PPIG 2024

Designing a didactic model for programs and data structures

Federico Gomez Sylvia da Rosa
Instituto de Computacion Instituto de Computacién
Facultad de Ingenieria Facultad de Ingenieria
Universidad de la Republica Universidad de la Republica
fgfrois@fing.edu.uy darosa@fing.edu.uy

Abstract
Several authors affirm with solid arguments that it is essential to educate in computing, at least from sec-

ondary education and covering undergraduate courses, and that this continues to be a pending problem
in most educational systems. Some point to the relationship between research and educational practice,
which partly arises from the undervalued role of didactic research within the academy. Based on our
epistemological model and taking as starting point fundamental ideas of computing, we began to develop
a didactic model for the development of computational competencies and skills for novice students. In
this paper we present the rationale of the proposed didactic model, a description of and empirical study
and a preliminary analysis of the results of the experience.

1. Introduction

Several authors affirm with solid arguments that it is essential to educate in computing, at least from
secondary education and covering undergraduate courses. These arguments provide answers to the why
and for whom (to teach computer science) of the didactic questions (Saeli, Perrenet, Jochems, & Zwan-
eveld, 2011). The authors add that this continues to be a pending problem in most educational systems
(Denning & Tedre, 2015, 2019, 2021; Dowek, 2013) and some point to the relationship between research
and educational practice, which partly arises from the undervalued role of didactic research within the
academy. For example, at the conference “Key Competencies in Informatics and ICT (KEYCIT 2014)”
that took place at the University of Potsdam in Germany in 2014!, several works by science educators
from various European countries were presented. In those, case studies, positions and perspectives of
education in computing and technology were discussed, focused on secondary education, undergraduate
education and teacher training. We found that the concepts of “competencies” and “key competencies”
are a central issue and that most authors use some type of taxonomy to define their didactic model, for
example in (Broker, Kastens, & Magenheim, 2014) the authors take the following definition of compe-
tency: “The existence of learnable cognitive abilities and skills which are needed for problem solving as
well as the associated motivational, volitional and social capabilities and skills which are essential for
successful and responsible problem solving in variable situations.” and they add: “This definition im-
plies that competences are learnable by interventions.” For the competency model, these authors use the
Anderson and Krathwohl taxonomy (AKT), an adaptation of Bloom’s taxonomy to which they add two
dimensions: A) levels of knowledge (factual, procedural, conceptual, metacognitive) and B) classifica-
tion of cognitive domains (“remembering, understanding, applying, analyzing, evaluating, creating”).

As a result of the literature review, added to our empirical research and own theoretical development,
we conclude that our model of knowledge construction about data structures, algorithms and programs,
helps in designing answers to the how to teach of the didactic questions (Saeli et al., 2011), playing a
role similar to that of competencies and taxonomies used by the reviewed authors. Besides, the model
contributes with a theoretical elaboration, mainly in two directions: extending Piaget’s theory to encom-
pass the construction of knowledge about programs (da Rosa, 2018; da Rosa, Viera, & Garcia-Garland,
2020) and providing a theoretical framework for designing empirical studies through Piaget’s triad intra-
inter-trans (da Rosa & Gémez, 2019, 2022). This contribution is not minor: in their systematic review
of research in computer science education, several of the cited authors found that half of the studies do
not explain any theoretical framework. For the studies that do, their theories and conceptual models

Uhttps://publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/index/docId/7032/file/cid07.pdf

WWWw.ppig.org 112



PPIG 2024

are taken from other areas such as psychology or pedagogy and present a dispersed area with a great
variety of terminology and methods. Although the authors anticipate a growth in the theoretical field
of computer science education, at the time of their study they considered the number of studies with
theoretical and conceptual frameworks specific to the area so small that they would not have sufficient
impact to generate a theoretical unification of the area (Malmi et al., 2014).

Based on our epistemological model and taking fundamental ideas of computing (Schwill, 1997; Bell,
Tymann, & Yehudai, 2018) as a didactic perspective, we began to design a didactic model for the de-
velopment of computational competencies and skills for novice students (Cabezas & da Rosa, 2022).
Fundamental ideas group together the central concepts and long-range of computing, allowing knowl-
edge to be distinguished from ephemeral information, which constitutes a suitable answer for the what
to teach of the didactic questions. These fundamental ideas are described in the next Section. The rest
of the paper is organized as follows: in Section 3 a complete empirical study is included and in Section
4 some reflections and future lines of work are presented. Finally, bibliographic references are included.

2. Fundamental ideas of computing

Andreas Schwill’s work on fundamental ideas in computer science (Schwill, 1997) is a classic cited by
several authors as a starting point for the development of didactic modeling. Schwill defines four criteria
that a fundamental idea must meet:

* the vertical criterion (the idea appears in different domains of the discipline)
* the horizontal criterion (the idea can be worked on at any intellectual level)
* the criterion of time (the idea can be observed throughout the evolution of the discipline)

 the common sense criterion (the idea makes sense in an informal, pre-theoretical and pre-scientific
context and can be expressed in natural language)

and points out algorithmization, structural dissection and language as fundamental ideas (with sub-
ideas). In (Dowek, 2012) the author adds as fundamental the idea of a machine related to the notion
of a program as an executable object. In (Bell et al., 2018), the authors propose ten fundamental ideas,
listed below, that cover those of Schwill and Dowek and add others related to the further development
of computer science (networking, security, simulations).

1. Information is represented in digital form.

2. Algorithms interact with data to solve computational problems.

3. The performance of algorithms can be modelled and evaluated.

4. Some computational problems cannot be solved by algorithms.

5. Programs express algorithms and data in a form that can be implemented on a computer.
6. Digital systems are designed by humans to serve human needs.

7. Digital systems create virtual representations of natural and artificial phenomena.

8. Protecting data and system resources is critical in digital systems.

9. Time dependent operations in digital systems must be coordinated.

10. Digital systems communicate with each other using protocols.

WWWw.ppig.org 113



PPIG 2024

The specificity of the modeling process means that we have focused on building knowledge about algo-
rithms, data structures, and programs. Consequently, we face the challenge of defining our own subset
of fundamental ideas. In principle we take the fundamental ideas above related to these concepts (1, 2,
3,4,5), separating them from those related to issues such as security, networks and ethics (the rest).

The authors’ formulation of ideas 2, 4 and 5 led us to investigate the notions of a non-computable
problem, problems without a computable solution and a non-computational problem since their clarity
is relevant for our subset of fundamental ideas. Thus we find that in the complementary document to
their article?, the authors delve into each of the ten fundamental ideas proposed, expressing about idea
2: “The term ‘computational problem’, ‘algorithmic problem’, or simply ‘problem’ in this context is
often used to refer to the task that needs to be computed e.g. searching for a word, sorting values into
order, finding the shortest route on a map, or finding a face in a photo.” At this point the importance of
our theoretical elaboration is clearly observed: in our epistemological model the “algorithmic world” is
distinguished from the “computational world” and we point out that “algorithmic problem” and “com-
putational problem” are not the same (and much less simply “problem™!), even in a computer context.
One of the main contribution of our work is the extension of Piaget’s general law of cognition to en-
compass the construction of knowledge about data types and programs. Piaget’s original law regulates
the construction of knowledge about algorithmic solutions of problems and we have extended it to take
into account computational solutions. The construction of knowledge about algorithms, data types and
programs lies in understanding the dialectical relationship between both kind of solutions (da Rosa et
al., 2020). In our work fundamental idea 2 is related to the “algorithmic world” and fundamental idea 5
to the “computational world”.

In (Harel & Feldman, 2004) the author defines algorithmic problem as:

1. acharacterization of a legal, possibly infinite collection of potential input sets,

2. a specification of the desired outputs as a function of the inputs.

Consequently, the fundamental ideas for which we plan to design didactic sequences and validate them
in the classroom are the following:

1. Information is represented in digital form.
2. Algorithms interact with data to solve algorithmic problems.
3. Programs express algorithms and data in a form that can be implemented on a computer.

4. The performance of algorithms can be modelled and evaluated.

The fundamental idea 1 is related to the computational skill of knowing how to represent information
as data types that the program has to deal with and here is used in that sense. Designing an algorithmic
solution (algorithm) to an algorithmic problem consists of defining a function that takes elements from
an input set and produces a desired output (fundamental idea 2), and solving the computational problem
means to implement the algorithm in some programming language and execute it (fundamental idea
3). We consider that the fundamental idea 4 has to be introduced also, although it is not included in the
empirical study presented in the following Section. As mentioned in the Section 1, the didactic sequence
was designed and developed within the theoretical framework of the intra-inter-trans triad.

3. The empirical study
The activities described in this section were developed in two instructional instances with students in
an introductory programming course in October 2023. A didactic sequence was designed to introduce

Zhttps://www.canterbury.ac.nz/media/documents/oexp-engineering/Bigldeas-webdocument.pdf

WWWw.ppig.org 114



PPIG 2024

a topic that until that moment was new to the students but related with their previous knowledge. It
is a data structure called capped array, along with four fundamental operations for its manipulation:
initialization, insertion, listing and search. In the capped array values are inserted one by one from zero
(empty capped array) until the predefined maximum value, without being necessary to store values for a
fixed number of cells determined prior to execution as in classical arrays known by the students. The cap
is a special variable that keeps track of the number of values stored so far. This structure holds didactic
interest in two senses: first, due to its flexibility it makes possible to establish a relationship, in terms of
the process of knowledge construction about data structures, between static structures previously studied
(arrays and records) and dynamic structures to be studied later (linked lists and binary trees). Second,
the representation of data through the structure of capped array and operations on it present an adequate
level of complexity, enhancing the introduction of fundamental ideas 1, 2 and 3 of Section 2.

The sequence was designed to be executed in class with a group of 12 students, taking into account their
prior knowledge. They all had worked with the following topics: resolution of simple programming
problems, basic syntax of an imperative programming language, variables, elementary data types, ex-
pressions and simple instructions, control structures (both selection and iteration), subprograms (both
functions and procedures), static data structures (arrays and records). The programming language used
in class was Pascal.

The activities for the sequence were designed based on guidelines established in the epistemological
model according to which knowledge is built through a first stage focused on isolated objects (intra
stage), then passing through a second stage that takes into account relationships between said objects
and their transformations (inter stage) and reaching a third stage in which a general scheme is built that
involves both the generalized objects and their transformations (¢rans stage). The sequence consists of
four groups of activities introducing the fundamental ideas 1, 2 and 3 as shown below:

A. Manipulation of the structure (fundamental ideas 1 and 2).
B. Formalization of the structure in a programming language (fundamental idea 1).
C. Initialization and insertion operations (fundamental idea 3).

D. Listing and search operations (fundamental idea 3).

The activities within group A start from the students’ instrumental knowledge (intra stage) and induce its
transformation into conceptual knowledge (inter stage) in relation to the structure itself and the insertion
operation, both of which constitute new concepts for the students. The activities in this group introduce
fundamental ideas 1 and 2 by means of transforming the data in a structure that can be handled by the
algorithm in Activity 3. The activities within group B introduce fundamental ideas 1 and 3 by means of
discussing computational issues of the representation of the structure and its effects on the memory of the
computer. The activities in group C introduce fundamental idea 3 with emphasis in the Pascal program
as a formalization of the conceptual knowledge about the insertion algorithm (trans stage). Finally, in
the activities within group D students work with operations that present similarities and differences with
the insertion operation in order to consolidate the knowledge about the new structure of capped array.
These are listing and search operations that students have implemented on classic arrays. We present
below a detailed description of the activities within each group.

Group A: Manipulation of the structure (fundamental ideas 1 and 2)

Activity 1: Imagine there is a shelf that contains compact discs, which are located from left to right. It
is desired that a person, standing in front of the shelf, can immediately know the number of discs placed
so far, without having to count them one by one or do any type of calculation. What could be added to
the shelf so that the person can know that?

The proposed arrangement has a correlation with the data structure to be constructed at the formal stage.
The discs correspond to the values to be stored in the cells and their positions on the shelf to the indices

WWWw.ppig.org 115



PPIG 2024

of the array (the data structure). The activity introduces the need to incorporate a new element: the cap.
Students are induced to propose a solution, at instrumental level, to solve the task. They are expected
to come up with ideas such as "put a mark" or "write down the amount of discs on a piece of paper".
Based on the students’ ideas, they are then asked to reflect on why each alternative works (or doesn’t
work). For example, putting a mark implies the need to count the discs that precede it, which does not
satisfy the requirement of avoiding counting them. Having a piece of paper with the amount provides a
better solution, as it avoids having to count all of the discs every time.

Activity 2: Suppose you have a disc in your hand and you are about to place it on the shelf after the last
one. What condition should be met to be able to perform the task successfully? After placing the disc,
what should be done so that the person from Activity 1 still knows how many discs are placed without
having to count them?

This activity expects students to apply instrumental knowledge for its resolution. Everyone has stored
items on a shelf before, so they should be able to figure it out without difficulty. The purpose is to make
them aware of both the general case and the edge case (checking that the cap value does not exceed the
maximum number of discs that fit on the shelf).

Activity 3: Based on your answer to the question in activity 2, write an algorithm in pseudocode to
insert a new disc on the shelf after the last one and update the number of discs placed.

This activity proposes the use of an intermediate formalism (pseudocode) to help conceptualization and
begin the passage to the trans stage. This is particularly helpful when introducing a new operation
(insertion of a new element) that has no similar equivalent in the students’ prior formal knowledge. So
far, they had only worked with classic arrays (without a cap). In a classic array, the insertion operation is
not defined, since all of its cells always have a value stored in it. The notion of inserting a new element
into a data structure is being worked on for the first time with the introduction of the capped array.

Group B: Formalization of the structure in a programming language (fundamental idea 1)

Activity 4: Define a data type in Pascal that allows representing the shelf along with the number of
discs stored so far (the cap). For simplicity, assume that the shelf has the capacity to hold at most 50
discs and that each disc is simply represented by an integer number (its ISBN). Explain how each part
of your Pascal definition corresponds to the shelf.

This activity involves construction of knowledge about the use of the programming language to define
the capped array. The students had previously worked separately with arrays and records, and their
integration allows the new data structure to be defined, since it unifies, in the same syntactic unit, both
the array and the cap. Taking advantage of the fact that no new syntactic elements are required, the
activity encourages students to use what they already know about the language syntax to propose a
definition for the new data structure and establish a correspondence between the shelf (instrumental
stage) and its representation in a programming language (formal stage).

Activity 5: Given the following variables in Pascal:

arr: Arreglo; (» classic array =)
act: ArregloConTope; (x capped array x*)

Assuming that both of them have 10 cells (with indices ranging from I to 10), draw both the variable
arr with values stored in all of its cells and the variable act, assuming that only the first four cells have
been loaded with values so far. What expression should you write in Pascal to access the third cell of
the classic array? And to access the third cell of the capped array? And to access the cap?

Activity 6: Now we are going to compare some characteristics between the classic array and the capped
array. What syntax similarities and differences do they present? In what circumstances is it more
appropriate to work with the classic array? and with the capped array? What is the purpose of the cap?
Why does the classic array not need a cap? What happens with the values in the cells after the cap in

WWWw.ppig.org 116



PPIG 2024

the capped array?

Activity 5 induces students to construct knowledge about the syntax rules necessary to manipulate the
capped array and become aware of how said data structure works in the computer memory. Subse-
quently, activity 6 induces a reflection process about the similarities and differences between the two
data structures, both at syntactic and functional level. Especially in relation to the fact that, as seen ear-
lier in the course, all cells of the classic array must be stored with valid values, while the cells after the
cap contain undefined values ("garbage" values), simulating the absence of discs on the shelf beyond the
position indicated by the cap. According to the epistemological model, the construction of knowledge
about the new structure is carried out from the generalization of knowledge previously constructed for
the manipulation of classic arrays and records.

Group C: Initialization and insertion operations (fundamental idea 3)

Activity 7: Write the following subprograms in Pascal (each suprogram name is kept in Spanish, which
is the native language of the students who participated in the class, as well as the names given in Spanish
for the data types: Arreglo for the classic array and ArregloConTope for the capped array):

procedure InicializarTope (var act: ArregloConTope)
function Estalleno (act: ArregloConTope) : boolean
procedure Insertar (val: integer; var act:ArregloConTope)

which, respectively, initialize the cap with 0, determine whether the capped array already contains
values in all its cells and insert the new value into the capped array, according to the algorithm in
activity 3.

Activity 8: Draw a capped array that has 10 cells in total and show what it would look like after each
of the following instructions is executed. How many more values could be inserted into it after executing
these instructions?

InicializarTope (act);
Insertar (5, act);
Insertar (3, act);
Insertar (8, act);

Activity 7 asks students to implement the requested subprograms in Pascal, based on the knowledge built
in the previous activities. It is expected that no major difficulties should arise, due to the progressive
construction of concepts arising from previous activities. In particular, the third procedure constitutes a
new expression of the algorithm in pseudocode. During writing, it is expected that students will make
errors typical of machine execution. For example, a problem with an index that produces an out of range
error, or accessing a cell with an undefined value ("garbage" value). In such cases, activity 8 induces
students to resort to a mechanism called automation, described in (da Rosa & Goémez, 2022), which
consists of manually executing the algorithms on an array drawn on paper which, within the framework
of the epistemological model, has proven to be very useful in helping students become aware of errors
and return to the code and correct them.

Group D: Listing and search operations (fundamental idea 3)
Activity 9: Write the following subprograms in Pascal:

procedure ListadoComun (arr: Arreglo)
procedure ListadoConTope (act: ArregloConTope)

which respectively list on screen the values stored in the classic array and in the capped array. Watch
the code written for both subprograms. What similarities and differences do they present?

Activity 10: Write the following subprograms in Pascal:

function BusquedaComun (arr: Arreglo; num: integer): boolean

WWWw.ppig.org 117



PPIG 2024

function BusquedaConTope (arr: ArregloConTope; num:integer) :boolean

which respectively determine whether or not the value num is stored in the classic array and in the
capped array. Watch the code written for both subprograms. What similarities and differences do they
present?

Unlike the insertion algorithm from activity 8 (which is a new operation), students have already im-
plemented listing and search operations on a classic array earlier in the course. These activities take
this into account and seek to adapt said prior knowledge for the implementation of new versions, now
working on the capped array. They have reasonable similarities and differences with the classic array,
which provides an adequate context for the construction of new knowledge working at the formal level
(through generalization). Finally, students are asked to compile and run all implemented subprograms
on a computer. To do this, they are provided with a source file with the declarations and headers of the
requested subprograms. Students simply must complete the missing portions, corresponding to the body
of each of the implemented subprograms, before compiling and executing.

The course lasts 15 weeks and has several groups of students, distributed at different time schedules.
Every group attends two classes per week, each lasting 90 minutes. According to the course curriculum,
the capped array is planned to be worked on in week 10, after having introduced classic arrays and
records in weeks 8 and 9, respectively. The didactic sequence was executed with a group of 12 students,
who participated voluntarily. The rest of the students attended groups in which the topic was worked on
in the traditional way (presenting from the beginning both the data structure and the operations, working
directly at the formal stage), without taking into account the students’ prior knowledge at the infra and
inter stages. A future in-depth analysis of the differences in learning observed in the students after
having worked on the topic based on one methodology or another is to be done.

All twelve students worked in teams of three members each. Everyone solved the ten activities presented.
The work mechanics consisted of the teacher presenting the statement of each activity and then each team
proposed a solution for it. Subsequently, a collective discussion was held among the entire class. We
now present the development of the activities within each group (A, B, C and D) and a brief analysis of
the work of the different teams.

Group A: Manipulation of the structure (fundamental ideas 1 and 2)

In activity 1, the four teams determined necessary to have a "space" that kept track of the number of
discs placed so far on the shelf. They called it "poster”, "sheet" or "paper". Regarding the question
posed in activity 2, everyone concluded that it was necessary to compare the value currently noted on
the "space" with the capacity of the shelf prior to placing the new disc after the last one. Within the
framework of the epistemological model, students became aware of the two fundamental operations to
solve the problem: comparison (of the cap with the maximum size) and insertion (of the new element
after the last one) and they all managed to write the requested pseudo code in activity 3. As an example,

the solution of one team is shown in Figure 1 (photo of the original algorithm, written in Spanish).

\/Cm/ﬁ'[\/ﬂ(\

I oy
|
! j (’"lrl ﬁ "\ 7 /% {; A

F//l/ : DEL (/) -"AL,’L

QVE XM Clepcio v (P CSTepTen

| o
b
s
-
o
3
=
N
>

=

Figure 1 — Pseudo code for activity 3

WWWw.ppig.org 118



PPIG 2024

Group B: Formalization of the structure in a programming language (fundamental idea 1)

For activity 4, all teams defined a record type in Pascal that grouped the array with the cap. As ex-
pected, they did it tied to the specific instance presented in the activities of group A, considering a shelf
with capacity for 50 discs. As an example, the definition proposed by one team is shown in Figure 2
("Estanteria" is the Spanish word for shelf). According to the epistemological model, such definitions

Figure 2 — Type definition for the capped array

are expected in this stage. Although they are correct from a syntactic point of view, they show that the
students’ thinking is still tied to the specific instance of discs manipulated in the instrumental stage. The
jump from specific cases to the general case is produced by successive repetition. To abstract from the
specific instance, during the collective discussion, the teams were asked how they would modify the
definition so that it serves different specific sizes. This introduced the need for a constant N to make it
possible to define a capped array of any size, as it is shown below:

type ArregloConTope = record
arre: array [1l..N] of integer;
tope: 0..N;

end;

In activity 5, the four teams managed to draw both the classic and the capped array, according to the
instructions given. When writing the expressions to access the third cell of the classic array, the third
cell of the capped array, and the cap, they made various syntax errors. This is expected at this stage,
since it is the first time that they combine syntax for arrays with syntax for records. In the subsequent
discussion, reflection was induced and all teams were able to correct the aforementioned errors. As an
example, the responses of one of the teams are shown in Figure 3.

Figure 3 — Answers for questions posed in activity 5

As in activity 5, the answers to the questions posed in activity 6 presented a variety of errors, which

Www.ppig.org 119



PPIG 2024

were again corrected after discussion, in which the similarities and differences between both structures
(classic and capped array) were stated, both in terms of syntax and semantics. All students understood
that it is appropriate to use the classic array when the number of values is fixed and known in advance,
while the capped array is a collection with a variable number of elements, upper bounded by the size of
the array.

Group C: Initialization and insertion operations (fundamental idea 3)

In activity 7, the four teams wrote initial versions for the three requested subprograms, making similar
errors to those in activity 6. The syntax errors became evident after computer compilation. Facing the
errors shown by the compiler helped the teams to reflect and correct them. Regarding execution errors
(for example: an out-of-range error), the automation mechanism (guided by activity 8) made it possible
to detect and correct them. The final version of one team for each requested subprogram is shown below:

procedure InicializarTope (var act: ArregloConTope);
begin
act.tope:=0;

end;
function Estalleno (act: ArregloConTope) : boolean;
begin
if act.tope=N then
Estalleno:=TRUE
else EstalLleno:=FALSE;
end;

procedure Insertar (val: integer; var act: ArregloConTope);
begin
if (not EstalLleno(act)) then
begin
act.arrelact.tope+l] :=val;
act.tope:=act.topetl;
end;
end;

Group D: Listing and search operations (fundamental idea 3)

Finally, activities 9 and 10 had a development analogous to that of activities 7 and 8, once again making it
possible for all teams to implement correct versions for the requested subprograms (listing and search).
Each team compiled and then ran all implemented subprograms on the computer. Below is the final
version corresponding to the same team of questions 7 and 8 for the listing and search on the capped
array.

procedure ListarConTope (act: ArregloConTope);
var i: integer;
begin
for i:= 1 to act.tope do
writeln (act.arrel[i]);
end;

function BuscarConTope (act: ArregloConTope; num : integer) : boolean;
var i:integer;
begin

i:= 1;

while (i <= act.tope) and (act.arre[i] <> num) do

WWWw.ppig.org 120



PPIG 2024

i:= 1+1;
if 1 <= act.tope then
BuscarConTope :=TRUE
else BuscarConTope:=FALSE;
end;

4. Conclusions and further work

As it is pointed out in Section 1, various authors argument that one of the difficulties for computing
being part of the basic disciplines for the education of all students lies in the undervalued role of its
didactic. This becomes evident considering the lack of scientific research in the field supported with
solid theoretical foundations elaborated with the participation of computing teachers. We have con-
ducted for many years, empirical studies such as the one presented here, designed in the framework of
epistemological basis. In the last years we have integrated results from didactic research (Broker et al.,
2014; Schwill, 1997; Bell et al., 2018) in order to produce a didactic model that computing teachers
can use and evaluate. Particularly we found that the fundamental ideas of (Schwill, 1997; Bell et al.,
2018) constitute an axis for designing didactic sequences, as described in Section 3. Although we have
included the fundamental idea 4 about the performance of algorithms in our subset of fundamental ideas
(see Section 2), we have not used it in the empirical study described here, leaving the task for future
work.

The didactic sequence designed for the study constitutes one of the applications of the didactic model
(didactic sequences for Physics are described in a draft version of unpublished manuscript). The theoret-
ical framework guided by the fundamental ideas and the epistemological model that we have developed
(Section 2) made it possible to design the activities in such a way that both the learning objectives and
the work strategies were clearly outlined.

Within the four fundamental didactic questions: what, how, why and for whom (to teach computer sci-
ence) (Saeli et al., 2011), the prior identification of the fundamental ideas made it possible to accurately
define the specific programming concepts to work on in the sequence (what). On the other hand, the
epistemological model made it possible to define the activities so that the students themselves built
knowledge about these concepts during their execution (how). We believe that this particular point is
of special value and distinguishes our didactic model from other approaches traditionally used in edu-
cation, which usually focus on the presentation of concepts, without taking into account how students
learn. As for why and for whom, the authors mentioned in Section 1 solidly justify why it is important
to educate on computer topics in secondary education and/or undergraduate courses.

Last, in relation to the application of the didactic sequence, it was observed, in a first preliminary anal-
ysis, that the gradual nature of the proposed activities (taking into account the knowledge construction
process guided by the intra-inter-trans triad) made it possible for the students to gradually build knowl-
edge about the concepts worked on. The four teams of students managed to successfully solve every
activity and finished with the compilation and execution on the computer of all the subprograms, imple-
mented by themselves. The teacher’s main task was to guide the collective discussion after each activity
(instead of having an expository role of the concepts being worked on) and make corrections when ap-
propriate. An in-depth analysis of the study remains to be done, from which it is expected to extract
more evidence about the effect of introducing the fundamental ideas and draw conclusions that, in turn,
will allow to provide feedback and enrich the didactic model, still under construction.

5. References

Bell, T., Tymann, P., & Yehudai, A. (2018). The big ideas in computer science for k-12 curricula. Bul-
letin of EATCS, 1(124).. http://smtp.eatcs.org/index.php/beatcs/article/
viewFile/521/512.

Broker, K., Kastens, U., & Magenheim, J. (2014). Competences of undergraduate computer science stu-
dents. In KEYCIT — Key Competencies in Informatics and ICT. Torsten Brinda, Nicholas Reynolds,

WWWw.ppig.org 121



PPIG 2024

Ralf Romeike, Andreas Schwill (Eds..

Cabezas, M., & da Rosa, S. (2022). Modelado didético para ideas fundamentales en com-
putacion. Proceedings of The 51 SADIO Conference, Simposio Argentino de Educacion en In-
formdtica (SAEI 2022). https://www.fing.edu.uy/~darosa/#papers/Modelado
-Didactico-Ideas—-Fundamentales—-Computacion.pdf.

da Rosa, S. (2018). Piaget and Computational Thinking. CSERC ’18: Proceedings of the 7th Computer
Science Education Research Conference, 44-50. https://doi.org/10.1145/3289406

.3289412.

da Rosa, S., & Gémez, F. (2019). Towards a research model in programming didactics. Proceedings of
2019 XLV Latin American Computing Conference (CLEI), 1-8. doi: 10.1109/CLEI47609.2019

daRosa, S., & Gémez, F. (2022). The construction of knowledge about programs. Proceedings of PPIG
2022 - 33rd Annual Workshop, 1-8.

da Rosa, S., Viera, M., & Garcia-Garland, J. (2020). A case of teaching practice founded on
a theoretical model. Lecture Notes in Computer Science 12518 from proceedings of the In-
ternational Conference on Informatics in School: Situation, Evaluation, Problems, 146-157.
https://doi.org/10.1007/978-3-030-63212-0.

Denning, P., & Tedre, M. (2015). Shifting identities in computing: From a useful tool to a new method
and theory of science. In Hannes Werthner and Frank van Harmelen, Eds. Informatics in the
Future, Proceedings of the 11th European Computer Science Summit.

Denning, P., & Tedre, M. (2019). Computational thinking. Cambridge, MA : The MIT Press.

Denning, P., & Tedre, M. (2021). Computational thinking: A disciplinary perspective. Informatics in
Education., 20(3), 361-390. doi: 10.15388/infedu.2021.21

Dowek, G. (2012). Les quatre concepts de I'informatique. Bulletin de I’Association EPI. https://
www.epi.asso.fr/revue/articles/al204g.htm.

Dowek, G. (2013). L’enseignement de !’informatique en France, Il est urgent de ne plus attendre.
www.academie—sciences.fr/activite/rapport/rads_0513.pdf. (Rapport de
I’ Académie des Sciences)

Harel, D., & Feldman, Y. (2004). Algorithmics - The Spirit of Computing. Addison-Wesley Publishers
Limited 1987, 1992, Pearson Education Limited 2004.

Malmi, L., Sheard, J., Bednarik, B., Helminen, J., Kinnunen, P., Korhonen, A., ... Simon. (2014).
Theoretical underpinnings of computing education research: what is the evidence? ICERI4:
Proceedings of the tenth annual conference on International computing education research., 27—
34.

Saeli, M., Perrenet, J., Jochems, W. M., & Zwaneveld, B. (2011). Teaching Programming in Secondary
School: A Pedagogical Content Knowledge Perspective. Informatics in Education, Vol. 10, No. 1,
73-88.

Schwill, A. (1997). Computer science education based on fundamental ideas. Proceedings of the IFIP
TC3 WG3.1/3.5 joint working conference on Information technology: supporting change through
teacher education, 285-291.

WWWw.ppig.org 122



