
Understanding APIs and the software that provides them - Analysis of
programmers’ API mental models used in programming tasks

Ava Heinonen

Department of Computer Science
Aalto University

ava.heinonen@aalto.fi

Abstract
At one point in time, programming could be thought of as the act of translating program requirements
into source code written in one programming language. However, modern programming relies heavily
on building programs by integrating services, functionality, and data provided by external software into
a program using APIs. In part, programming consists of selecting suitable software that provides ready
solutions for programming problems and using their APIs to integrate those solutions into a coherent
program.

This change in programming necessarily changes programmers’ mental models — their understanding
of the programs they work on. In this paper, we discuss programmers’ mental models when using an API
in a programming task. We conducted interviews with twelve industry professionals using the critical
decision method. We analyzed the mental models — the understanding these practitioners utilized when
completing different software development tasks using an API. Through this analysis, we were able to
identify information about the tasks, the software providing an API, and the API that were represented
in the programmers’ mental models. These results contribute to the existing literature by opening a
discussion on how using APIs changes the nature of programs and programming and by providing
insight into the understanding necessary for completing programming tasks using APIs.

1. Introduction
Modern software development can be understood as a process of integration, combining software com-
ponents into an overall system. Software libraries and frameworks provide pre-implemented solutions
for many programming problems, which can be integrated into a new system by calling methods in their
APIs. Services hosted on the Web can also be utilized as part of a software system by making requests
to their API endpoints (Mäkitalo, Taivalsaari, Kiviluoto, Mikkonen, & Capilla, 2020).

This shift in software development has changed the nature of computer programs. In the past, a pro-
gram could be thought of as a specification written in a programming language that expresses a set
of calculations (Pair, 1990; Détienne & Détienne, 2002b). A program was a set of calculations and
objects, expressed in a programming language with rules on how to organize words into meaningful
expressions (Pair, 1990; Détienne & Détienne, 2002b). While a program is still a set of calculations and
objects, the way these are expressed is different. A program now comprises objects and calculations
expressed as code written in a programming language or implemented elsewhere and accessed via API
calls. The meaning of these calls is defined not by the programming language itself but by the programs
implementing them. A program is a set of calculations and objects, some implemented in the program’s
source code and some by other programs. These are expressed either as source code or as API calls that
indicate the execution of externally implemented calculations.

This shift in what a program is necessarily changes the way programmers design and implement pro-
grams and, even more so, the knowledge and understanding required to do so (Andrews, Ghosh, & Choi,
2002). As a programmer designs and implements a program, they form an internal representation of it —
a mental model that represents the program to be implemented (Heinonen, Lehtelä, Hellas, & Fagerholm,
2023; Kim, Lerch, & Simon, 1995). This understanding of the program to be implemented then guides
the process of translating the program design into an executable program (Pennington & Grabowski,
1990). However, the discussion around programmers’ mental models has focused on programs as speci-

PPIG 2024

www.ppig.org 90



fications written in a programming language that expresses the calculations of the program (Détienne &
Détienne, 2002b; Pennington & Grabowski, 1990; Heinonen et al., 2023).

Programming also requires the programmer to translate the designed solution into an executable pro-
gram (Pennington & Grabowski, 1990). The shift in software development has transformed this task
from writing code that implements a functionality to writing code that interacts with the interface of a
program that implements a functionality (Andrews et al., 2002). This process can be described as writ-
ing "glue" code or writing client code that integrates functionality from different software components
into one program (Chen, He, Liu, & Zhan, 2007).

In some ways, writing client code is similar to software reuse, where the programmer must understand
what type of solution is required, find a suitable solution, and adapt it to fit the target software (Détienne
& Détienne, 2002a). However, reuse theories do not account for the differences between reusing a piece
of code and integrating a program into another using its API. The latter requires not only understanding
the solution and its suitability, but also another level of understanding: the interface through which the
solution can be accessed (Thayer, Chasins, & Ko, 2021; Mosqueira-Rey, Alonso-Ríos, Moret-Bonillo,
Fernández-Varela, & Álvarez-Estévez, 2018). Successfully using an API also requires the programmer
to form a mental model of the software providing the API — what it is, what it can be used for, and how
it can be used in a program (Heinonen & Fagerholm, 2023).

As the nature of how programs are expressed, developed, and understood is changing, theories and
research on the cognitive aspects of programming should also evolve. Theories of programmers’ mental
models should encompass the concept of a program as an integrated system of multiple programs and
consider how programmers conceptualize the external programs integrated into their own programs.
Furthermore, programming theories need to address the cognitive aspects of using APIs. In this work,
we will contribute to this endeavor by presenting results on programmers’ mental models of APIs and
the programs that provide them. We will also present findings on how these mental models are utilized
in programming tasks.

In everyday discussions, different libraries, frameworks, packages, web services, and other pieces of
software that provide an API are all referred to as APIs. However, this terminology does not allow for
differentiation between the software that provides an API and the API itself. In this work, we will refer
to software libraries, frameworks, services, and other software that provide functionality, data, or other
resources that can be integrated and utilized in a new software system as provider software. We will refer
to the functionality, data, and services that the provider software offers, which can be utilized in building
new software, as resources. Finally, we will refer to the interface provided by the provider software that
allows a program to utilize its resources as a API.

In this work, we aim to provide insight into programmers’ mental models as they design and develop
programs that utilize a provider software’s resources using its API. We present results from a study
where 12 professional programmers were interviewed using the critical incident method about a situation
or situations where they had to learn to work with a new provider software. We analyze the mental
models of the participants through their expressions of their understanding, through the problems they
expressed having with understanding some aspect of the task and its context, and through the information
they sought and used to complete the tasks. Through this analysis, we identified some key aspects of
programmers’ mental models of provider software. We also identified some key mechanisms of how
these mental models are developed and how they are used in completing programming tasks.

2. Methodology
To conduct the study, we used the critical incident method interview protocol, designed to elicit informa-
tion about cognitive performance in complex task settings (Marcella, Rowlands, & Baxter, 2013), which
has been used successfully in similar studies (Votipka, Rabin, Micinski, Foster, & Mazurek, 2020).

We conducted 12 interviews in which we explored programmers’ mental models of provider systems
and their resources and APIs through detailed analyses of one or more recalled real-life events where

PPIG 2024

www.ppig.org 91



the participants had to learn about a new provider system.

2.1. Participants
A total of twelve participants took part in the study. Our participants were employed in different roles
in academic and industry settings. Two participants held primarily academic positions, while ten were
employed in software development companies or software development teams within academic or other
organizations.

2.2. Interview protocol
During the interviews, participants were asked to choose an event in which they had to learn a new API
and recall the process while we drew a diagram to visually represent it. Throughout the interviews, the
interviewers asked further questions about multiple items of interest.

The interviews lasted approximately 60 minutes and were conducted remotely or in person, depend-
ing on the availability of the interviewee. The interviews were divided into three parts: background
questions, event selection, and event walkthrough, as described subsequently.

2.2.1. Background questions
At the beginning of each interview, participants were asked about their education, programming back-
ground, and the level of experience they have with the technologies they currently work with. They were
also asked about their current job and the tasks and responsibilities of their current role.

2.2.2. Event selection
After the background questions, the participants were asked if they could recall a time when they had to
learn to use a new API. They were prompted to think about a memorable event, either recent or otherwise
memorable to them. If a participant had difficulty recalling a suitable event, we asked further questions
to assist in event selection.

2.2.3. Event walkthrough
After a suitable event had been selected, the participants were asked to recount what had happened
during the event. As participants described the event, the lead interviewer drew a diagram of the process
described by the participant. The participants could see the diagram at all times and were asked to notify
us if the diagram did not match their story in some way.

While participants described the event, we asked directed questions intended to clarify some aspect of
the event or gather further information about some important or interesting aspect of the event.

2.3. Data Analysis
We utilized iterative coding to analyze the data with the goal of examining programmers’ mental models
as they engaged in programming-related activities that required them to learn a new API.

In the first round of analysis, we coded items related to the programming projects the participants were
undertaking and divided the interviews into activities, such as designing or implementing a solution.

In the second iteration, we analyzed each activity in detail. We coded statements about mental models,
knowledge gaps, sensemaking activities, and resulting understanding. In this article, we will present
results related to mental models. Our analysis of knowledge gaps and sensemaking activities will be
presented in another publication. Statements about understanding or perception of some aspect of the
task or its context were coded as mental models.

During the third iteration, we analyzed statements related to mental models to identify the aspects of
the provider software, its resources and APIs, and the programming tasks that were represented in the
mental models.

3. Results
In this section, we will discuss our results related to programmers’ mental models of provider software
and their resources and APIs. We will first examine programmers’ mental models of provider software,
followed by the mental models of programming tasks, API resources, and APIs used when implementing

PPIG 2024

www.ppig.org 92



a program that utilizes a provider software through its API.

3.1. Understanding provider software
A programmer’s mental model of the provider software represents their understanding understanding of
the software — what it is, what it can be used for, and some relevant quality attributes such as usability
and quality. We have divided the results into two categories. The first category, "What it is and what it
can do," represents an understanding of the type of the provider software, its function, and functionality.
"Quality, usability, and other relevant attributes" represent different non-functional characteristics of the
provider software.

3.1.1. What it is and what it can do
These aspects of the provider software represent the programmer’s understanding of what a provider
software is and what it can be used for.

Type refers to the kind of provider software a specific software is — whether it’s a library, a web service,
or something else. Knowledge of the type of a provider software allows the programmer to utilize their
background knowledge of other provider software of the same type to understand what the provider
software is guiding the process of learning about and using a provider software.

As our participants were professional programmers, they had previous experience with different types
of provider software. We refer to this knowledge as provider software type schemata, which represent
different types of software, the functionality those types have, and how they can be used. For example, a
schema of REST APIs suggests that they provide access to data in a database and can be used by sending
HTTP requests to API endpoints.

Our participants discussed provider software as instances of types. The recognition of a software’s type
provided them with expectations of how it can be used, such as expecting that a REST API is used by
sending HTTP requests or a library is first installed to the project and then used by calling API methods.
It also guided the participants forward, providing expectations of what to do next and what information
was needed. For example, one of our participants discussed finding a suitable provider software, and
knowing that a library has to be installed, moved on to seeking information about how the specific
provider software could be installed using Cradle.

Function refers to the general purpose of the provider software. This was discussed as the type of task
that could be done with it, such as "draw plots" or "access data from a database." For example, one of
our participants described PNPM as follows:

It is used to install react native...or of course you can use it to install anything. So a PNPM
package manager built on top of NPM. And it can be used to install all kinds of JavaScript
dependencies.

This understanding not only aids in selecting suitable provider software for the task at hand, but it also
provides the programmer with expectations about it. There are often many provider software with the
same function, and they have some similarity between them. We refer to the knowledge of these sim-
ilar provider systems as provider software category schemata, which represent knowledge of provider
software with the same function, such as what libraries that provide methods for making HTTP requests
generally are like. Based on our interviews, participants used their provider software category schemata
when encountering a new provider software with the same function. These schemata provided them
with expectations about the software in question — its use, functionality, and even the naming of API
methods:

... I could already guess the name of the method I could use. Because with these the naming
of the methods is quite similar. They are usually always named the same way. For example
something like findAll, findOne, findByID. So the query abstractions are usually always
named like that...

PPIG 2024

www.ppig.org 93



Functionality is the set of resources provided by the provider software. These resources include data,
services, and implementations of behavior. Programmers’ understanding of provider software function-
ality enables them to select a provider software suitable for the task at hand, as described by one of our
participants who needed a provider software that provides tab components:

At that point I had read the MaterialUI documentation quite a bit. It has all kinds of ex-
amples, and I have scrolled the sidebar which lists all the components that it has, and I had
considered using it [the tab component] previously but I had not previously needed tabs for
anything.

However, programmers’ understanding of a provider software’s functionality does not always appear to
be comprehensive or entirely accurate. For instance, one of our participants expected that a provider
system for drawing plots would provide a way to combine the titles of subplots into one and were
disappointed when they learned that it did not:

I was a bit annoyed that there was no automatic way to do it. You’d think that combin-
ing identical sub-plot titles would be a relatively common use case. So then...I expected
someone would have made something automatic for it especially since it has so many other
automatic features.

3.1.2. Quality, Usability and other relevant attributes
There are, of course, multitudes of attributes a software has, ranging from fault tolerance to availability.
However, not all of these are relevant at all times. Quality and usability of a provider software were
mentioned as important by multiple participants and are thus discussed in more detail below. Partici-
pants also mentioned other attributes when those were relevant for the specific task or project they were
working on, indicating that participants considered the attributes that were relevant for them at that time.
Therefore, we will not discuss all possible attributes but focus on the notion that the mental model seems
to contain some information about the attributes deemed important for the task or project at hand.

Quality refers to the programmer’s perception of the "goodness" or quality of the provider software. Our
participants talked about forming a perception of whether the provider software was good or "valid"
to use. For example, one participant discussed building a perception of a provider software’s validity
before selecting it for use:

They [libraries] are almost always open source, so I usually also check its validity as well.
So I usually check the GitHub repository to see, for example, if it has been actively updated
and if it has a lot of these...umm...these like stars which are kind of like "likes" and if it has
a lot of forks and all those kinds of things. Like if it seems like it is used a lot and is like
validated by the developer community so it is valid. And that can also peak my interest [in
using a provider software] as well.

Usability refers to the programmer’s perception of how easy the provider software is to use. When
selecting suitable provider software, our participants discussed forming perceptions of the usability of
the API. For example, one of our participants described a provider software they liked as "logical, easy
to use, and easy to understand," while another participant discussed liking a provider software because
it seemed easy to use and understand.

Other relevant attributes: Our participants did not seem to form an understanding of all possible at-
tributes of a provider software, but rather only the attributes relevant to the task at hand. For example,
one participant had to consider the performance of a provider software to design a component using it.
However, this participant stated that they would not want to need to know this information, indicating
they would not have gathered it if it was not necessary:

PPIG 2024

www.ppig.org 94



Well I would like to think about it logically, in other words so that I would just need to know
how to use it. In this case I also had a bit of understanding of its technical side. We had to
consider it, mostly its performance, and if it would cause any problems.

3.2. Use of a provider software for a specific task
In this section we will discuss the mental models related using a provider software to achieve a specific
outcome. The outcome, of course, is most commonly a program that has a certain functionality.

The understanding related to using a provider software contains multiple aspects of the situation, includ-
ing what is to be achieved, what is required from the provider software to achieve it, how the required
resources are modeled in the provider software, and how those resources can be accessed. Below, we
will illustrate this using an example from the interviews, and then we will describe the aspects of the
mental models in more detail.

3.2.1. Example
One of our participants was implementing the backend for a mobile application:

So I had a specific application in mind already. It was a backend for an application that I
made for a course. So for the students to use...so in the course the students make a client for
the backend...so they have the backend ready but they have to make the mobile application
client for it... So it was like an application for users to review GitHub repositories. So the
user can log in and then write reviews for a GitHub repository.

They started to implement the backend working on one endpoint at a time. They start working on an
endpoint that lists all the repositories. They know that the provider software they are using provides
functionality for making requests to a database, and after forming an idea of what kind of a functionality
they’d need for the endpoint, they start looking for a suitable method:

So I knew that I have...I knew that I have a database table where the repositories are, and
it has certain fields. So then I started to think that if my endpoint has to list all of them, I
started to think about what kind of a method I had to look for.

They browse the API documentation to find a method that seems promising, and read the method de-
scription to verify that the method indeed does what they need. They then use a code example in the
documentation to write the client code that calls the method:

It [API documentation] has like API reference, so like the API in a more technical level. So
I went there. And that was organized by the main themes, so there was like queries, so a
section about how to make queries. And the methods were listed there. And from there I
could spot a method that could be the right one. And then based on the method description
I verified that it really was. And it also had code, they usually also have code examples
showing how to actually do it.

3.2.2. Goals, tasks, solutions and resources
One of the aspects of the programmer’s mental model is an understanding of what is to be implemented,
and what is required from the API to implement it. This includes the program that is to be implemented,
the part of the program the programmer is currently working on, how the part of the program can be
implemented, and what is required from the provider software to implement the part.

Goal software:refers to the programmer’s understanding of the program they are implementing. For ex-
ample, in the previous example one participant described the backend application they were developing.
Our participants described having different levels of understanding of the design of the goal software.

PPIG 2024

www.ppig.org 95



In some cases, they were working from formal design documents that provided them with a detailed
understanding of the architecture of the goal software. In other cases, they did not describe the use of
formal design documents or processes, but they did have a rather extensive understanding of the design.

So. We decided that we should make a new component which handles this part of it. So we
made a new container for it. And in that, in regular intervals it fires up, and the idea is that
it makes a request to the API and fetches... Or actually first it fetches a configuration file
from DynamoDB which tells it what to fetch. It specifies what to fetch from where...And
then based on the configurations it makes queries to the API and fetches all the information
about the campaigns. And and so we know that first it fetches all the campaigns, and
checks their timestamps to see if some of them have changed. And if they have, then it
fetches information about those campaigns like product information- and then it updates
the information to another DynamoDB table.

However, when participants were adding functionality to existing programs by integrating a service that
provides the entire functionality, their understanding of the resulting integrated program was limited.
This understanding was primarily shaped by their background knowledge of applications in the domain
rather than their understanding of the specific provider software. For example, one participant had
already began integrating a service into an existing application when they encountered a problem that
necessitated them to develop a deeper understanding of the system they were constructing. Their surprise
at how the system works indicates they did not possess a robust mental model of it previously:

So. I hadn’t previously like. So rarely some thing from your own code ever calls anything
else. So all of our services work so, that a frontend always has one backend. And the
frontend always talks to only its backend and then the backend may call some other service
or do anything else. And in this case it was like "wait a second, it talks with something
else". Our frontend sends requests to it kind of like google analytics...So like after I got it it
was more clear that "hey this is what we are doing and this is what it is all about". endquote

Task: refers to the programmer’s understanding of the specific part of the goal software they
are currently working on. When the program is small, the entire program could be the task.
However, when the program is larger, it is split into parts, and the programmer works on
them one at a time.

In many of our interviews, it was not clear how the participants identified the task at hand.
However, participants who discussed tasks related to setting up the provider software could
often provide more detail on how the tasks were identified. In some cases, participants iden-
tified the task based on their experience with the type of provider software. For example,
one participant was using a library. Drawing from their familiarity with other libraries, they
recognized they had to add the library to their project and moved on to read the library doc-
umentation to learn how to do so. In cases where the participant was integrating a service
to an existing program or when a library required more extensive setup, participants also
mentioned reading documentation to learn what had to be done.

Solution: refers to the programmer’s mental model of the program that fulfills the task.
Some of our participants described the solution in functional terms - what the program
should do.

Other participants described the solution in terms of programming concepts or patterns that
could be used to achieve the required functionality. They discussed knowing, for example,
that to create a program that fetches specific data from a database they had to make a HTTP
GET request, or that to create a program that makes multiple HTTP requests in parallel they
should create a new threads. For example one participant was implementing a program, that
allowed users to authenticate to a web-service. The participant was working on keeping the

PPIG 2024

www.ppig.org 96



users logged in, and based on their domain knowledge and knowledge of the service, knew
that they should use refresh tokens to implement the functionality:

The situation was, that the authentication worked using OAuth, which means
it was token-based. And with tokens it is essential that, for example, you stay
logged in. So you don’t have to log in again after like an hour when the token
expires. And for that you need a system called refresh token.

Some participants discussed how they identified the concept(s) that were required to imple-
ment the solution. For example one of our participants was implementing a modification to
an existing web application. They knew that the program should allow the user to switch be-
tween two views, and it should be easy for the user to see that there are two views available.
They then spend some time figuring out the solution:

I did not know exactly how I wanted to do it. With React it is really easy to
switch between components inplace. You just use a conditional statement to
remove one and then change the state to show another one. And then switch
back. Like a toggle. But I thought that way it would not be so easy for the users
to see that there are multiple views there. There at the same place. So then I
thought that the other view actually already has tabs for different files, so we
could make another level of tabs.

In cases where the participant was already familiar with the provider software, they dis-
cussed the solution in terms of the provider software.

Resources: refer to programmer’s understanding of what is required from a provider soft-
ware to implement the solution. Some participants discussed the resources in terms of
programming concepts that they expected a provider software would provide the tools to
implement. One example of this is the participant who wanted to implement tabs described
above. Other participants discussed needing the implementation of a specific behavior, for
example fetching all rows of a database table. Participants who were writing a program
that interacts with a service, the resources were described in terms of provider software
functionality that the programmer wanted to use, such as authentication to the service.

Some of our participants were using provider software to access data, and knew the data
that they needed for their programs, such as one participant who was making a program that
checks the age of an user account, and knew they needed a datamodel that contained the
age of a specific user account:

Basically we knew the datamodel...We were trying to do when we upgrade the
subscription. So basically what happens, we usually the company will draw out
the accounts, and sometime the person who is upgrading to the new service is
using ten years old account. And then we need to upgrade it to the new account
because that Is too old... This is the thing which was, we need to calculate
specific years...

The division between solutions and resources is not always clear. Some participants first
designed the solution and identified resources they needed from a provider software, and
then moved on to figure out which provider software provides the required resources and
how to use it to add those resources to their program. Some participants had already selected
a provider software to use, and as they designed their solution they did so based on their
understanding of the provider software’s functionality, so the solution was designed based
on how it could be done using the specific provider software they had in mind.

PPIG 2024

www.ppig.org 97



3.2.3. API-translated solution model and its implementation
Another aspect of the mental model is an understanding how to use the API of the provider
software to utilize specific resources. This understanding can be roughly divided into two
categories: Understanding how the resources are modeled in the API, and understanding
how to implement the code that interacts with the API to access the resources.

API-translated solution model: represents the programmer’s understanding of how the re-
sources they want to use are modeled in the API. In other words, the API-translated solution
model describes the solution in terms of API elements, API tasks, or when it comes to data
resources, datamodels. Some participants described the API-translated solution model in
terms of API tasks. With API task we refer to the set of tasks the client code has to perform
in regards of the API. For example, one of our participants was using a provider software
that implements a functionality that draws plots. The task they were working on was writing
the code that draws a title to the center of the plot. To do so, they first had to figure out how
this behavior is modeled in the API. Using StackOverflow they learned that the client code
has to first instruct the provider software to remove the titles from all the sub-plots, and then
add text to specific coordinates within the plot:

So you remove from the Seaborn...make it so that it does not make the sub-titles
or titles for the sub-plots. And then you just manually write text to it [the plot]
through matplotlib using those like coordinates. So you just manually add text
there and give it its orientation and coordinates.

Some participants described the API-translated solution model in terms of API elements
and their relationships:

The tab API consisted of a tabs component, and you place tab components within
it and give each tab an index. And tabs receives a state I think. And then there is
also a tab panel component which is placed within a tab. And then a tab panel is
shown according to the state.

When the resources are data, the provider software models information about different enti-
ties as datamodels, and the API-translated solution model refers to the datamodels and their
attributes and relationships that represent information about a specific entity. For example
one participant was working on a program that writes specific data to a provider software.
They knew the entity they wanted to write information about. However, to write the pro-
gram they had to first figure out how the entity was represented in the provider software:

So our department started to write the information about [entity] into the
[provider software] using our own system...So we just checked from the API
catalogue that here is this datamodel called [entity] and they can be created us-
ing this endpoint here...And then we checked what we needed for the datamodel.
So it needs references to three different things. And we wondered how we were
supposed to get the references from? So we do have the three other datamodels,
but how are we supposed to get the right instances?...At that point it was unclear
why in the world of [provider software] the information about [entity] is split
into three datamodels and what the relationships between the models are...So we
did not know what the three references actually mean. And then when we were
told that you have to use this [another datamodel] then it started to make sense
like that one had all the information we need so we can start by saying take this
one first. At that point the whole thing did not seem so difficult and confusing
anymore.

Implementation model: refers to the implementation details of the client code for API tasks,
elements, and datamodels. This includes the syntax of the client code as well as their

PPIG 2024

www.ppig.org 98



parameters. This may also include the syntax of configurations or other code that has to
be written to implement the solution. For example, one participant described seeking for
information about the data type of parameters:

I checked the tab panel and the tab, the individual tabs, what I have to give them,
to make sure I give them the right index, or like what kind of index they need.
That was not explained in the code example page.

Participants often described searching for and reading code examples to figure out how to
use provider software. In these cases the information about the API-translated solution
model and the implementation model were acquired simultaneously. In other cases, par-
ticipants described learning the API-translated solution model first, and then moving on to
seek information about the correct syntax to implement it.

4. Discussion
In this paper, we present the results of a study where we used the critical incident inter-
view technique to gain insight into programmers’ mental models of provider software, their
resources and their APIs. Our results show, that as programmers work with provider soft-
ware, they form a mental model of the provider software, that represents their understanding
of the provider software as a software artifact — its function and functionality, the way it
works and is used in a program, and its quality, usability, and other attributes relevant to the
situation.

This mental model provides the necessary framework for utilizing the provider software’s
resources in a program. As programmers integrate provider software’s resources into a
program through its API, their mental models of the provider software’s type, function,
functionality and use guide the process of identifying resources required to solve a pro-
gramming problem, and figuring out how the resources are modeled in the software and
how to integrate the them into a program. This result corresponds with the idea of initial
API mental models, that represent programmer’s understanding of a provider system they
form before they begin using the provider software in programming tasks (Heinonen &
Fagerholm, 2023). These mental models guide the programmer’s actions, providing them
with understanding of what the provider software can be used for and how the provider
software can be used, as well as what information is required to use it and what should be
done to begin using the provider software (Heinonen & Fagerholm, 2023).

When it comes to program design, our results show that the process is in most cases quite
similar to the models of program design that have been previously proposed. Existing the-
ories of program design describe program design as a process of decomposing a problem
into manageable sub-problems that can then be broken down further and solved (Atwood,
Jeffries, Turner, Polson, & CO, 1980; Pennington & Grabowski, 1990). We see the same
behavior when designing solutions that use provider software. Our results show program-
mers breaking the goal program down into manageable tasks, that can then be solved one
by one. However, in cases where programmers integrate services into existing programs or
use libraries that require extensive setups, this decomposition of the problem is different. In
these cases the programmer does not necessarily have a deep understanding of the resulting
program, and thus use documentation to gather the information about the tasks required to
implement it.

When writing code, traditionally, we would expect the programmer to understand what
is to be implemented, how the required functionality can be achieved in computing
terms (Pennington & Grabowski, 1990). We would also expect the programmer to have
an understanding of the programming language used to write the code to implement the
solution (Hoc, 1977). When using provider software, not only does the programmer require
an understanding of the programming language used to write the client code, but also the

PPIG 2024

www.ppig.org 99



API resources, tasks and their syntax. We see programmers forming an understanding of
what is to be implemented as a high-level understanding of the entities in terms of behavior
and outcomes. Understanding how those entities are modeled in the API of the specific
provider system and the syntax of the API methods is then used to integrate those entities
to a program.

Therefore the understanding required to create programs using provider software requires
understanding of the programming language used to write the client code and the parts of
the overall program that do not use APIs with its syntax, grammar, rules of discourse and
other conventions. It also requires understanding of the provider software and the API,
which have their own design, syntax, rules of discourse, and other conventions — a mental
model of the API and its language.

5. Conclusions
Writing about programming, Pennington and Grabowski stated "Programming problems
are unique in that they usually involve solving a problem in another (application) problem
domain, such as mathematics, accounting, electronics, or physics, in addition to solving the
program design problem" (Pennington & Grabowski, 1990). Now, we can add a third level
to the complexity of programming. Programming using provider software requires the pro-
grammer to solve the problem in the problem domain and solve the program design problem
in terms of the structure and behavior of the program that solves the problem. It also requires
the programmer to solve the problems of identifying and selecting provider software that
provide the required resources to implement the designed program, and writing the client
code to interact with the API of a provider software so that the provider software behaves
as required.

PPIG 2024

www.ppig.org 100



6. References
Andrews, A., Ghosh, S., & Choi, E. M. (2002). A model for understanding software com-

ponents. In International conference on software maintenance, 2002. proceedings.
(pp. 359–368).

Atwood, M. E., Jeffries, R., Turner, A. A., Polson, P. G., & CO, S. A. I. E. (1980). The
processes involved in designing software. NTIS, SPRINGFIELD, VA, 1980, 62.

Chen, X., He, J., Liu, Z., & Zhan, N. (2007). A model of component-based programming.
In International symposium on fundamentals of software engineering: International
symposium, fsen 2007, tehran, iran, april 17-19, 2007. proceedings (pp. 191–206).

Détienne, F., & Détienne, F. (2002a). Software reuse. Software Design—Cognitive Aspects,
43–55.

Détienne, F., & Détienne, F. (2002b). What is a computer program? Software De-
sign—Cognitive Aspects, 13–20.

Heinonen, A., & Fagerholm, F. (2023). Understanding initial api comprehension. In 2023
ieee/acm 31st international conference on program comprehension (icpc) (pp. 43–
53).

Heinonen, A., Lehtelä, B., Hellas, A., & Fagerholm, F. (2023). Synthesizing research on
programmers’ mental models of programs, tasks and concepts—a systematic litera-
ture review. Information and Software Technology, 107300.

Hoc, J.-M. (1977). Role of mental representation in learning a programming language.
International Journal of Man-Machine Studies, 9(1), 87–105.

Kim, J., Lerch, F. J., & Simon, H. A. (1995). Internal representation and rule develop-
ment in object-oriented design. ACM Transactions on Computer-Human Interaction
(TOCHI), 2(4), 357–390.

Mäkitalo, N., Taivalsaari, A., Kiviluoto, A., Mikkonen, T., & Capilla, R. (2020). On
opportunistic software reuse. Computing, 102, 2385–2408.

Marcella, R., Rowlands, H., & Baxter, G. (2013). The critical incident technique as a tool
for gathering data as part of a qualitative study of information seeking behaviour. In
Leading issues in business research methods (Vol. 2). Academic Conferences and
Publishing.

Mosqueira-Rey, E., Alonso-Ríos, D., Moret-Bonillo, V., Fernández-Varela, I., & Álvarez-
Estévez, D. (2018). A systematic approach to api usability: Taxonomy-derived crite-
ria and a case study. Information and Software Technology, 97, 46–63.

Pair, C. (1990). Programming, programming languages and programming methods. In
Psychology of programming (pp. 9–19). Elsevier.

Pennington, N., & Grabowski, B. (1990). The tasks of programming. In Psychology of
programming (pp. 45–62). Elsevier.

Thayer, K., Chasins, S. E., & Ko, A. J. (2021). A theory of robust api knowledge. ACM
Transactions on Computing Education (TOCE), 21(1), 1–32.

Votipka, D., Rabin, S., Micinski, K., Foster, J. S., & Mazurek, M. L. (2020). An observa-
tional investigation of reverse engineers’ processes. In 29th usenix security sympo-
sium (usenix security 20) (pp. 1875–1892).

PPIG 2024

www.ppig.org 101


