerner, 2022). Provided a functioning workflow
integration, would live programming support provide effective support for code base comprehension?

6.2. Limitations
This paper describes an exploratory study into programmers experiences with initial code base compre-
hension. The study is based on a small sample from one geographical area and the participants have
similar educational and professional backgrounds. To make the study more generalized it would be
possible to, for instance, carry out an observational study in the wild with a larger set of participants.

7. Conclusions
We have presented the results of an exploratory study focused on understanding code base comprehen-
sion. We found that the programmers in our study approached a new code base with a mix of anticipation
and dread while expecting a lack of functioning tool support. The most apparent lack in tool support we
found concerned easy tool setup, debugging, and visualization support. We find these results encourag-
ing and an indication that code base comprehension is an understudied area worthy of more attention.

8. Acknowledgements
This work has been supported by Ericsson AB, the Swedish Foundation for Strategic Research (grant no.
FFL18-0231), the Swedish Research Council (grant no. 2019-05658), ELLIIT – the Swedish Strategic
Research Area in IT and Mobile Communications, and the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

Special thanks to Lo Heander and Peng Kuang for inspiration and discussions.

9. References
Alaboudi, A., & LaToza, T. D. (2023). What constitutes debugging? an exploratory study of debugging

episodes. Empirical Software Engineering, 28(5), 117.
Bidlake, L., Aubanel, E., & Voyer, D. (2020). Systematic literature review of empirical studies on

mental representations of programs. Journal of Systems and Software, 165, 110565.
Brooks, R. (1978). Using a behavioral theory of program comprehension in software engineering. In

Proceedings of the 3rd international conference on software engineering (pp. 196–201).

PPIG 2024

www.ppig.org 183

Church, L., Söderberg, E., Bracha, G., & Tanimoto, S. (2016). Liveness becomes entelechy-a scheme
for l6. In The second international conference on live coding.

Church, L., Söderberg, E., & Höst, M. (2023). My space, our space, their space: A first glance at
developers’ experience of spaces. In Companion proceedings of the 7th international conference
on the art, science, and engineering of programming (pp. 48–53).

Decasse, M., & Emde, A.-M. (1988). A review of automated debugging systems: Knowledge, strategies
and techniques. In Proceedings.[1989] 11th international conference on software engineering (pp.
162–163).

Feldt, R., & Magazinius, A. (2010). Validity threats in empirical software engineering research-an initial
survey. In Seke (pp. 374–379).

Hawes, N., Marshall, S., & Anslow, C. (2015). Codesurveyor: Mapping large-scale software to aid in
code comprehension. In 2015 ieee 3rd working conference on software visualization (vissoft) (pp.
96–105).

Hirsch, T., & Hofer, B. (2021). What we can learn from how programmers debug their code. In 2021
ieee/acm 8th international workshop on software engineering research and industrial practice
(ser&ip) (pp. 37–40).

Hori, A., Kawakami, M., & Ichii, M. (2019). Code house: Vr code visualization tool [Conference
paper]. In (p. 83 – 87).

Hsieh, H.-F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative
Health Research, 15(9), 1277-1288. (PMID: 16204405)

Huang, R., Ferdowsi, K., Selvaraj, A., Soosai Raj, A. G., & Lerner, S. (2022). Investigating the impact of
using a live programming environment in a cs1 course. In Proceedings of the 53rd acm technical
symposium on computer science education-volume 1 (pp. 495–501).

Katz, I. R., & Anderson, J. R. (1987). Debugging: An analysis of bug-location strategies. Human-
Computer Interaction, 3(4), 351–399.

Kulkarni, A. (2016). Comprehending source code of large software system for reuse [Conference paper].
In (Vol. 2016-July).

Meyerovich, L. A., & Rabkin, A. S. (2012). Socio-plt: Principles for programming language adoption.
In Proceedings of the acm international symposium on new ideas, new paradigms, and reflections
on programming and software (pp. 39–54).

Minelli, R., Mocci, A., & Lanza, M. (2015). I know what you did last summer-an investigation of how
developers spend their time. In 2015 ieee 23rd international conference on program comprehen-
sion (pp. 25–35).

Mortara, J., Collet, P., & Dery-Pinna, A.-M. (2021). Visualization of object-oriented variability imple-
mentations as cities [Conference paper]. In (p. 76 – 87).

Robson, C. (2011). Real world research. John Wiley & Sons.
Romero, P., Du Boulay, B., Cox, R., Lutz, R., & Bryant, S. (2007). Debugging strategies and tactics in

a multi-representation software environment. International Journal of Human-Computer Studies,
65(12), 992–1009.

Shah, A., Yu, J., Tong, T., & Raj, A. G. S. (2024). Working with large code bases: A cognitive
apprenticeship approach to teaching software engineering [Conference paper]. In (Vol. 1, p. 1209
– 1215).

Shneiderman, B., & Mayer, R. (1979). Syntactic/semantic interactions in programmer behavior: A
model and experimental results. International Journal of Computer & Information Sciences, 8,
219–238.

Siegmund, J. (2016). Program comprehension: Past, present, and future. In 2016 ieee 23rd international
conference on software analysis, evolution, and reengineering (saner) (Vol. 5, pp. 13–20).

Soloway, E., & Ehrlich, K. (1984). Empirical studies of programming knowledge. IEEE Transactions
on software engineering(5), 595–609.

Tanimoto, S. L. (2013). A perspective on the evolution of live programming. In 2013 1st international
workshop on live programming (live) (pp. 31–34).

PPIG 2024

www.ppig.org 184

Tempero, E., & Ralph, P. (2018). Towards understanding programs by counting objects [Conference
paper]. In (p. 1 – 10).

Vessey, I. (1985). Expertise in debugging computer programs: A process analysis. International Journal
of Man-Machine Studies, 23(5), 459–494.

Von Mayrhauser, A., Vans, A. M., & Howe, A. E. (1997). Program understanding behaviour during
enhancement of large-scale software [Article]. Journal of Software Maintenance and Evolution,
9(5), 299 – 327.

Wang, D., Galster, M., & Morales-Trujillo, M. (2023). A systematic mapping study of bug reproduction
and localization. Information and Software Technology, 107338.

Wong, W. E., Gao, R., Li, Y., Abreu, R., & Wotawa, F. (2016). A survey on software fault localization.
IEEE Transactions on Software Engineering, 42(8), 707–740.

Wuilmart, P., Söderberg, E., & Höst, M. (2023). Programmer stories, stories for programmers: Ex-
ploring storytelling in software development. In Companion proceedings of the 7th international
conference on the art, science, and engineering of programming (pp. 68–75).

Wyrich, M., Bogner, J., & Wagner, S. (2023, nov). 40 years of designing code comprehension experi-
ments: A systematic mapping study. ACM Comput. Surv., 56(4).

Xia, X., Bao, L., Lo, D., Xing, Z., Hassan, A. E., & Li, S. (2018). Measuring program comprehension:
A large-scale field study with professionals. IEEE Transactions on Software Engineering, 44(10),
951-976. doi: 10.1109/TSE.2017.2734091

A. Interview guide
The subjects were reminded that the interview was recorded and that the data is processed with informed
consent according to research standards.

Personal information

• Alias
• Age
• Gender identification

Professional Experience

• How would you describe your experience in the software industry?
• Number of workplaces have you worked in? (A new assignment in the same company may be a

new workplace - extract the number of new codebases the subject worked with!)
• Number of programming languages?
• Years in the business?
• Anything else?

Starting a new job

• When you start in a new workplace - how do you feel?
• What do you do when you are assigned your first bug in a new workplace?
• What strategies do you employ – to fulfil what goals
• What trouble do you get into?
• What tools do you employ? Why?
• What would you want to support you in your work with your first bug?

PPIG 2024

www.ppig.org 185

PUX Explorer: An Interactive Critique and Ideation Tool for Notation Designers

Justas Brazauskas
Computer Laboratory

University of Cambridge
jb2328@cam.ac.uk

Alan F. Blackwell
Computer Laboratory

University of Cambridge
Alan.Blackwell@cl.cam.ac.uk

Figure 1 – Overview of the PUX Explorer, showing the main elements that will be discussed in
section V and VI.

Abstract
PUX Explorer is a meta-design tool for use by designers of programming languages and other nota-
tional systems, in the tradition of Green’s Cognitive Dimensions. Together with PUX Matrix and PUX
Personas, these tools build on critical frameworks for notation design, informed by a general theory
of design ideation. We evaluated PUX Explorer in a controlled study of meta-design, with specialist
designers of new music notations. We find that these tools are effective and accessible design aids for
meta-designers, not requiring specialist technical expertise.

1. Introduction
The design of novel programming languages can be informed by systematic documentation of the us-
ability issues and tradeoffs that users experience when they need to understand or create information
structures in any formal notation. However, formulating design guidance in a replicable process is chal-
lenging, especially because users with different specialist training or different task requirements will
need different things from the notation.

There have been many attempts to formalise the design space of notational systems, in particular, the
Cognitive Dimensions of Notations framework (CDNs) originally proposed by Thomas Green in 1989
(Green, 1989), and since extended and adapted by many researchers (Hadhrawi, Blackwell, & Church,
2017). One of those variants is the Patterns of User Experience (PUX) developed by Blackwell and
Fincher (Blackwell & Fincher, 2010), which is taken as the starting point for this paper. PUX (Blackwell,
2024) describes a pattern language of notational activities (e.g. IA3 sense-making, CA4 exploratory
design or SA3 persuasion), and experiences that users may have with a notation while undertaking those
activities (e.g. VE2 the overall story is clear or IE3 things stay where you put them). As with CDNs,
design choices in the notation and its environment make some kinds of experience more likely than

PPIG 2024

www.ppig.org 186

others, leading to trade-offs. Also as with CDNs, these may be more or less desirable depending on
what activities the notation is to be used for.

The most widely adopted process for application of the CDNs was the Cognitive Dimensions Question-
naire, which could be used in semi-structured interviews or design reviews to assess a notational system
in relation to the properties described by the framework (Blackwell & Green, 2000). Although more
approachable than tutorial descriptions of the method, the questionnaire did not offer direct design rec-
ommendations or quantifiable measures. Although there has been steady development and adoption of
systematic vocabularies for analysis of tradeoffs in notation design since then, the field has been ham-
pered by a lack of interactive design tools. One notable exception is Clarke’s tool for use in the design
of APIs, which characterised usability profiles of any API that was under development in relation to
different programmer personas (Clarke & Becker, 2003).

In this paper we present an interactive tool specifically for use by notation designers, supporting the
systematic investigation of notation usability properties such as those described in CDNs, in PUX, and
in similar proposals such as Moody’s PoNs (Van Der Linden & Hadar, 2018). The contributions of this
work are as follows:

• Introduction of the PUX Explorer tool for systematic investigation of notation usability during
both formative and summative phases of notation design.

• A theoretical characterisation of the notation design process, in terms of co-evolution of problem
and solution spaces.

• A controlled evaluation study in which PUX Explorer is compared to an alternative interactive
tool that uses a conventional feature matrix approach.

2. Co-evolution in Notation Design
The design and critique of new notation systems falls into the class of “meta-design”, since the notations
being created are generally intended to be used by other designers (Fischer, Giaccardi, Ye, Sutcliffe, &
Mehandjiev, 2004). Earlier frameworks such as CDNs and PoNs did not include specific theories of
design, relying instead on critique of the theoretical principles by which HCI guidance was formulated.

The original presentation of PUX (Blackwell & Fincher, 2010) did make explicit reference to Christo-
pher Alexander’s Pattern Languages (Alexander, 2018) as a theory of design, but made no claims re-
garding the meta-design process by which PUX might be applied. This was problematic since there
is already conflicting evidence regarding the value of pattern languages in interaction design processes
(Dearden & Finlay, 2006).

Our current work approaches the problem of meta-design in relation to Nathan Crilly’s theory of ideation
and critique in design processes (Crilly, 2021b, 2021a), which acknowledges the fundamental role of co-
evolution, where the skilled designer does not simply translate predetermined requirements into product
features, but rather constantly considers alternatives in both the problem space and the solution space,
with the eventual design outcome reflecting a co-evolved alignment of the two.

We propose that co-evolution is the most appropriate theoretical framework by which to construct and as-
sess meta-design tools such as PUX Explorer, since these are expected to offer benefits both in problem-
oriented formative analysis (deciding what kind of notation to design) and in solution-oriented summa-
tive analysis (assessing whether the designed notation will be effective). As described later in this paper,
we therefore used the perspective of co-evolution to design our own evaluation study.

3. PUX Explorer Functionality
PUX Explorer is a web application intended to help notation designers explore the activities and expe-
riences described in the PUX framework 1, implemented in Javascript using the d3.js library (Bostock,

1PUX Explorer can be accessed at https://jb2328.github.io/PUX-Diagrams/

PPIG 2024

www.ppig.org 187

2024). The design process used to create PUX Explorer is described further below.

An overview of PUX Explorer can be seen in Figure 1, centred around two rows of circles that represent
36 experiences and 10 activities.

3.1. Primary operation
The primary mode of operation for PUX Explorer is for a designer to investigate the ways in which
a candidate design delivers specific user experiences that will be associated with a given notational
activity. The values used to prioritise and weight activities for different types of user can be established
using the PUX Persona tool, which is described below.

PUX Explorer operates as an interactive diagram, allowing the user to isolate and explore the perspec-
tive of different activities. The overall structure of the visualisation is explored by mousing over the
elements. Hovering on one activity shows the perspective of that specific activity, highlighting the nota-
tional experiences that are most salient.

Hovering on any one of the experiences, as shown in Figure 1, highlights the design trade-offs and
synergies that exist with other experiences, and also indicates which other activities this experience
might be associated with. Negative and positive associations (trade-offs and synergies) are indicated
with red and green links, while stronger associations are indicated by the curve rising higher on the
screen for greater prominence.

The PUX Explorer provides a targeted browsing interface guiding viewers to the documentation of the
most relevant design guidance and properties among the many aspects of the framework. The tool
converts the PUX framework into an interactive diagram, enabling integrated navigation of the entire
framework.

3.2. Evidence Journey
Initially, the user sees two rows of distinctive circular icons, with the top row of 36 experiences orga-
nized into seven colour-coded groups, and the bottom row of 10 activities segmented into three groups.
Activities are linked to experiences, and each experience is connected to others by grey arcs represent-
ing trade-offs. The arcs become highlighted and animated as the user hovers their mouse over different
icons.

Whenever an experience or activity circle is hovered on, the right-hand side of the visualisation provides
a description, summary and textual narrative for design guidance. This information can be captured for
transfer to design documents, and a trail of the experiences identified as being relevant is maintained at
the bottom of the screen.

Hovering over an experience icon highlights its connections to other experiences through green and red
lines, indicating positive synergies and negative tradeoffs. Hovering enlarges the icon and animates lines
that grow from there to the destination, illustrating directionality. Similarly, hovering over an activity
circle emphasizes and animates the links to the experiences associated with that activity.

These animations give the Explorer tool a playful feel, including a degree of jitter that is designed to
encourage users to explore the entire framework, avoiding premature design fixation and facilitating
serendipitous discovery. The tool is designed such that the exploratory phase is led by animated lines.
Once a user selects the appropriate experience or activity by clicking on it, the animation freezes until
the unlock button is pressed.

See Appendix A for a zoomed-in view of the experiences and activities, as well as Appendix B for a
deconstructed view of the PUX Explorer UI.

4. Development Process
PUX Explorer was developed through a potentially replicable process, beginning with a canonical pre-
sentation of the PUX framework (Blackwell, 2024). That textbook chapter uses conventional typograph-
ical structure (lists, section headings, and cross-reference codes) to support reference consultation for

PPIG 2024

www.ppig.org 188

application by meta-designers. PUX Explorer make this process interactive instead of typographic. Be-
low, we provide two examples – one for an activity and one for an experience – to illustrate how we
transformed the textual descriptions of the framework into an interactive tool.

4.1. Activities profiles
In the canonical PUX description, different types of activity (Interpretation, Construction, and Social)
are organised into subchapters, with individual activities being described as paragraphs in text, and
related experiences listed at the end of the paragraph as follows:

Interpretation Activity 3 (IA3): Sense-making
For example: What is the best route, and time of day, to make a new
journey? The user is trying to learn about a new situation, or integrate data
of a kind they haven’t seen before. This involves understanding the overall
structure, how parts are related to each other, and which are most
important. Comparing different parts and aspects of the structure will be an
important aspect of sense-making, so aspects of pattern IA2 will also be
relevant.
Relevant experience patterns include VE2, VE3, SE1, ME1, ME3, TE3, TE5

{
" name " : " Sense −making " ,
" i d " : " IA3 " ,
" l i n k s _ t o " : [" VE2 " , "VE3 " , " SE1 " ,

"ME1" , "ME3" , "TE3 " , "TE5 "]
}

We translate this descriptive text and cross-references into data structures to define the interactive tools
behaviour (JSON data structure for a sample activity (Sense-making IA3) (Listing 4.1)).

4.2. Experience profiles and Tradeoff analysis
Experiences are described in groups of unique segments, such as Visual Experience (VE) in the example
below. However, unlike the descriptions of activities, tradeoff links are not explicitly defined at the end
of the paragraph and must be inferred from the text itself. Here we illustrate how the JSON data structure
was extracted for a sample experience (The overall story is clear VE2):

VE2: The overall story is clear
People often say they prefer diagrams to text because they
get a kind of ‘gestalt’ view of the whole information structure
– you can stand back and look at the overall configuration,
and get a good idea of the whole story. Of course, it needs
to be visible for this to work (patterns VE1 and SE1), but
sometimes it is possible to leave out some of the detail in
order to improve this overall understanding (pattern VE5).

{
" name " : " The o v e r a l l s t o r y i s c l e a r " ,
" i d " : "VE2 " ,
" l i n k _ p o s i t i v e " : [{ " VE1 " : 0 . 9 } , {" SE1 " : 0 . 8 }] ,
" l i n k _ n e g a t i v e " : [{ " VE5 " : −0 .7}]

}

Although the description delineates a clear relationship between VE2 and the three related experiences
(VE1, SE1, and VE5), it does not explicitly define a tradeoff relationship.

We used textual sentiment analysis to determine whether the relationships to other experiences were
described positively or negatively, and assigned a numerical value ranging from -1 (a negative tradeoff)
to 1 (a positive synergy).

For example, the textbook-style descriptions of VE1 and VE5 are introduced with a positive sentiment
("of course, it needs to be visible..."), followed by a negative sentiment ("but sometimes it is possible to omit detail...").
This analysis yields the following data structure for use in the tool’s data visualisation (Listing 4.2):

The extracted structural encoding in Listings 4.1 and 4.2 encodes the entire structure of PUX framework
as a graph that can be visualised either as an incrementally interactive diagram (PUX Explorer) or a
holistic overview (PUX Matrix).

4.3. PUX Explorer icon design
Where the textbook description refers to activities and experiences using three-character codes that have
limited visual or mnemonic value, we created unique icons for each experience, and distinct colour cod-
ing for activities, ensuring clear visual differentiation between the two (shown in Figure 1 and Appendix
A).

Thirty-six icons were developed using a collaborative design process enabled by generative AI:

1. Generating design ideas. The PUX description of each experience was input into a large language
model (LLM), prompted to create three different design concepts for an icon. For example, the LLM
suggested that the concept "SE4: You can compare or contrast different parts" could be symbolised by

PPIG 2024

www.ppig.org 189

a scale or balance icon as shown by the final row of icons in Figure 2. In some cases generic ideas were
repeatedly proposed for different experiences (e.g. the magnifying glass in rows 1 and 3 of Figure 2),
so the design team brainstormed alternatives to supplement the LLM output with more distinctive ideas.

2. Generating icons from the created prompts. The three design concepts for each icon were used as
prompts for a Stable Diffusion (SD) model, with uniform style descriptors "2D flat design, vector, white
background, minimalist" added to all prompts.

3. Selection process. At least three design options were created for each experience, as illustrated in
Figure 2. Two raters experienced with the PUX framework independently selected the most appropriate
icon from each set, making the final choice after reaching consensus.

4. Icon cleanup. The selected design was then vectorised from its original PNG format, refined in Adobe
Illustrator, and saved as an SVG file for integration into the PUX Explorer tool as an icon.

SE1: You can see relationships between parts

SE2: You can change your mind easily

SE3: There are routes linking known to undiscovered

SE4: You can compare or contrast di�erent parts

Selected Icon Design Proposals

Figure 2 – Icon selection process for the PUX Explorer tool. The final icon choices at the left of
each row were selected from the three options to the right, as generated using Stable Diffusion.

Throughout the design process, a total of 112 icons were created, with 102 automatically generated, and
10 requiring some degree of manual intervention. In the final selection, 35 out of the 36 icons had been
generated by SD, highlighting the efficiency of this LLM-enabled design process.

4.4. PUX Matrix
Our second interactive tool developed, the PUX Matrix (Figure 3), renders the same structural encoding
of the PUX framework to emphasise an overview of interconnectedness among activities and experi-
ences. PUX Matrix is inspired by the contradiction matrix that is a familiar element of the TRIZ process
for inventive problem solving (Ilevbare, Probert, & Phaal, 2013). (The inventive principles, standard
solutions and separation process of TRIZ can be considered as a rough analogy to the activities, experi-
ences and trade-offs in PUX).

The PUX Matrix tool presents two rectangular grids corresponding to the two rows of icons and links
in the PUX Explorer. The left grid shows links between activities and experiences as black dots in the
corresponding cells. The right side uses red and green squares to indicate trade-offs and synergy between
experiences.

PUX Matrix provides an overview of the whole framework, mapping regions in which experiences
share similar patterns of trade-offs. The Matrix tool is more dense, but less interactive than the Explorer.
As with the TRIZ contradiction matrix, detailed descriptions of each activity and experience are not
included in the visual presentation, meaning that a separate text reference would need to be consulted.
The tool in its entirety is shown in the appendix (Appendix C), along with a deconstructed version

PPIG 2024

www.ppig.org 190

explaining its visual elements (Appendix D).

4.5. PUX Personas
The final tool complementing PUX Explorer and PUX Matrix is PUX Personas, inspired by Clarke’s
characterisation of programmer personas for API usability (Clarke & Becker, 2003). Previous usability
questionnaires based on CDs and PUX have asked respondents to estimate what proportion of their time
is spent in different activities. In the PUX Persona tool, different activity profiles are created for different
user personas, and interactively visualised with polar area charts (also called Nightingale Rose Charts
(Magnello, 2012)). The full tool is presented in Appendix E.

Utilisation of this tool involves three steps:

1) Time-allocation. Initially, users estimate the proportion of time, as a percentage, that this persona
would spend on each of the 10 activity types from the PUX framework. This generates a pie chart where
the angle of each slice corresponds to the proportion of time for that activity.

2) Rating experiences. Users then rate the comparative importance of each PUX experience within their
notational environment using a 5-point Likert scale. Experiences are arranged vertically in the same
order as in the PUX Explorer and Matrix tools, so that users can refer to descriptions and tradeoffs. As
the rating of relevant experiences is adjusted, this determines the radius of the pie chart segment for the
activity associated with that experience.

3) Creating a visual user representation. The final result of the activity and experience profiles is a rose
diagram (Figure 4), where the polar area represents notation design priorities for a specific type of user.
These visual persona representations can be used as a design aid and reference when making tradeoff
decisions that will have differential benefits for different classes of users, or providing configuration
capabilities relevant to a specific user class. In the depicted example, although a person spends a signif-
icant amount of time on incrementation activities, they rate other activities like organising discussions
as more important, even though less time is spent on them. The full UI is shown in Appendix E.

Figure 3 – A simplified view of the PUX Matrix tool. The
complete matrix can be found in Appendix C along with a
deconstructed version in Appendix D.

Figure 4 – Polar area chart gen-
erated by the PUX Personas tool.
Slices indicate the percentage of
time dedicated to specific activities
(angle) and their importance (ra-
dius).

5. Evaluation
As an evaluation of the PUX Explorer tool, we chose to work with the same domain used for the initial
evaluation of the Cognitive Dimensions Questionnaire (CDQ) (Blackwell & Green, 2000), which until
now has been the most widely used research tool for analysis of notation usability (Hadhrawi et al.,
2017). The paper introducing CDQ reported a study of music researchers who worked with and designed
alternative music notations (Blackwell & Green, 2000). The advantage of the music notation domain for

PPIG 2024

www.ppig.org 191

this type of research is that music researchers are familiar with a wide range of notation alternatives, from
experimental graphic scores, to performance annotation, to formal musicological analysis. Musicians
and music researchers routinely use a variety of computer-based, print, and pencil modifications. They
are also accustomed to describing properties of a notation with an analytic distance from the semantic
content of the music as heard or played. These factors mean that music researchers are better able, for
example, than many mathematicians to consider distinctions between concrete syntax and variation in
styles of perception and usage that have very different degrees of formal rigour or creative freedom.

We used music research community contacts to recruit a sample of 6 specialist music notation re-
searchers from universities and music colleges across the UK, USA and Europe. All participants had
considerable experience as researchers and practitioners designing novel notations or music visualisa-
tions, and all had a pre-existing concern (in one case, years of experimental work) with the usability
properties of their systems.

All materials were made available online. Participants completed the study on their own computers, at a
time of their choice, with the experimenters available for contact if needed. The study was approved by
the Cambridge Computer Science Ethics Committee.

5.1. Structure of the Study
This study was designed to evaluate and compare the effectiveness of PUX Explorer and PUX Matrix
during the critique and problem reformulation phase of a co-evolution design process. Two preliminary
exercises introduced participants to the perspective of analysing notation systems in a preamble, and
familiarised them with the overall operation of both PUX Explorer and PUX Matrix, followed by a
design task in which participants used the tools to analyse design options, concerns and opportunities
relevant to their own notation design project.

5.1.1. Preamble
The preamble introduced the PUX framework, explaining the concepts of activities, experiences, and
trade-offs within the design process. Both PUX Explorer and PUX Matrix tools were then introduced.
The presentation order of the two tools was counterbalanced across participants. To ensure every partic-
ipant received the same introduction to the tool behaviour, two one-minute videos were created, demon-
strating user interaction with the PUX Explorer and PUX Matrix. Participants were also provided with
a deconstructed view of each tool (Appendices B and D). These views explained the operation of indi-
vidual UI components and guidance on interpreting the UI.

5.1.2. Familiarisation
As an introductory exercise, participants were asked to evaluate four sample data visualisations, in rela-
tion to the activities Illustrating a story (SA1) and Persuading an audience (SA3). As an example likely
to be familiar to an international audience, we sourced visualisations of the 2020 US election results from
four major news outlets: BBC(BBC News, 2020), CNN(CNN, 2020), The Economist(The Economist,
2020), and Bloomberg(Bloomberg, 2020). The data presented in these visualisations was similar across
all four sources. They differed primarily in their visual language and graphic design elements, allowing
for comparison of notational properties.

5.2. Design Task
In the core design task, participants were asked to evaluate music notation systems they had designed
themselves or with which they were extensively familiar. They completed five tasks using both PUX
Explorer and PUX Matrix. The first four tasks involved analysing their notation systems through the
lens of the PUX framework, considering both design priorities and problem reformulation. The final
task was a direct comparison of the Explorer and Matrix tools.

5.2.1. Pre-existing problems (Task 1/5)
In the first task, participants were asked to identify current design issues and problematic parts of their
notation system. They were asked to consider how their notation might be used by diverse kinds of user,
engaged in a variety of activities. Participants used either the Matrix or Explorer tool (order-balanced
across participants) to identify problematic components using the PUX framework, as guided by the

PPIG 2024

www.ppig.org 192

Figure 5 – Key problematic activities and experiences.

tool instructions to select potential system modifications from a list of activities. (e.g., Search (IA1))".
Participants were then asked to rank the experiences related to their selected activities from most to least
important.

5.2.2. Pre-existing benefits (Task 2/5)
The second task asked participants to identify particularly effective parts of the system, gather evidence
of their value, and select corresponding experiences from the PUX framework to confirm their usefulness
in notation system design. Participants were then asked to rate the related experiences using a 5-point
Likert scale (ranging from "Strongly Disagree" to "Strongly Agree") to determine if these experiences
confirmed the usefulness of the identified aspects of their designs.

5.2.3. Newly Discovered Opportunities (Task 3/5)
The third task assessed whether participants would gain insights and identify new design opportunities
through using the PUX tools, by contrasting desired user experiences with a wider range of design
patterns. These were captured by asking participants to propose novel insights or generate new ideas for
features that could enhance their notation system or reformulate it.

5.2.4. Redefining Pre-existing Problems (Task 4/5)
The fourth task asked participants to reflect on whether they had reconsidered the design objectives
originally identified in Task 1/5, after further interaction with the PUX Explorer and Matrix tools. The
intention of this task was to investigate the problem reformulation process as described in literature on
design co-evolution (Crilly, 2021b, 2021a).

5.2.5. Comparing PUX Explorer and PUX Matrix (Task 5/5)
The final task asked participants to directly compare the effectiveness of PUX Explorer and PUX Matrix
in the previous tasks. The participants were asked to rate their agreement with statements regarding
each tool’s effectiveness in confirming known issues and uncovering new ones, followed by an optional
opportunity to provide additional feedback on their experiences with both tools.

6. Study Results
Six specialist music notation researchers completed an 80-minute session between January to March
2024. Due to the small sample size, we report means and medians as indicators of user preference.

6.1. Identifying pre-existing problems (Task 1/5)
The most common problematic activities identified were Modification (CA3), Search (IA1), and Sense-
making (IA3), as shown in Figure 6. Concurrently, Figure 5 elaborates on these results by highlighting
the experiences most frequently mentioned by participants. The experiences ranked as most important
include Being able to see relationships between parts (SE1), Being able to change your mind easily

PPIG 2024

www.ppig.org 193

Activity

C
ou

nt

0

1

2

3

4

Mod
ific

ati
on

Sea
rch

Sen
se

-m
ak

ing

Com
pa

ris
on

Inc
rem

en
tat

ion

Tran
sc

rip
tio

n

Illu
str

ate
 a

sto
ry

Pers
ua

de
 an

au
die

nc
e

Exp
lor

ato
ry

de
sig

n

Orga
nis

e a

dis
cu

ss
ion

Problematic Activities for Notation System Designers

Figure 6 – Pre-existing problematic activities

Activity

C
ou

nt

0

1

2

3

4

5

Sen
se

-m
ak

ing

Exp
lor

ato
ry

Des
ign

Mod
ific

ati
on

Sea
rch

Com
pa

ris
on

Inc
rem

en
tat

ion

Beneficial Activities for Notation System Designers

Pers
ua

de
 an

au
die

nc
e

Figure 7 – Pre-existing beneficial activities

(SE2), and Not needing to think too hard (TE1).

6.2. Identifying pre-existing benefits (Task 2/5)
The most commonly cited activities benefitting from the notation systems were Sense-making (IA1) and
Persuading an audience (SA3), as shown in Figure 7. Participants identified the most important expe-
riences as Being able to change one’s mind easily (SE2), Being able to compare and contrast different
parts (SE4), and notation system elements looking like what they describe (ME1).

6.3. Identifying new design opportunities (Task 3/5)
Three of the six participants provided examples of new UX patterns that they had identified. However,
when asked whether the tools had helped to identify new issues, Likert scale responses were mixed
(using a 5-point scale: 1. Strongly Disagree, 2. Disagree, 3. Neutral, 4. Agree, 5. Strongly Agree).
The Matrix tool had a mean rating of 2.2 (median 1.5), and the Explorer tool had a mean rating of 2.8
(median 2.5), indicating a neutral to negative view on the use of these tools to identify new issues with
the existing notation systems.

6.4. Redefining pre-existing problems (co-evolution) (Task 4/5)
When participants were asked if they had considered reformulating the changes they planned to make, 3
out of 6 participants agreed they were considering reformulating the changes listed in Task (1/5). Both
Explorer and Matrix users indicated that they somewhat considered reformulating the changes (mean
3.2, median 4). However, when asked if the PUX framework assisted in the reformulation process,
Explorer users responded more positively (mean 3.8, median 4) than Matrix users (mean 3.2, median 4).

When combining responses to tasks 3 and 4, we found that 5 out of 6 participants agreed that they
had either reformulated the problem or discovered new issues. Two participants reported reformulating,
two reported new discoveries, and one participant did both. We consider these reports further in the
discussion section below.

6.5. Tool preference results (Task 5/5)
We found a strong preference for the Explorer tool over the Matrix, both in terms of identifying existing
issues with the design, as well as uncovering new ones. For confirming existing issues, PUX Explorer
had a mean of 3.8 and a median of 4, compared to the PUX Matrix’s mean of 2.5 and median of 2. For
uncovering new issues, PUX Explorer scored a mean of 4 with a median of 4, whereas PUX Matrix
scored a mean of 2.25 and a median of 2. These results are detailed in Figure 8.

7. Discussion
Overall, Likert scale responses indicated a generally positive assessment of PUX Explorer and a neutral
attitude to the PUX Matrix tool; however, the different affordances of the two tools within the design
process, particularly in supporting design co-evolution, offer interesting insights.

PPIG 2024

www.ppig.org 194

0

1

2

3

4

5

PUX Explorer was
effective at confirming

existing issues

PUX Explorer was
effective at

unconvering new
issues

PUX Matrix was
effective at confirming

existing issues

PUX Matrix was
effective at

unconvering new
issues

Comparing PUX Explorer and PUX Matrix

M
ea

n
R

es
po

ns
e

S
co

re

Figure 8 – The Explorer tool was preferred over the Matrix. The y-axis describes the average Likert
score.

7.1. Preference for the PUX Explorer
Study data shows that both tools were effective in their use for notation designers with multiple positive
comments preferring PUX Explorer.

Our initial expectation was that a more dynamic, interactive and visually engaging tool would be more
appealing than a static matrix approach to visualising the PUX framework. The findings generally
suggest that this was the case, as directly echoed by the study participants, e.g., P0A: “PUX Explorer
provides far more interactive exploration than PUX Matrix [and] engaged to discover more”, and P2A:
“I think the PUX Explorer provides a more visually appealing experience”, “easier to navigate” than
the Matrix.

The PUX Explorer was perceived as engaging — P7B stated “I like very much PUX Explorer, love
dwelling into it” and “I find PUX Explorer more useful and fun and easier to use”. P2B agreed “the
PUX Explorer provides a more visually appealing experience and one that is easier to navigate.”

In contrast, P7B reported “[The PUX Matrix] table is too difficult for me to read, I prefer looking at
the Explorer tool directly”, and that they had “some difficulties reading and grasping PUX Matrix“,
because it was “difficult to read, and the need to move head, find alignments, etc.”, and additionally
problematic because “the concepts are not explained” as in the PUX Explorer tool.

Nevertheless, beneficial aspects of the Matrix were identified — P4B stated that “whereas the Explorer
tool is more appealing and easy to navigate initially, once the Matrix has been used for a while it
becomes more useful”. This suggests that after familiarity with the PUX framework has been acquired,
the Matrix can be a quick reference tool, as P4B later stated: “when I did more detailed analyses I
tended to revert to the Matrix”.

Overall, the Explorer tool was considered superior for uncovering new issues and confirming existing
design problems. We feel this is encouraging for further investigation of the PUX Personas tool, which
is derived from that interaction approach.

7.2. Interaction Design of the PUX Explorer
The PUX Explorer was designed specifically to offer a dynamic experience, in which an overview map
of the whole framework can be dynamically explored by mousing over different parts, with live anima-
tions drawing attention to the structural relationships. An essential interaction feature was the ability
to “lock” the visualisation to zoom in and give more careful consideration to a specific pattern. This
design strategy was generally effective — as P0A put it “PUX Explorer provides far more interactive
exploration than PUX Matrix, which kept me engaged to discover more.”

PPIG 2024

www.ppig.org 195

However, this approach was not universally liked. P1A noted that “The icons were too small to be
visually useful [...] The quick “jittery” response of the tool meant that very complex information shifted
quickly before I could really process it [...] It took a while to understand the benefit of LOCK and
UNLOCK in this regard!”. P4B was concerned that "In Explorer things disappear and this makes the
Matrix more systematic", realising only later that they had forgotten to use the lock function.

While the dynamic exploratory animation was generally appreciated, with overall preference for the
PUX Explorer, trade-offs resulting from our design decisions were apparent. P4B suggested that after a
while, they started preferring the Matrix tool: ”PUX Matrix was just as good as Explorer after a while”,
even suggesting a preference over the Explorer: ”after a while Matrix becomes easier”.

Overall, these results suggest that the exploratory aspect of the PUX Explorer tool —- characterised by
its engaging, non-committal nature and the ability to reveal different insights upon reexamination -—
may not be necessary for those who are more familiar with an analytic framework. The problems expe-
rienced by the participant who forgot the essential lock functionality illustrates the dangers of dynamic
exploratory applications in contrast to more structured guided experiences.

7.3. Notation design insights
In addition to our evaluation of the meta-design tools PUX Explorer and PUX Matrix, this study also
offers some insights into future opportunities for novel music notation design, with certain notational
activities seen as being especially salient in this domain.

For instance, Modification (CA3) was ranked as the most problematic and the fourth most beneficial
activity. Similarly, Search (IA1) was the second most problematic and the fifth most beneficial. Most
notably, Sense-making (IA3) was identified as the most beneficial activity, yet also the third most prob-
lematic (Figures 6 and 7).

The way in which the PUX framework draws the attention of notation designers toward the specific
priorities of their own domain, with both negative and positive implications, seems especially useful. We
observed similar trends in considering specific experience patterns, for example with You can change
your mind easily (SE2) appearing on both the problematic and beneficial lists. It is notable that this
corresponds to the first-recognised Cognitive Dimension of viscosity (Green, 1990), and that we also
observed the early tradeoff between CDs of viscosity and hidden dependencies (coded as SE1 in PUX).

Overall, we found that activities were highlighted in relation to a variety of usage contexts for music
notation, including Interpretation, Construction, and Social activities. This showcases the versatility
of the PUX framework and its ability to accommodate a diverse range of notation uses. However, we
note that our emphasis on meta-design highlights the designers’ own expectations of what users of their
systems need, and that this may not necessarily align with the end-users’ actual experiences. Use of PUX
Explorer or PUX Matrix in a co-design setting, where notation meta-designers and notation users might
collaborate to identify priorities and design opportunities, is an interesting area for future investigation.

7.4. Problem-solution reformulation
The structure of our study explicitly reflected a co-evolution perspective on the meta-design of notational
systems. According to this perspective, analytic tools such as PUX Explorer can assist designers in
reformulating their problems as well as finding solutions.

As reported in the results section, half of our participants identified new elements to add to their system
after using the tool, and half agreed that the tools were useful in problem reformulation, but these were
not the same individuals. Furthermore, some participants did correctly identify new issues yet later
reported that they had not done so.

This draws attention to an important consideration in co-evolutionary design work — the phenomenon of
design fixation, in which it may be hard to step away from an existing problem, especially if a potential
solution has been identified (Crilly, 2015) has occurred.

The participant who was most sceptical about the value of PUX Explorer (P1A) reflected on the chal-

PPIG 2024

www.ppig.org 196

lenge of achieving new creative insight while focusing on the specifics of their design, being “somewhat
overwhelmed with information at a fine-grained level [...] I’m not sure how either tool, in its current
form, would be directly useful at the MOMENT that I tend to develop a new notational strategy”. P1A
did explicitly recognise the potential for design fixation: ”but this may be a bias of the fact that I am a
practitioner with an already firmly established notational “style” and process”.

Overall, these observations point to the ways that meta-design problems such as the creation of new
music notation systems do share the characteristics of other more routine design domains, bringing
potential for innovative solutions through co-evolution of problem and solution spaces, yet also subject
to well-known obstacles such as design fixation. As with the design of completely novel programming
tools and other kinds of visual language, the design of completely novel music notations is undertaken
only by a relatively small number of people in the world. The practices of such meta-designers can
be idiosyncratic, with significant divergence between individuals, making it challenging to generalise
to every member of such a small population. Nevertheless, our study has found the PUX tools to be
accessible as an approach to the meta-design of notational systems, able to be applied by people having
no specialist technical expertise in visual language technologies.

8. Conclusions
We have presented the PUX Explorer, complemented by the PUX Matrix and PUX Personas, all of which
are meta-design tools intended for use by the designers of new visual languages and other notational
systems. We have related these tools to the historical development of critical frameworks for notation
design, motivated by a recent general theory of design ideation that has motivated this new approach to
meta-design.

As an initial evaluation of the tools, we conducted a controlled study in meta-design. To allow compari-
son to previous work, we recruited the designers of new music notations, since this notation domain had
previously been used to demonstrate and evaluate the original Cognitive Dimensions Questionnaire.

Our study finds that the PUX Explorer is accessible to meta-designers who do not have extensive tech-
nical expertise, and who are encountering a critical framework for notation design for the first time. Our
controlled comparison between the PUX Explorer and PUX Matrix demonstrates the relative advantages
of these approaches, and also provides evidence that the Explorer interaction paradigm is an effective
approach to deployment of meta-design tools.

We have also introduced the PUX Persona tool, which is designed for use in longer-term practical
design projects beyond controlled laboratory evaluation. PUX Persona provides a principled basis for
identifying, weighting, and quantifying the consequences of alternative design decisions. In ongoing
work, we are applying these meta-design tools to a wide range of programming language, software
engineering, and data visualisation projects in our own organisation and elsewhere.

9. References
Alexander, C. (2018). A pattern language: towns, buildings, construction. Oxford university press.
BBC News. (2020). Us election 2020 results. https://www.bbc.co.uk/news/election/us2020/results.

(Accessed: 2024-04-17)
Blackwell, A. F. (2024). Designing user experiences with diagrams: A pattern language. In C. Richards

(Ed.), Elements of diagramming: Theoretical frameworks, design methods, practice domains (pp.
89–116). Routledge.

Blackwell, A. F., & Fincher, S. (2010). Pux: patterns of user experience. Interactions, 17(2), 27–31.
Blackwell, A. F., & Green, T. R. (2000). A cognitive dimensions questionnaire optimised for users. In

Proceedings of the twelth annual meeting of the psychology of programming interest group (pp.
137–152).

Bloomberg. (2020). Us election 2020 results. https://www.bloomberg.com/graphics/2020-us-election-
results/?embedded-checkout=true. (Accessed: 2024-04-17)

Bostock, M. (2024). D3.js - data-driven documents. Available at https://d3js.org/. (Accessed: 2024-04-

PPIG 2024

www.ppig.org 197

14)
Clarke, S., & Becker, C. (2003). Using the cognitive dimensions framework to evaluate the usability of

a class library. In Proceedings of the first joint conference of ease ppig (ppig 15).
CNN. (2020). Us presidential election 2020 results. https://edition.cnn.com/election/2020/results/president.

(Accessed: 2024-04-17)
Crilly, N. (2015). Fixation and creativity in concept development: The attitudes and practices of expert

designers. Design studies, 38, 54–91.
Crilly, N. (2021a). The evolution of “co-evolution”(part ii): The biological analogy, different kinds of

co-evolution, and proposals for conceptual expansion. She Ji: The Journal of Design, Economics,
and Innovation, 7(3), 333–355.

Crilly, N. (2021b). The evolution of “co-evolution”(part i): Problem solving, problem finding, and their
interaction in design and other creative practices. She Ji: The Journal of Design, Economics, and
Innovation, 7(3), 309–332.

Dearden, A., & Finlay, J. (2006). Pattern languages in hci: A critical review. Human–computer
interaction, 21(1), 49–102.

Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A. G., & Mehandjiev, N. (2004). Meta-design: a manifesto
for end-user development. Communications of the ACM, 47(9), 33–37.

Green, T. R. (1989). Cognitive dimensions of notations. People and computers V , 443–460.
Green, T. R. (1990). The cognitive dimension of viscosity: a sticky problem for hci. In Proceedings of

the ifip tc13 third interational conference on human-computer interaction (pp. 79–86).
Hadhrawi, M., Blackwell, A. F., & Church, L. (2017). A systematic literature review of cognitive

dimensions. In Ppig (p. 3).
Ilevbare, I. M., Probert, D., & Phaal, R. (2013). A review of triz, and its benefits and challenges in

practice. Technovation, 33(2-3), 30–37.
Magnello, M. E. (2012). Victorian statistical graphics and the iconography of florence nightingale’s

polar area graph. BSHM Bulletin: Journal of the British Society for the History of Mathematics,
27(1), 13–37.

The Economist. (2020). The us 2020 election results. https://www.economist.com/graphic-
detail/2020/11/03/the-us-2020-election-results. (Accessed: 2024-04-17)

Van Der Linden, D., & Hadar, I. (2018). A systematic literature review of applications of the physics of
notations. IEEE Transactions on Software Engineering, 45(8), 736–759.

PPIG 2024

www.ppig.org 198

A. PUX Explorer

Figure 9 – PUX Explorer on startup with no experiences or activities selected. The top row of circles
represents 36 unique experiences and the bottom row represents 10 unique activities described by
the PUX framework.

PPIG 2024

www.ppig.org 199

B. PUX Explorer Deconstructed

Experience nameExperience type:
Experience name
Experience summary (brief)

Experience summary (long)

Experience name

Activity name(s) Positive links (green) Negative links (red)

E
xp

er
ie

nc
e

na
m

e

Tradeoff link correlation strength.

High values mean strong correlation,
low values mean weak correlation.

Values are absolute, high green link value is
very positively correlated but high red link
value is very negatively correlated.

Similarly, low green values show low
positive correlation, low red values show low
negative correlation

List of all positively correlated experiences
related to the selected experience

List of all negatively correlated experiences
related to the selected experience

After you click on an experience or activity,
it will get saved in the history part of the UI,
so you can record what you’ve read.

Clicking on an experience or activity will

rectangle to continue exploring.

If you’re interested in reading about an
activity or experience, just hover over the
corresponding circle or click on it - the
description will show right up.

List of all experiences

List of all activities

Selected experience

Related experiences

Related activities

Figure 10 – PUX Explorer deconstructed

PPIG 2024

www.ppig.org 200

C. PUX Matrix

CA1 Incrementation
CA2 Transcription
CA3 Modification
CA4 Exploratory design
IA1 Search
IA2 Comparison
IA3 Sense-making
SA1 Illustrate a story
SA2 Organise a discussion
SA3 Persuade an audience

A
ctivities

C
E

1 You can extend the language
C

E
2 You can redefine how

 it is interpreted
C

E
3 You can see different things w

hen you look again
C

E
4 A

nything not forbidden is allow
ed

IE
1 Interaction opportunities are evident

IE
2 A

ctions are fluid, not aw
kw

ard
IE

3 Things stay w
here you put them

IE
4 A

ccidental m
istakes are unlikely

IE
5 E

asier actions steer w
hat you do

IE
6 It is easy to refer to specific parts
M

E
1 It looks like w

hat it describes
M

E
2 The purpose of each part is clear

M
E

3 S
im

ilar things look sim
ilar

M
E

4 You can tell the difference betw
een things

M
E

5 You can add com
m

ents
M

E
6 The visual connotations are appropriate

P
E

1 The order of tasks is natural
P

E
2 The steps you take m

atch your goals
P

E
3 You can try out a partial product

P
E

4 You can be non-com
m

ittal
P

E
5 R

epetition can be autom
ated

P
E

6 The content can be preserved
S

E
1 You can see relationships betw

een parts
S

E
2 You can change your m

ind easily
S

E
3 There are routes linking know

n to undiscovered
S

E
4 You can com

pare or contrast different parts
TE

1 You don
t need to think too hard

TE
2 You can read-off new

 inform
ation

TE
3 It m

akes you stop and think
TE

4 E
lem

ents m
ean only one thing

TE
5 You are draw

n in to play around
V

E
1 The inform

ation you need is visible
V

E
2 The overall story is clear

V
E

3 Im
portant parts draw

 your attention
V

E
4 The visual layout is concise

V
E

5 You can see detail in context

Experiences
P

U
X

 A
ctivities-E

xperiences M
atrix

CE1 You can extend the language
CE2 You can redefine how it is interpreted
CE3 You can see different things when you look again
CE4 Anything not forbidden is allowed
IE1 Interaction opportunities are evident
IE2 Actions are fluid, not awkward
IE3 Things stay where you put them
IE4 Accidental mistakes are unlikely
IE5 Easier actions steer what you do
IE6 It is easy to refer to specific parts
ME1 It looks like what it describes
ME2 The purpose of each part is clear
ME3 Similar things look similar
ME4 You can tell the difference between things
ME5 You can add comments
ME6 The visual connotations are appropriate
PE1 The order of tasks is natural
PE2 The steps you take match your goals
PE3 You can try out a partial product
PE4 You can be non-committal
PE5 Repetition can be automated
PE6 The content can be preserved
SE1 You can see relationships between parts
SE2 You can change your mind easily
SE3 There are routes linking known to undiscovered
SE4 You can compare or contrast different parts
TE1 You don t need to think too hard
TE2 You can read-off new information
TE3 It makes you stop and think
TE4 Elements mean only one thing
TE5 You are drawn in to play around
VE1 The information you need is visible
VE2 The overall story is clear
VE3 Important parts draw your attention
VE4 The visual layout is concise
VE5 You can see detail in context

Link S
trength To

C
E

1 You can extend the language
C

E
2 You can redefine how

 it is interpreted
C

E
3 You can see different things w

hen you look again
C

E
4 A

nything not forbidden is allow
ed

IE
1 Interaction opportunities are evident

IE
2 A

ctions are fluid, not aw
kw

ard
IE

3 Things stay w
here you put them

IE
4 A

ccidental m
istakes are unlikely

IE
5 E

asier actions steer w
hat you do

IE
6 It is easy to refer to specific parts
M

E
1 It looks like w

hat it describes
M

E
2 The purpose of each part is clear

M
E

3 S
im

ilar things look sim
ilar

M
E

4 You can tell the difference betw
een things

M
E

5 You can add com
m

ents
M

E
6 The visual connotations are appropriate

P
E

1 The order of tasks is natural
P

E
2 The steps you take m

atch your goals
P

E
3 You can try out a partial product

P
E

4 You can be non-com
m

ittal
P

E
5 R

epetition can be autom
ated

P
E

6 The content can be preserved
S

E
1 You can see relationships betw

een parts
S

E
2 You can change your m

ind easily
S

E
3 There are routes linking know

n to undiscovered
S

E
4 You can com

pare or contrast different parts
TE

1 You don
t need to think too hard

TE
2 You can read-off new

 inform
ation

TE
3 It m

akes you stop and think
TE

4 E
lem

ents m
ean only one thing

TE
5 You are draw

n in to play around
V

E
1 The inform

ation you need is visible
V

E
2 The overall story is clear

V
E

3 Im
portant parts draw

 your attention
V

E
4 The visual layout is concise

V
E

5 You can see detail in context

Link Strength From

0.7
-0.8

0.7
0.7

-0.8
0.7

-0.8
-0.8

0.7
0.7

0.9
-0.6

-0.6
0.9

-0.6

-0.7
-0.7

-0.7
0.7

-0.7
-0.7

0.7
0.7

-0.7
-0.7

-0.7
-0.7

0.7
0.7

-0.7
0.7

-0.7
0.7

-0.7

-0.6
-0.6

0.7
0.7

0.7
0.7

0.7
0.7

-0.8
-0.8

0.9

0.6
0.6

0.6
0.6

-0.7
-0.7

0.6
0.6

-0.7
-0.7

-0.7
-0.7

-0.9
-0.9

-0.9
-0.9

0.7
0.7

0.7
0.7

-0.9
0.7

0.7
-0.9

-0.9
-0.9

0.7
0.7

0.7
0.7

0.7
0.7

-0.7
0.5

0.5
-0.7

0.5
-0.7

0.5
-0.7

0.5

0.8
0.8

0.8
0.8

-0.7
0.8

0.8
-0.7

-0.8
-0.8

-0.8
0.8

-0.8

0.8
0.8

0.8

0.9
-0.7

0.9
0.9

0.9

-0.6
0.8

0.8
-0.6

0.8

0.5
0.5

0.5
0.5

0.7
0.7

0.7
0.7

0.7

0.7
0.7

0.7
0.7

0.7

-0.7
0.5

0.5
0.5

0.5

0.7
0.7

0.7
0.7

0.6
-0.7

0.9
-0.8

-0.8
-0.8

-0.8

-0.6
0.6

-0.6
-0.6

-0.6
0.6

-0.6

-0.6
0.7

-0.6
-0.6

-0.6
0.7

-0.9

0.8
0.8

0.8
0.8

0.8

0.9
0.9

0.9
0.9

0.9

0.8
0.8

0.8
0.8

0.8
0.8

0.8
0.8

0.8
-0.9

0.8
0.8

0.8
0.8

-0.6
0.8

-0.6
-0.6

0.8
0.8

0.8
0.8

-0.9
0.7

0.7
-0.9

0.7
-0.9

-0.7
-0.7

-0.7
0.8

0.8

0.8
0.8

0.8
0.8

0.8
0.8

0.8
0.8

0.9

0.9
0.9

-0.7

0.8
0.8

0.8

-0.9
-0.9

-0.9
-0.9

-0.9
-0.9

-0.6
-0.6

-0.6
0.9

0.9
0.9

0.9

P
U

X
 E

xperiences Tradeoff M
atrix

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Correlation Strength

P
ositively

C
orrelated

N
egatively

C
orrelated

Figure 11 – PUX Matrix

PPIG 2024

www.ppig.org 201

D. PUX Matrix Deconstructed

List of all experiences
List of all activities

Related activities

Related experiences

Correlation values range
from -1 to 1, where red
represents negative correla-
tions and green indicates
positive correlations.

The strength of the
correlation is determined
by its proximity to these
extremes.

Tradeoff link correlation strength is
denoted inside the green and red
squares.

High values mean strong correlation,
low values mean weak correlation.

Figure 12 – PUX Matrix deconstructed

PPIG 2024

www.ppig.org 202

E. PUX Personas

Figure 13 – PUX Personas

PPIG 2024

www.ppig.org 203

Boxer Sunrise Development Update and Demos

Steven Githens
steve@githens.org

diSessa Family Foundation

Demo abstract

This Reflection, Artwork, and Demo will give an update on the Boxer Sunrise Project, which was
booted up during the seminal 2018 PPIG workshop hosted at the Art Workers Guild. Examples and
demos will be geared towards this year’s theme "Human agency in notations".

PPIG 2024

www.ppig.org 204

	PPIG 2024 proceedings front page
	pre-print proceedings cover
	9-PPIG-2017-perticas.pdf
	Introduction and motivation
	Related research
	The Role of Sensorimotor Integration and Abstraction in Learning
	Maps and Visualizations inspired from Dual-Coding

	Image of Algorithm (IoA)
	Introduction
	Initial Observations

	Feature Extraction and Analysis of Patterns in IoAs
	Spatial Features
	Temporal Features

	Feature-based Clustering
	Overview
	Self-Organizing Map (SOM)
	Control Experiments

	IoA Classification
	Overview
	Multilayer Perceptron (MLP)
	Convolutional Neural Network (CNN)

	Conclusions and Future Work
	Acknowledgement

	9-PPIG-2017-perticas.pdf
	Introduction and motivation
	Related research
	The Role of Sensorimotor Integration and Abstraction in Learning
	Maps and Visualizations inspired from Dual-Coding

	Image of Algorithm (IoA)
	Introduction
	Initial Observations

	Feature Extraction and Analysis of Patterns in IoAs
	Spatial Features
	Temporal Features

	Feature-based Clustering
	Overview
	Self-Organizing Map (SOM)
	Control Experiments

	IoA Classification
	Overview
	Multilayer Perceptron (MLP)
	Convolutional Neural Network (CNN)

	Conclusions and Future Work
	Acknowledgement

	PPIG 2024 Editors’ preface
	2024-PPIG-35th-chavez
	PPIG 2024 proceedings index
	2024-PPIG-35th-beckmann
	2024-PPIG-35th-kuang
	2024-PPIG-35th-sergeyuk
	2024-PPIG-35th-jain
	Abstract
	Reflections
	References

	2024-PPIG-35th-lee
	2024-PPIG-35th-cortinovis
	2024-PPIG-35th-nzemeke
	2024-PPIG-35th-heinonen
	2024-PPIG-35th-mullen
	2024-PPIG-35th-gomez
	2024-PPIG-35th-jonsson
	2024-PPIG-35th-rey
	2024-PPIG-35th-alebachew
	2024-PPIG-35th-rajan
	2024-PPIG-35th-sarkar
	The ``Intention Is All You Need'' Picture of Programming with Generative AI
	Mechanised Convergence: The Homogenising Effect of AI on Intention
	Interlude: Babbage's Intentional Programmer
	Sources of Intention: Constraints, Materiality, and Resistance
	Existentialist Approaches to Intention
	Speculative Scenarios for Intentional Programming
	Conclusion
	Acknowledgements

	2024-PPIG-35th-bexell
	2024-PPIG-35th-brazauskas
	2024-PPIG-35th-githens
	Blank Page
	Blank Page
	Blank Page

