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Abstract

Bias is an inherent threat to human decision-making, including in decisions made during software de-
velopment. Extensive research has demonstrated the presence of biases at various stages of the software
development life-cycle. Notably, code reviews are highly susceptible to prejudice-induced biases, and
individuals are often unaware of these biases as they occur. Developing methods to automatically detect
these biases is crucial for addressing the associated challenges. Recent advancements in visual data an-
alytics have shown promising results in detecting potential biases by analyzing user interaction patterns.
In this project, we propose a controlled experiment to extend this approach to detect potentially biased
outcomes in code reviews by observing how reviewers interact with the code. We employ the "spot-
light model of attention", a cognitive framework where a reviewer’s gaze is tracked to determine their
focus areas on the review screen. This focus, identified through gaze tracking, serves as an indicator
of the reviewer’s areas of interest or concern. We plan to analyze the sequence of gaze focus using ad-
vanced sequence modeling techniques, including Markov Models, Recurrent Neural Networks (RNNs),
and Conditional Random Fields (CRF). These techniques will help us identify patterns that may suggest
biased interactions. We anticipate that the ability to automatically detect potentially biased interactions
in code reviews will significantly reduce unnecessary push-backs, enhance operational efficiency, and
foster greater diversity and inclusion in software development. This approach not only helps in identi-
fying biases but also in creating a more equitable development environment by mitigating these biases
effectively.

1. Introduction

The Software Development Life Cycle (SDLC) is full of decisions. For example, when working in
a team, developers perform an activity called code review which requires the reviewer deliberate on
whether to include the code written by other developers into the main code-base. In open source project
that utilize distributed version control systems such as Git1, this review process will take a from of pull
request.

Like any human decision-making process, stakeholders in the SDLC are susceptible to cognitive bias.
In a mapping study that assessed over 65 scientific papers published up to 2016, Mohanani et al.

(Mohanani, Salman, Turhan, Rodriguez, & Ralph, 2020) reported that at least 37 cognitive biases have
been shown to exist in the software engineering process. Based on a study that observed 16 developers
in situ, Chattopadhyay et al. (Chattopadhyay et al., 2022) reported that 45.72% of developers’ actions
exhibited one or more of 28 biases.

In a large-scale pull request analysis, Murphy-Hill et al. (Murphy-Hill, Jaspan, Egelman, & Cheng,
2022) discovered that biased pushbacks exist with a high correlation to the code author’s gender, eth-
nicity, and age. The authors estimated that over 1000 hours of programmer time are wasted per day
due to this pushback. Such push back could be a result of in-group favoritism, which is when one give
preferential treatment to others they perceive as being part of their own group, whether that group is
defined by ethnicity, nationality, religion, or other shared characteristics.

With the pervasiveness of open source software projects and global software development powered by
distributed version control systems such as git, programmers work with code contributors/authors of

1https://git-scm.com/

PPIG 2024

www.ppig.org 144



different background. This means, the source code review process (often in the form of pull/merge
request) involves accepting/rejecting code written by a contributor whom the reviewer might no know
at all. Platforms like GitHub2 provide some profile information about the code author. This in principle
should not be a problem as code review should only involve examining the source code and decide on
it’s merit only. However, it has been shown that reviewers examine information besides the source code
while performing the review (Ford, Behroozi, Serebrenik, & Parnin, 2019). In the study participants
reviewed source code while their eye gaze was tracked. This authors reported that reviewers gazed and
fixated on profile indicators such as profile picture of the authors more than what was self reported by
the participants.

In a follow-up to the aforementioned study, Huang et. al(Huang et al., 2020) established a causation
relationship between reported author gender and biased merge request decision. In this study, partici-
pants presented with pull request were more likely reject it if the author was reported to be a female or
an automated bug fix program than if the same pull request was presented as being authored by male
contributor.

1.1. Background
Decision-making refers to the process of choosing among several alternatives. We typically associate
decision-making with instances where we make conscious and deliberate choices. However, based on
this definition, we make decisions every minute of every day, often with little conscious effort. Generally,
we want to and believe we make rational decisions, that is, we choose the alternative that is most likely
to lead to our desired outcome (Pronin, Lin, & Ross, 2002).

Making such rational decisions, however, requires that we weigh all alternatives and the potential out-
comes for each, which is resource-intensive. There is also a trade-off between the accuracy and timeli-
ness of our decisions. As a result, we tend to take shortcuts called heuristics. These short cuts enable us
to make decisions that, while not guaranteed to be rational all the time, work often enough and are far
timelier than exploring all alternatives in detail. These shortcuts take various forms but generally result
from an effort to achieve decision-making goals with minimal resource expenditure.

When these shortcuts fail to result in a rational outcome, it leads to what we call cognitive bias. Tversky
and Kahneman, who first introduced the concept of cognitive bias, defined it as "the systematic errors
in judgment that occur predictably in particular circumstances" (Tversky & Kahneman, 1974). One key
aspect of this definition is that biases are predictable. This means that under the right circumstances,
the likelihood of making a cognitive bias is more than random chance. Since the introduction of the
concept in 1974, over 200 cognitive biases have been identified by researchers in behavioral economics,
psychology, management, and sociology.

1.2. Problem Statement
The core problem we aim to address in this proposed project is the need for an automated system to
detect bias in source code reviews. Bias in code reviews can significantly impact the quality and fairness
of the review process, leading to potential issues in code quality, team dynamics, and overall project
outcomes. Currently, detecting such biases is challenging due to the subtle and often unconscious nature
of biased behavior. Our approach involves analyzing data on how reviewers interact with the code review
screen. By examining patterns in actions such as scrolling, highlighting, commenting, and time spent
on different sections of the code, we aim to identify indicators of bias. This attempt to identify patterns
of interaction that can indicate possibility of bias will provide valuable insights into the review process,
enabling teams to address and mitigate bias, thereby improving the fairness and effectiveness of code
reviews.

2https://github.com/
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2. Literature Review

2.1. Physical Manifestation of Bias
Boonprakong et al. (Boonprakong, Chen, Davey, Tag, & Dingler, 2023) explored the indicators of bias
in physiological and interaction data. They demonstrated the existence of behavioral and physiological
signals of cognitive bias. The authors conducted two studies that collected and analyzed eye-tracking,
skin conductance level (SCL), and fNIRS data from an experiment in which participants were presented
with information that either aligned with or opposed their opinions on a topic. Since the opinions were
presented in text form, the eye-tracking data collected focused on dwelling time instead of scan path.

Using the data from the experiment, the authors built four bias classifiers: a Linear Discriminant Anal-
ysis (LDA), Support Vector Machine (SVM) with RBF kernel, Random Forest, and XGBoost, all with
5-fold cross-validation. The highest accuracy achieved was 55.27% with XGBoost, which barely out-
performed ZeroR (50.04%). To ensure that the models’ performance was not due to mere chance, they
conducted permutation tests and found that all achieved a p-value lower than 0.05. Participants showed
higher neural activity and spent more time processing statements that disagreed with their own opinions.

2.2. Cognitive Bias in Software Engineering
The Software Engineering (SE) process is intricate and decision-intensive. Like any decision-making
endeavor, SE is prone to cognitive biases. Mohanani et al. (Mohanani et al., 2020) conducted a compre-
hensive mapping study to explore cognitive biases within the field of software engineering. This study
aimed to identify, catalog, summarize, and synthesize existing research on the subject. Specifically, it
highlighted research on cognitive biases frequently encountered in SE, focusing on their origins, mani-
festations, and impacts. The authors examined 65 papers published until 2016, finding that 37 cognitive
biases have been studied at various stages of the SE process.

Chattopadhyay et al.(Chattopadhyay et al., 2022) conducted a two-part field study to assess the extent
of cognitive biases in developers’ daily activities. The field study took place in a startup, where the
authors observed ten developers in situ for an hour while they performed their daily tasks. They found
that 45.72% of developers’ actions (953 out of 2084) involved one or more of the 28 observed biases,
which were grouped into ten categories.

As part of the study, follow-up interviews were conducted with 16 developers to validate the findings,
assess the perceived frequency of biases, and identify available tools and practices to address the iden-
tified biases as reported by developers. The authors reported that developers spent 34.51% of their time
reversing biased actions. Of all the reversal actions, 70.07% involved biases. They defined reversal
actions as those that developers need to undo, redo, or discard and measured the total number of actions
and time spent on these reversal actions resulting from cognitive biases.

Additionally, the authors assessed the standard tools developers reported for bias mitigation and pre-
sented a set of helpful practices to mitigate or address the biases, grouped into six categories.

2.3. Bias in Source Code Review
One area within software engineering where biases have been observed is the process of source code
review. With the widespread adoption of distributed version control systems, code reviews often occur
through merge requests (or change requests). Murphy-Hill et al. (Murphy-Hill et al., 2022) conducted
a large-scale analysis of pull requests at Google. The study’s primary objective was to examine the
influence of demographic attributes, such as gender, ethnicity, and age, on the rate of pushback. Here,
"pushback" is defined as "the perception of unnecessary interpersonal conflict in code review, where a
reviewer blocks a change request" (Egelman et al., 2020). This concept draws on role congruity theory,
which posits that a group member receives negative evaluations when stereotypes about the group are
misaligned with the qualities perceived as necessary for success in a specific role. The authors found
a significant correlation between the incidence of pushback and the gender, ethnicity, and age of the
code’s author.

An eye tracking experiment by Ford et. al (Ford et al., 2019) has showed that reviewers do look at
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information beyond the source code itself while decision to accept or reject a pull request. Reviewers
fixated on what Ford et. al. referred to as social indicators such as the contributor’s aviator, display
name, and contribution history. They found that the amount of actual fixation was more than what was
self-reported by reviewers after the experiment.

In another eye tracking study, Huang et. al (Huang et al., 2020) re-established the existence of correlation
reported gender of authors and rate of push back. What’s more they demonstrated causation relationship
exists. They found both male and female reviewers were harsher on female-authored pull requests
compared to male contributors of the same contribution. This implies the reviewer’s bias based on
gender which contradicts the self-reported behavior in which the reviewers claimed they did not put the
gender of the author into consideration.

An interesting finding in this study is that participants admitted their bias towards computer generated
code. But even in these instances participants tried to rationalize their bias after the fact with excuses
such as that the code generated by computer programs are "too complex and less understandable".This is
despite the fact that the actual code was written by human. This shows that even when we acknowledge
our biases, we try to justify them rather than gauge their rationality.

2.4. Bias Detection
Detecting cognitive bias refers to identifying the expected likelihood of bias in a decision rather than
certainty. Primary procedure for detection has been based on selective exposure experiment. In such
methods, participants are surveyed with pre and post experiment questionnaires which will be used as a
basis to see if they are biased in the task. Such an approach can be referred to as a static detection since
it relies on post activity static analysis as opposed to dynamic techniques that try to detect bias during
the decision making. Static detection limits the debiasing techniques that can be employed.

Dynamic Detection is a detection effort whereby the (possible) occurrence of cognitive bias is detected
during the deliberation process, before the actual decision is made. While such detection is more likely
to help in mitigating biases in the current decision, it is relatively difficult to implement.

Wall et. al. (Wall, Blaha, Franklin, & Endert, 2017) proposed a theoretical framework for quantifying
interactions and subsequently identifying biased interaction in visual data analytics tools. In a later
work (Wall, Blaha, Paul, & Endert, 2019), the authors presented a formative study that implemented
this theoretical recommendation. They used their proposed metrics in detecting anchoring bias from
interaction data while participants were tasked with an activity purposefully prepared to induce bias.
The authors reported an encouraging result towards the ability to detect cognitive bias, in real time,
based on interaction behavior.

Nussbaumer et al. (Nussbaumer, Verbert, Hillemann, Bedek, & Albert, 2016) presented an attempt to
establish a framework for automatic confirmation bias detection and feedback in criminal intelligence
visual analytics. The authors identified software development and research challenges that need to be
addressed to realize the proposed framework. The research tasks include developing a detection method,
providing meaningful feedback, and evaluating the effectiveness of the proposed methods.

They proposed the use of visual analytics tools, such as MUVA (Kalamaras, Papadopoulos, Drosou,
& Tzovaras, 2015) and VALCRI3, to record interaction logs for analysis while users performed typical
tasks. This work defines two types of bias detection based on interaction data. The first is a statistical
approach that compares biased interactions with unbiased ones. The second is a semantic approach that
maps biased and unbiased interactions to cognitive processes and compares these cognitive processes.

2.5. Eye Tracking in Software Engineering
Eye tracking has been used by a number of researchers to understand developer behavior. Bansal et al.
(Bansal et al., 2023) present an early attempt at using Large Language Models (LLMs) for programmer
attention modeling. They employed gaze trackers and LLMs to build a machine learning model capable

3https://cordis.europa.eu/project/id/608142
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of predicting how programmers scan source code. To build this model, the authors had 27 programmers
perform a Java source code comprehension task, involving 25 randomly selected methods from a total
of 68, for 1.5 hours with breaks every 20 minutes. The participants wore eye trackers to record their
fixations during the task. Afterward, the participants were asked to write short summaries of the source
code. The collected data was used to build an LLM model that takes source code as input and produces
the expected scan-path. This model aims to mimic the way programmers would scan and comprehend
source code, providing insights into programmer attention patterns.

Aljehane et al. (Aljehane, Sharif, & Maletic, 2023) used eye movement data to identify the expertise
level of developers based on how they examine source code. They conducted a quantitative analysis
comparing the eye movements of 207 participants, including both novices and experts, while they solved
comprehension tasks. The results revealed a notable increase in pupil size among the novice group
compared to the experts, suggesting that novices exert greater cognitive effort. Additionally, novices
exhibited significantly more fixations and longer gaze durations than experts when comprehending code.
Furthermore, a correlation study indicated that programming experience remains a strong predictor of
expertise in this eye-tracking dataset, alongside other expertise variables.

3. Proposed Methodology

We propose a research project aimed at collecting data on code reviewer interactions through an experi-
mental setup. We will analyze the collected data using various machine learning algorithms to identify
patterns that predict the occurrence of cognitive biases, with a particular focus on prejudice. Our findings
will be reported at a peer-reviewed academic conference. This section details the major tasks envisioned
for our project.

3.1. Research Design and Data Collection
Our plan involves conducting an experiment to measure participants’ performance in source code review
tasks. We will first identify open-source pull requests suitable for the experiment based on criteria
set by related research works. Then, we will recruit participants and ensure they have the required
background to review the code under consideration through a survey. We expect to include both industry
professionals and experienced students as developers in our study. Participants will be seated in front
of computers and presented with a sequence of pull requests, deciding whether to accept or reject each.
Code snippets from pull requests will be randomly assigned labels indicating authorship by different
groups of contributors.

We plan to use the Tobii Pro Fusion Eye Tracker 4 to track participants’ gaze. Additionally, we intend
to record additional signals to explore the possibility of multimodal analysis including keyboard log,
cursor movement and comments/feedback on code and decision outcome. To avoid introducing social
desirability bias (Grimm, 2010) by participants, we plan to carefully design our pre-experiment briefing.
We will ensure that no mention of bias is made during the initial briefing to prevent influencing partici-
pants’ behavior. This approach will help us obtain more genuine responses and interactions during the
source code review tasks.

Once the experiment is conducted, we will conduct a thorough debriefing session with each participant
in the form of an interview. During this debriefing, we will explain the true purpose of the study and
the reason for withholding information about bias in the initial briefing. We will discuss the concept of
social desirability bias and how it could have impacted their behavior if they had been aware of it from
the start.

After explaining the rationale behind the deception, we will seek the participants’ consent post hoc. This
means obtaining their permission to use the data collected during the experiment, now that they are fully
informed about the study’s aims and methods. This process ensures ethical transparency and respects
participants’ autonomy, as they can choose whether to allow their data to be used in the study after being
fully informed. By implementing this strategy, we aim to gather more accurate and reliable data while

4https://www.tobii.com/products/eye-trackers/screen-based/tobii-pro-fusion
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maintaining ethical standards in our research. We will obtain approval from our local institutional review
board (IRB) on our research methods before recruiting participants and commencing this study.

3.2. Data Analysis
After collecting the necessary data, we aim to explore various machine learning models to find the most
effective approaches for bias detection and prediction. We will start with simpler probabilistic models,
such as those proposed by Wall et al. (Wall et al., 2019), and gradually move towards designing more
complex multi-modal and transformer-based deep learning models.

Initially, we will implement and evaluate probabilistic models to establish a baseline performance for
bias detection. These models are known for their simplicity and interpretability, which will provide
valuable insights into the basic patterns and correlations present in our data.

Next, we will design and evaluate multi-modal machine learning models that can leverage the diverse
types of data we are collecting, including eye-tracking data, video recordings, and survey responses.
Given the multi-modal nature of our data, we anticipate that these models will outperform simpler,
single-modality machine learning algorithms, such as Markov Chains. The integration of different data
modalities is expected to capture more nuanced patterns of bias and provide a richer representation of
the participants’ cognitive processes.

We will also explore the use of advanced deep learning models, such as transformer-based architectures,
which have shown significant promise in handling complex, high-dimensional data. These models,
with their ability to process sequential and multi-modal data effectively, will be crucial in capturing the
temporal and contextual dependencies inherent in our data.

In addition, we will evaluate the performance of various machine learning models, such as Recurrent
Neural Networks (RNNs) and Conditional Random Fields (CRF), on the bias prediction task. RNNs
are particularly well-suited for sequential data and can capture temporal dependencies, while CRFs are
effective for structured prediction tasks, making them valuable for detecting patterns of bias in our data.

Beyond constructing and evaluating machine learning models, we intend to delve into psychological
theories that explain human decision-making processes. This interdisciplinary approach will help us
understand the underlying mechanisms of cognitive biases and provide a theoretical foundation for in-
terpreting our findings. By integrating insights from psychology, we aim to develop more robust and
explainable models that not only predict bias but also offer explanations for why certain patterns of bias
occur.

Ultimately, our goal is to develop a comprehensive framework for bias detection and prediction that
combines the strengths of machine learning with psychological theories. This framework will enable
us to identify and mitigate biases more effectively, contributing to the broader field of cognitive bias
research and its applications in various domains.

4. Expected Outcomes and Future Work

Upon successful completion of our study, we expect to have:

• conducted a user study to analyze developers’ gaze while reviewing code;
• collected insights from developers on in-group favoritism bias in code review processes; and
• developed a machine learning model capable of predicting the likelihood of bias in code review

based on how the reviewer interacts with the code.

The resulting model will leverage the comprehensive multi-modal data we collect, including eye-
tracking data, video recordings of facial expressions, and detailed interaction logs, to identify subtle
patterns indicative of bias. By analyzing these interaction patterns, our model will be able to provide
real-time feedback to reviewers and highlighting potential biases. This will not only enhance the fairness
and accuracy of code reviews but also contribute to a more objective and inclusive review process.
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The successful implementation of our study will result in a machine learning model that can predict the
possibility of bias in code reviews, backed by rigorous data analysis. This model has the potential to
help in building a tool that significantly improves the quality and impartiality of software development
practices. Such a tool and a more in-depth theoretical interpretation of our finding will be possible
extensions of the envisioned study. Once possible occurrence of bias is predicted what to do with the
information and how or when to present this information will another question to investigate.

5. Conclusion

This proposal highlights the issue of cognitive bias in source code reviews, affecting software devel-
opment fairness and effectiveness. Research shows biases based on gender, ethnicity, and age can
negatively impact review outcomes. We propose using multi-modal machine learning to address this
problem. By analyzing eye-tracking data, video recordings, and interaction logs, we aim to detect bias
patterns.

Our experimental design involves recruiting participants to review open-source pull requests, using the
Tobii Pro Fusion Eye Tracker, and recording additional signals for multimodal analysis. Pre-experiment
briefings and thorough debriefings will ensure ethical transparency and participant consent.

We will explore various machine learning models to develop robust models that predict bias and can
be studied to offer insights into cognitive processes. Upon completion, we expect to develop a model
for predicting and addressing bias in code reviews. This can be used in creating training programs and
tools to help developers recognize and counteract their biases. This research aims to improve software
development practices, fostering a more equitable and efficient environment.
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