
Exploring Teachers’ Perspectives on Navigating Recursion Pedagogies

Jude Nzemeke
Department of Computer

Science
City, University of London
jude.nzemeke@city.ac.uk

Marjahan Begum
Department of Computer

Science
City, University of London

Marjahan.begum@city.ac.uk

Jo Wood
Department of Computer

Science
City, University of London

j.d.wood@city.ac.uk

Abstract
Recursion is a fundamental and powerful concept in algorithm design and programming. While
invaluable for solving complex problems such as tree traversal and permutation generation, recursion
presents challenges for students who often struggle with comprehension, tracing recursive calls, and
devising efficient solutions. This study investigates teachers’ pedagogical and instructional strategies
for teaching recursion, as well as effective assessment techniques. It explores the order in which
programming concepts, such as iteration, selection, sequencing, recursion, and object-oriented
programming (OOP) are taught in relation to how well students understand the concepts. It highlights
the significance of the instructional sequence of these concepts, and reveals that, contrary to the
advocated early teaching approach by some researchers – for example, teaching recursion first before
iteration – recursion is mainly introduced last to students and is perceived by most of the surveyed
teachers as the most challenging concept for students to learn. Teachers’ perceptions of the difficulty in
teaching these concepts were also explored. Programming Assignments and Coding Challenges are
found to be the most popular and effective assessment methods for recursion. The study advocates for
an integrated teaching approach that combines tangible objects (e.g., boxes and envelopes) and visual
aids (diagrams and animations) to enhance student engagement and understanding during recursion
instruction. This multi-sensory approach caters to diverse learning styles and preferences among
students, offering a strategy for addressing the challenges associated with teaching recursion.

1. Introduction
The importance of studying recursion spans various domains, particularly in computer science and
mathematics. Recursion serves as a powerful technique for addressing problems characterized by
repetitive and self-similar structures, forming the basis for the development of intricate algorithms in
computer science. By embracing recursive principles, these algorithms offer efficient solutions to
challenges that might otherwise be daunting to tackle. Recursion’s influence is particularly pronounced
in the domain of problem decomposition. While the benefits of recursion are well acknowledged, this
study investigates its teaching aspects from the viewpoint of teachers. Exploring how teachers navigate
teaching recursion and implement effective assessment methods is crucial for enhancing teaching
strategies, addressing challenges, and optimizing instructional sequences.

2. Highlighting Research Questions
1. Identifying the sequence in which programming concepts (iteration, selection, sequencing,

recursion, and OOP) are taught, and observing possible relationships with how well students
understand these concepts.

2. What are the current instructional approaches and assessment methods that teachers find successful
in delivering recursion?

3. How does the frequency and consistency of incorporating movement-based activities, tangible
elements, and visual aids in teaching recursion affect the perceived effectiveness of these teaching
approaches?

3. Theoretical Foundations of Key Issues
Many students have difficulty understanding recursion and they often use incorrect mental models when
evaluating recursive functions (Segal, 1995; Haberman and Averbuch, 2002; Sanders et al. 2006).
Novice programmers also face challenges in learning recursion as they have few real-world analogies
to formulate a mental model, unlike iteration (Benander et al., 1996). Most learners do not naturally

PPIG 2024

www.ppig.org 77

think recursively (Anderson et al., 1988) and learning recursion poses difficulties due to its
unconventional thinking process, especially for students lacking exposure to backward reasoning which
involves working from a goal state back to an initial state. Students’ previous problem-solving
experiences mainly relied on forward reasoning, necessitating a paradigm shift in thinking when
encountering recursion (Ginat, 2005).

3.1. Base Case
Learners often struggle with recursive functions, especially understanding the significance of the base
case (McCauley et al., 2015). Misconceptions also arise in treating mathematical variables as
programming variables, leading to errors, emphasized by McCauley et al. (2015) and compounded by
context dependency and processing strategies (Segal, 1995). Hamouda et al. (2017) studied student
misconceptions about the base case in recursion, drawing on insights from Sanders and Scholtz (2012).
They linked difficulties in flow comprehension to base case misconceptions (Scholtz & Sanders, 2010).
Close and Dicheva (1997) associated programming language choice with base case misconceptions,
aligning with LOGO studies and Kurland and Pea’s (1985) findings on language confusion. Segal
(1995) dealt with categorization of “base-case as a stopping condition”. Haberman and Averbuch (2002)
identified challenges in identifying base cases, crucial for recursive algorithm functionality, as
emphasized by them. Inadequate base cases may lead to non-terminating processes and computational
inefficiencies, especially with substantial input data.

3.2. Recursion vs Iteration
In a study comparing comprehension of recursion and iteration, Benander et al. (1996) found a
statistically significant advantage for recursion. Benander, et al. (2000) found that in small code
segments involving linked lists, programmers might find locating bugs in recursive code, particularly
in copying tasks, to be easier. Mirolo (2012) contradicted the notion that novice students find iteration
easier than recursion, attributing difficulty to task characteristics rather than programming paradigm.
Endres et al. (2021) observed superior performance in iterative-framed problems involving non-
branching numerical computation. McCracken (1987) cautioned against deeming recursive
programming “hopelessly difficult”, emphasizing the importance of task matching. Sinha and Vessey
(1992) linked construct choice to cognitive fit, advocating task and problem representation
considerations.

The debate over whether to teach recursion or iteration first in computer science education involves
conflicting perspectives on foundational concepts and ease of understanding. Guzdial in a conversation
at the ITISCE 2023 conference and in Guzdial (2018) while referring to studies by Kessler and
Anderson (1986) and Wiedenbeck (1989), suggested teaching iteration first due to its easier grasp and
broader practical application. Turbak et al. (1999) found introducing recursion before iteration more
effective, contrary to traditional methods, challenging the ongoing discourse on optimal sequencing in
computer science education. Maiorana et al. (2021) concluded that students can grasp both recursion
and iteration simultaneously, supporting the early introduction of recursion to enhance algorithm
understanding in the curriculum.

3.3. Pedagogical Approach
To enhance students’ understanding of recursion across computer science domains, Velázquez-Iturbide
(2000) proposes a progressive teaching method introducing recursion through formal grammars,
functional programming, and imperative programming. Syslo and Kwiatkowska (2014) recommend
presenting recursion as a “real-life topic” to make it more accessible and relatable, especially for
beginners. Explaining recursion to novice programmers can be challenging, and approaches like
inductive definitions, Runtime Stack Simulation, Process Tracing, Mathematical induction, Russian
Dolls, and the recursion tree (Dann et al., 2001; Haynes, 1995) help address this complexity. Wu et al.
(1998) emphasize the importance of conceptual models for teaching recursion to novice programmers,
cautioning about adapting or designing concrete models without conveying internal mechanism details.
Gunion et al. (2009) challenge concerns about ‘middle school’ students learning recursion,
demonstrating that hands-on activities effectively increase engagement and facilitate learning.
Enhancing the learning experience for students can be significantly facilitated by employing tangible
materials instead of abstract concepts (Akbaşlı and Yeşilce, 2018). The use of animations, such as in

PPIG 2024

www.ppig.org 78

tools like Alice, during recursion introduction has shown promise in enhancing student comprehension,
although further research is needed to establish its long-term impact (Dann et al., 2001).

3.4. Learning Styles or Not
Understanding individual learning styles, especially in programming concepts like recursion (Wu et al.,
1998), is vital for effective teaching. Dunn and Dunn advocate tailoring teaching methods to enhance
students’ attainment, behaviour, and attitudes based on their research (Dunn, 1984; Dunn et al., 2009).
However, teaching in a style different from students may increase cognitive load, hindering learning
(Sweller, 1988). Recognizing diverse learning styles, such as visual learning, can reduce cognitive load,
improving information assimilation and retention (Jawed et al., 2019). Aligning teaching strategies with
varied learning styles is crucial in programming education (Bargar and Hoover, 1984).

Kavale and Forness (1990) defended their meta-analysis against Dunn’s (1989) critique, asserting the
ineffectiveness of modality testing and teaching. Pashler et al. (2008) questioned the experimental basis
and commercial motives of learning styles, echoed by Reynolds (1997) and Willingham (2005), who
cited a lack of scientific evidence. Tarver and Dawson (1978), and Dembo and Howard (2007) opposed
modality preference theory, citing empirical limitations and potential harm. Arbuthnott and Krätzig
(2015) highlighted the inefficacy of tailoring teaching to sensory learning styles. Teachers are advised
to focus on content-driven modality choices and universal methods (Kavale and Forness, 1990; Tarver
and Dawson, 1978; Willingham, 2005). Various methods to measure modality preferences exist, but
caution is needed due to limitations (Willingham, 2005). Instead of catering to individual differences,
teachers should employ diverse modalities for variety, attention, and memory strategies, benefiting all
students (Tarver and Dawson, 1978; Kavale and Forness, 1987; Willingham, 2005).

In line with Coffield et al. (2004) and other researchers who argue that learning styles are not fixed
traits, but rather flexible preferences influenced by context and tasks, our own teaching experiences
support this perspective. Through working with diverse groups of learners, we have observed how
individuals’ preferences for learning can vary depending on the subject matter and the learning
environment. Embracing this viewpoint, we too believe that teachers should prioritize flexibility in their
teaching methods, employing a range of strategies that accommodate the dynamic nature of learning
preferences.

With this principle in mind, our focus will be on exploring the teaching methods utilized when teaching
recursion, particularly looking at teachers’ perceptions of the impact of these methods, including the
use of visualization, auditory, reading/writing, and kinaesthetic techniques in teaching. This approach
offers a pragmatic means of addressing the research questions and shifts the focus toward identifying
effective practices that can benefit a wider array of students in the teaching and learning of recursion,
rather than attempting to tailor instruction to each individual student's unique learning style.

4. Methodology
Creswell (2009) highlighted the importance of philosophical worldview – “a basic set of beliefs that
guide action” in research design framework. These beliefs can be used by researchers to decide if they
should make use of qualitative, quantitative, or mixed methods approach. The design framework can
be illustrated further as seen in figure 1 below:

Figure 1: Design Framework [Creswell, 2009].

PPIG 2024

www.ppig.org 79

We apply a mixed-methods approach to investigating current teaching practice. Born from the paradigm
wars, it combines qualitative and quantitative approaches, offering a comprehensive view of complex
topics (Johnson and Onwuegbuzie, 2004; Terrell, 2012; Poth and Munce, 2020). Utilizing both methods
enhances understanding and explores multifaceted problems from various perspectives (Poth & Munce,
2020). Rooted in pragmatism, mixed methods emphasizes practical outcomes and provides diverse
design choices for researchers (Shorten & Smith, 2017; Terrell, 2012). This approach, applicable across
disciplines, proves valuable in answering intricate research questions (Terrell, 2012). The point of
integration is one of the primary design dimensions for mixed method research. It is defined as “any
point in a study where two or more research components are mixed or connected in some way”
(Schoonenboom and Johnson, 2017). Getting the process of data integration from qualitative and
quantitative components of the study right is key to have more insight of the data collected in mixed
methods, and this can take place during the analysis phase of the study.

Quantitative data were gathered through a comprehensive online survey featuring 24 questions, with 21
focused on quantitative information. The survey covered non-sensitive demographic data, programming
language used by teachers, challenges in teaching programming concepts and pedagogical approaches.
It inquired into instructional methods, assessment approaches, and effective techniques in teaching
recursion, providing a thorough overview of quantitative aspects in programming education.

Complementing the quantitative findings, qualitative insights were obtained through open-ended
questions, enabling in-depth participant responses unconstrained by predetermined choices (Hyman and
Sierra, 2016). To optimize completion rates, the survey incorporated a three-box limit for open-text
responses, guided by Qualtrics online experts, acknowledging that exceeding this limit could reduce
completion rates due to increased cognitive effort required for responses.

5. Ethical Considerations
In adhering to ethical standards outlined by the British Educational Research Association (BERA, 2018)
and City, University of London, this educational research prioritized informed consent. Ethical approval
from City, University of London’s ethics committee was secured for this research.

6. Sampling and Recruitment
Examination boards in England, tasked with developing detailed subject specifications that outline the
curriculum framework – including what students are expected to learn, understand, and achieve by the
end of the course – focus on recursion exclusively in post-secondary education (for students aged 16 to
18). Therefore, it was expected that primarily, teachers who teach recursion at this level and above,
would take part in the study. However, due to the relatively low enrolment of computer science students
in England, in post-secondary school (OFQUAL, 2023), the pool of teachers specializing in teaching
recursion is anticipated to be limited. From our experience and from interaction with teachers, we know
that this challenge arises because some teachers may opt not to cover recursion at primary and secondary
school (attended by students less than 16 years old), potentially due to time constraints in delivering the
curriculum. To address the challenge of recruiting teachers for the study, who teach recursion, the
Digital SchoolHouse Ingenuity Day 1 conference event was strategically targeted, a gathering primarily
attended mainly by computer science teachers.

Initially, 36 computer science teachers began the survey, comprising 61% male, 30% female, with 5%
opting not to disclose their gender, and 2% identifying as non-binary. Regarding ethnicity, 64%
identified as White British, 17% as other white backgrounds, and 6% each for Black and Asian
backgrounds, with an additional 5% identifying as other ethnic backgrounds, while 2% chose not to
disclose. One of the questions in the survey was designed to screen participants for eligibility – targeting
only teachers who have taught or currently teach recursion. The question simply asked, “Have you
taught or are you currently teaching recursion as part of your curriculum?” The survey ended for
teachers who responded “No” to this question, indicating that they lacked the experience of teaching
this topic. The eligibility screening, verifying experience in teaching recursion, narrowed the final
sample to 14 teachers. Among them, seven teachers had 15 or more years of teaching experience, three
teachers had 11–15 years, and 6 had 6 –10 years, with only one having less than one year teaching
experience. All teach recursion to post-secondary students (16 to 18-year-olds), with 3 also teaching at

PPIG 2024

www.ppig.org 80

Foundation and Undergraduate levels (18+ years old). These criteria ensured a focused and valid study
with contributions from mostly experienced teachers across institutions, effectively addressing research
objectives while acknowledging generalizability limitations.

7. Data Analysis and Discussion
7.1. RQ1: Identifying the sequence in which programming concepts (iteration, selection, sequencing,
recursion, and OOP) are taught, and observing possible relationships with how well students understand
these concepts.

7.1.1. Order of Teaching Concepts:
In investigating the teaching sequence of programming concepts, we explored the order in which these
concepts are typically introduced. The instructional sequence can significantly influence students’
comprehension and retention, providing insights into teachers’ approaches. Of particular interest is the
positioning of recursion relative to other concepts, indicating its foundational or advanced nature.
Teachers were asked to rank the order in which they taught the different concepts. Analyzing mean
rankings, with lower numbers indicating earlier introduction, reveals a consistent progression: sequence
(1.64), selection (1.93), iteration (2.50), OOP (4.43), and recursion (4.50). This order aligns with a
pedagogical strategy that introduces simpler concepts as building blocks before tackling more complex
and abstract ideas. It appears to be a strategy that supports argument made by Kessler and Anderson
(1986) and the subsequent study conducted by Susan Wiedenbeck (1989) that teaching iteration before
recursion is more beneficial, as iteration is easier to grasp and has wider practical application.

7.1.2. How Challenging are these Concepts to Students:
Teachers’ insights into students’ struggles with specific concepts further inform the analysis. Teachers
were asked to rank the order in which students understood the different concepts from easy to
understand, to very hard to understand. Recursion topped the list as the most challenging concept for
students (with a mean value of 3.93), followed closely by OOP (with a mean value of 3.79). Sequencing
was perceived as the least challenging (with a mean value of 2.29). Examining standard deviation and
variance highlighted the variability in ratings, with recursion exhibiting the highest values (0.74 and
0.55) and iteration the lowest (0.81 and 0.66), indicating the range of opinions among respondents.

7.1.3. How Difficult are these concepts to teach:
Investigating the difficulty levels teachers encounter when teaching the programming concepts, our
findings highlight a significant variation in perceived challenges. For OOP, teachers reported a mean
difficulty of 3.71, with a median difficulty of 4, indicating it is one of the most challenging topics to
teach. Recursion followed closely with a mean difficulty of 3.64 and a similar median (of 4). Both
concepts showed a wide range of challenge levels, from somewhat challenging to very challenging.
Sequencing, iteration, and selection were considered less challenging, with mean difficulties of 2.07,
2.21, and 2.00, respectively, and medians at 2. These topics were generally seen as easier to teach, with
their difficulty ranging from non-challenging to moderately challenging.

7.1.4. Findings for RQ1
Due to the impact on the statistical power of a smaller sample size, it was deemed that data collected
might not have enough power to detect a significant correlation using nonparametric measures for
example Spearman Rank Correlation. Bujang and Baharum (2016) proposed a minimum of 29 samples
(or subjects) to detect a reasonably high correlation (specifically, a correlation coefficient of 0.5) with
a good balance of error tolerance and study power. They noted other studies “(Bujang et al., 2009;
Bujang et al., 2015)” that suggest samples larger than 300 can yield statistical results highly
representative of the true population values. This is based on the idea that larger samples tend to provide
more precise estimates of population parameters, thereby improving the generalizability of the findings.
This made it apparent that the best way to analyse the data will be to look at it from a practical or
observational perspective.

The violin plots below (Figure 2: Teacher Order and Students Understanding Order) are used to
illustrate both the spread and the median of the orders in which the programming concepts are taught
and students understanding, with one side of the violin for teaching orders and the other for indicating
order in which student understanding concepts. The following observations were made:

PPIG 2024

www.ppig.org 81

The concept of sequence typically appears early in learning, supported by students finding it easier to
understand, which aligns with it likely being an introductory concept. Selection is also introduced early
on, yet students find its difficulty level consistent, irrespective of its teaching order. Iteration tends to
be taught mid-way through the curriculum and is well understood by students, indicating its placement
is appropriate for their learning curve. OOP is often reserved for the latter part of educational programs,
which is reflected in its broader and more challenging understanding distribution, highlighting its
complexity. Recursion stands out with a distinct pattern where both teaching and understanding orders
are skewed to the higher end, indicating it is both taught late and considered difficult to understand.

Overall, the data reflects a structure in teaching programming that rises from simpler to more complex
concepts, aligning well with student comprehension levels.

Figure 2: Teacher Order and Students Understanding Order

Note for Figure 2. The shape and width of the violins provide an immediate visual indication of the
distribution’s spread and density. A wider section of a violin plot indicates a higher frequency of data
points (i.e., more teachers reported similar orders), whereas a narrower section indicates fewer data
points. The horizontal lines within each violin represent the median order. This is crucial for exploring
the most common teaching order, and the understanding order for each concept. The degree of
symmetry between the teaching and understanding sides of each violin gives an immediate visual cue
about alignment. High symmetry suggests that the understanding order closely matches the teaching
order, whereas asymmetry suggests discrepancies.

7.2. RQ2 What are the current instructional approaches and assessment methods that
teachers find successful in delivering recursion?
Teachers’ approaches to teaching recursion offer insights into adapting methods for diverse learners.
The choice of instructional approach significantly influences students’ understanding and engagement
with recursion concepts in programming education. The approaches used in the survey are defined as
follows:

Inquiry-based learning is an approach where students learn through questioning and investigation.
When teaching recursion, this approach might involve encouraging students to explore recursion
concepts by asking questions, conducting research, and experimenting. For instance, students might
investigate different recursive algorithms and their applications.

Direct instruction involves presenting information to students in a structured and systematic way. When
teaching recursion, this approach may include clear explanations of recursion concepts, step-by-step
examples, and guided practice. For instance, the teacher might systematically introduce recursive
functions and then provide exercises to reinforce the learning.

PPIG 2024

www.ppig.org 82

Project-based learning is an approach where students learn by working on projects. When teaching
recursion, this approach may involve assigning projects that require students to apply recursive concepts
practically. For example, students could be asked to create a recursive artwork generator or a recursive
maze-solving program.

Problem-based learning is an approach where students learn by solving problems. In the context of
recursion, this approach might involve presenting students with real-world problems that can be solved
using recursive techniques.

Collaborative learning is an instructional approach where students work together. When teaching
recursion, this approach might involve students collaborating on recursive coding projects or solving
recursion-related problems as a team. For example, students may work together to create a recursive
function in a programming language.

Differentiated instruction [or Adapting Teaching] acknowledges the diverse needs of students. If a
teacher selects this approach when teaching recursion, it means they are adapting their instruction to
cater to individual students' learning styles and abilities. For instance, a teacher might provide additional
resources or assignments to support struggling students while challenging advanced learners with more
complex recursion problems.

Blended learning combines online and in-person instruction. In the context of teaching recursion, this
approach could involve using online resources and platforms to complement in-person lessons. For
example, students might watch online tutorials on recursion algorithms and then apply what they've
learned during in-person coding sessions.

Independent learning is an approach where students research topics on their own. In the context of
recursion, this approach may involve assigning self-directed projects or providing resources for students
to explore recursion independently. For example, students could be given a list of recursion-related
books and websites to explore as part of their learning process.

Common approaches include problem-based and inquiry-based learning, with problem-based and
project-based learning considered the most effective. Collaborative learning, although less prevalent,
still proves effective. However, further exploration is needed regarding differentiated instruction and
blended learning. See Figure 3 for graph on instructional approaches and their effectiveness.

Figure 3: Instructional Approaches for Teaching Recursion

Evaluating assessment methods used in teaching recursion is crucial for assessing their effectiveness in
measuring student comprehension. The options include Written Exams/Quizzes, Programming
Assignments/Coding Challenges, Verbal Question and Answer sessions in lessons, Pair Review/Pair
Programming, and Pupil Demonstration/Presentation. The diversity of assessment methods recognizes
varied student learning styles and abilities, influencing how teachers adapt teaching strategies. This

PPIG 2024

www.ppig.org 83

information helps identify assessment methods that promote a deeper understanding of recursion
concepts.

Assessment methods vary, with programming assignments being the most popular and effective,
followed by verbal Q&A and written exams. Pair review/pair programming and pupil
demonstration/presentation are less common. Our results indicate that most teachers find programming
assignments the most effective assessment method for recursion, followed by written exams/quizzes,
verbal Q&A, and pupil demonstration/presentation. Pair review/pair programming is perceived as the
least effective method. No respondents indicated the use of alternative assessment methods. See Figure
4 and Figure 5 for graph on assessing students.

Figure 4: Assessing students’ understanding of

Recursion.

Figure 5: Effectiveness of Assessment

Methods

What are teachers’ perceptions of the challenges faced by pupils when learning recursion?

Further inquiry was made to investigate the challenges students commonly encounter while learning
recursion, with the goal of informing targeted teaching strategies. This inquiry is crucial for
understanding specific pain points in student learning and facilitating the creation of effective teaching
materials. Different challenges may emerge at varying educational levels or with specific programming
languages, emphasizing the need for customized instruction. Responses from teachers highlighted
prevalent challenges, including students struggling to comprehend the purpose of recursion and lacking
foundational knowledge of iteration – which is sometimes mistaken for recursion and vice versa. To
address this, teachers should ensure students have a solid grasp of fundamental concepts before
introducing recursion, indicating the importance of a well-structured curriculum.

Another noteworthy challenge is students relying solely on data tracing to understand recursion, calling
for encouragement to look into the underlying principles for a deeper conceptual understanding.
Confusion between recursion and other programming concepts requires clear differentiation and
practical examples to alleviate misunderstandings. Understanding the context and rationale behind
recursive code is identified as a challenge, suggesting the importance of real-world examples and
practical applications to enhance comprehension.

Teachers also expressed a lack of in-depth resources on how to teach recursion as a challenge,
emphasizing the need for comprehensive materials catering to diverse learning styles and experience
levels. This highlights the importance of resource development to support teachers in delivering
effective instruction on recursion.

The survey sought advice from teachers on teaching recursion effectively to those new to the subject.
Recommendations included thorough preparation, confidence, and simplicity in tasks to avoid overload.
Peer support, understanding individual student needs, and fostering a student-centric approach were
highlighted.

Practical aspects, such as extensive practice, providing examples, and using teaching tools like real-
world examples and visual aids, were emphasized for diverse learning styles. The belief in spending
more time on the topic highlighted the importance of patience and a comprehensive exploration of
recursion for better understanding. Ensuring a strong foundation by understanding basics before
tackling complex topics was advised. Teachers suggested addressing potential difficulties students may
face with recursion by adapting teaching methods and maintaining focus and conciseness in delivery.

PPIG 2024

www.ppig.org 84

7.3. How does the frequency and consistency of incorporating movement-based activities,
tangible elements, and visual aids in teaching recursion affect the perceived effectiveness of
these teaching approaches?
The research explored teaching approaches for recursion, focusing on methods and the effectiveness of
the use of hands-on activities, tangible materials, and visual aids.

Six out of 14 teachers occasionally use hands-on or movement-based activities for recursion, with 3
using them frequently. The perceived effectiveness varies, with 7 teachers rating them moderately
effective, 4 very effective, and 3 slightly effective. Interestingly, no extreme opinions were expressed,
indicating varied perceptions among teachers. While not universally adopted, hands-on activities are
generally perceived as beneficial by those who incorporate them; and can enhance student engagement
and understanding of abstract concepts like recursion.

Most teachers (9 out of 14) seldom or occasionally incorporate tangible elements in teaching recursion.
The effectiveness varies, with 5 finding it very or extremely effective and 4 considering it slightly
important. Further investigation is suggested to understand why some find this approach effective
despite infrequent use. Understanding the specific tangible elements and materials used could offer
valuable insights into effective teaching strategies for recursion.

The study emphasizes the use of visual aids, such as diagrams and animations, in teaching recursion. A
significant majority (10 out of 14) frequently or always use visual aids, finding them highly effective
in conveying recursion concepts. Only two teachers found them slightly effective. Visual aids have
gained widespread acceptance, indicating their effectiveness in teaching recursion.

Two teachers who mainly teach post-secondary students in different schools, strongly advocated for the
use of PRIMM (Predict, Run, Investigate, Modify and Make) and differentiation approaches when
teaching recursion and other programming concepts in general. In a follow-up conversation with one of
the teachers after the survey, they claimed to have observed marked improvements in students’
outcomes, particularly in learning about recursive algorithms, since implementing PRIMM approach at
their school “for over three years now”. In their study, Sentance et al. (2019) suggested that PRIMM
offers an efficient method for teaching programming, enhancing comprehension, and boosting
confidence in students. They emphasized that teachers found PRIMM's structured lessons beneficial,
offering clarity in both lesson planning and delivery and it allowed teachers to tailor tasks to individual
student needs. Additionally, they recommended PRIMM's suitability for teacher training and various
stages of programming education.

8. Further Discussion
The study emphasizes recursion as the most challenging programming concept for students, from the
teacher’s perspective, shedding light on practical difficulties in the classroom. This recognition prompts
teachers to allocate additional time and resources, enhancing instructional strategy effectiveness.
Contrary to literature advocating for early or pre-iteration teaching of recursion, as highlighted in the
Theoretical Foundation section above, our study reveals that among the programming concepts
examined, recursion is, in fact, introduced to students last. The findings regarding assessment methods
and pedagogical approaches offer practical insights for teachers and researchers alike. Programming
assignments and coding challenges emerge as the preferred and most effective assessment tools for
recursion, providing a clear direction for teachers when designing students’ evaluations, in their lesson
planning. Additionally, the endorsement of problem-based learning and inquiry-based learning,
alongside the nuanced impact of collaborative learning, offers valuable guidance for teachers seeking
effective instructional strategies in the teaching and learning of recursion. While employing tangible
objects for example boxes and envelopes to symbolize values returned by functions in recursive calls
has proven highly effective in our teaching experience, our research emphasizes that, from the teachers'
perspective, visual aids (diagrams and animations), are widely embraced and very effective. We contend
that the use of tangible objects, despite being a hands-on approach, also offers a form of visualization
for learners. This highlights their crucial role in bolstering student engagement and understanding
during recursion instruction. The study advocates for an integrated teaching approach that combines for
example, tangible objects and visual aids, fostering a multi-sensory learning experience that caters to
diverse learning styles and preferences among students. This integrated approach holds the potential to

PPIG 2024

www.ppig.org 85

significantly enhance the effectiveness of recursion instruction and contribute to improved learning
outcomes.

9. Conclusion
In conclusion, the relationship between the order of teaching programming concepts and students’
understanding suggests a general alignment with educational theory: simpler concepts are introduced
first, leading to a smoother learning curve for students. However, certain concepts like OOP and
recursion present challenges that are recognized by both the teaching order and students' understanding.
This could point to areas where additional teaching aids, practice, or alternative instructional strategies
might be beneficial. The study brings to light the complexities inherent in teaching and learning
recursion. Ongoing monitoring of students' understanding relative to the teaching order is crucial.
Adjustments to this teaching sequence, if necessary, should be data-driven and responsive to the
observed learning outcomes. Furthermore, problem-based learning emerged as the most effective
method for teaching recursion, with programming assignments being the most popular and effective
assessment approach. Practical insights into effective assessment methods and teaching approaches
empower teachers to refine their techniques. We advocate for an integrated teaching approach that
incorporates tangible objects and visual aids, offering a strategy that may enhance student engagement
and comprehension. Together, these findings provide teachers with a framework to address the
challenges associated with teaching recursion, fostering an environment conducive to improved
learning experiences and outcomes.

10. Limitations
While we are confident in the credibility and meaningfulness of the data collected from the teachers
surveyed, it is essential to acknowledge several limitations inherent in our study. Firstly, the sample
size presents a challenge. While a larger sample size would enhance the statistical power and
generalizability of the study, the inclusion criteria ensured that all participants had relevant experience,
which is crucial for the study’s focus on teaching recursion. Additionally, the distribution of teaching
experience among the final sample, with a majority having 15 or more years of experience, adds
credibility to the insights gathered. Furthermore, while our study provides valuable insights into current
teaching approaches used in the delivery of recursion, it is not without its constraints. We cannot
definitively establish causality between teaching sequence of concepts and students’ learning outcomes,
as correlation does not imply causation. As such, our study does not offer comprehensive explanations
for the observed variables. Despite these limitations, we believe that our findings contribute valuable
insights into the field of Computer Science education.

11. Future Work
Drawing from the findings of this research, future investigations could explore the impact of
instructional sequence on the perceived and actual difficulty of programming concepts. Research could
scrutinize how altering the sequence of these concepts influences teacher perceptions, student
understanding, and overall learning outcomes especially regarding recursion. Future research could also
aim to address these limitations by employing larger sample sizes, utilizing experimental designs to
establish causality, and explore the underlying mechanisms driving teaching practices. Furthermore,
specific studies should be conducted, focusing on the role and effectiveness of visual aids, alongside
the integration of tangible elements and physical materials in teaching recursion. These focused
inquiries promise to provide practical insights for teachers, exploring the potential benefits of these
approaches in enhancing both student comprehension and engagement.

12. References
1. Akbaşlı, Sait & Yeşilce, İlknur. (2018). Use of Tangible Materials and Computer in Mathematics

Teaching: Opinions of School Principals. Eurasia Journal of Mathematics, Science and
Technology Education. 14. 2523-2532. 10.29333/ejmste/90087.

2. Anderson, J. R., Pirolli, P., & Farrel, R. (1988). Learning to program recursive functions. In M. T.
Chi, R. Glaser, & M. J. Farr (Eds.), The nature of expertise (pp. 153–183). Hillsdale: Erlbaum.

3. Arbuthnott, K. D., & Krätzig, G. P. (2015). Effective Teaching: Sensory Learning Styles versus
General Memory Processes. Comprehensive Psychology, 4. https://doi.org/10.2466/06.IT.4.2.

PPIG 2024

www.ppig.org 86

4. Bargar, R. R., & Hoover, R. L. (1984). Psychological Type and the Matching of Cognitive Styles.
Theory Into Practice, 23(1), 56–63. http://www.jstor.org/stable/1476739.

5. Benander, A. C., Benander, B. A., & Pu, H. (1996). Recursion vs. iteration: An empirical study of
comprehension. Journal of Systems and Software, 32, 73–82.

6. Benander, A.C., Benander, B.A., & Sang, J. (2000). An empirical analysis of debugging
performance - differences between iterative and recursive constructs. J. Syst. Softw., 54, 17-28.

7. BERA. (2018). Ethical guidelines for educational research (4th ed.).
https://www.bera.ac.uk/publication/ethical-guidelines-for-educational-research-2018-online.

8. Bujang, Mohamad Adam & Baharum, Nurakmal. (2016). Sample Size Guideline for Correlation
Analysis. World Journal of Social Science Research. 3. 37. 10.22158/wjssr.v3n1p37.

9. Claudio Mirolo. 2012. Is iteration really easier to learn than recursion for CS1 students? In
Proceedings of the ninth annual international conference on International computing education
research (ICER ‘12). Association for Computing Machinery, New York, NY, USA, 99–104.
https://doi.org/10.1145/2361276.2361296j

10. Claudius M. Kessler & John R. Anderson (1986) Learning Flow of Control: Recursive and Iterative
Procedures, Human–Computer Interaction, 2:2, 135-166, DOI: 10.1207/s15327051hci0202_2

11. Coffield, F. & Moseley, D. & Hall, Elaine & Ecclestone, K. (2004). Learning Styles and Pedagogy
In Post-16 Learning: A Systematic And Critical Review. Book Learning styles and pedagogy in
post-16 learning: a systematic and critical review.

12. Creswell, J. W. (2009). Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches (3rd ed.). Sage Publications, Inc.

13. Dembo, M. H., & Howard, K. (2007). Advice about the use of learning styles: A major myth in
education. Journal of College Reading and Learning, 37(2), 101-109.
https://doi.org/10.1080/10790195.2007.10850174.

14. Dicheva, Darina & Close, Sean. (1997). Misconceptions in recursion: diagnostic teaching.
15. Dunn, R. (1984). Learning Style: State of the Science. Theory Into Practice, 23(1), 10–19.

http://www.jstor.org/stable/1476733
16. Dunn, R. (1990). Bias over Substance: A Critical Analysis of Kavale and Forness’ Report on

Modality-Based Instruction. Exceptional Children, 56(4), 352-356.
https://doi.org/10.1177/001440299005600409

17. Dunn, R., Honigsfeld, A., Doolan, L. S., Bostrom, L., Russo, K., Schiering, M. S., Suh, B., &
Tenedero, H. (2009). Impact of Learning-Style Instructional Strategies on Students’ Achievement
and Attitudes: Perceptions of Educators in Diverse Institutions. The Clearing House, 82(3), 135–
140. http://www.jstor.org/stable/30181095

18. Endres, M., Weimer, W., & Kamil, A. (2021). An Analysis of Iterative and Recursive Problem
Performance. Proceedings of the 52nd ACM Technical Symposium on Computer Science
Education.

19. F. Turbak, C. Royden, J. Stephan, and J. Herbst, Teaching Recursion Before Loops In CS1, Journal
of Computing in Small Colleges, Volume 14, Number 4, pp 86-101, May 1999.

20. Ginat, D. (2005). The suitable way is backwards, but they work forward. Journal of Computers in
Mathematics and Science Teaching, 24, 73–88. Norfolk, VA: AACE.

21. Gunion, Katherine & Milford, Todd & Stege, Ulrike. (2009). The Paradigm Recursion: Is It More
Accessible When Introduced in Middle School?. The Journal of Problem Solving. 2.
10.7771/1932-6246.1063.

22. Guzdial, M. (2018) Exploring the question of teaching recursion or iterative control structures first,
Computing Ed Research - Guzdial’s Take. Available at:
https://computinged.wordpress.com/2018/03/09/exploring-the-question-of-teaching-recursion-or-
iterative-control-structures-first/ (Accessed: 22 October 2023).

23. Haberman, B., & Averbuch, H. (2002, June 24–28). The case of base cases: Why are they so
difficult to recognize? Student difficulties with recursion. In Proceedings of the 7th conference on
innovation and technology in computer science education. Aarhus.

24. Hamouda, S., Edwards, S., Elmongui, H., Ernst, J., & Shaffer, C. (2017). A basic recursion concept
inventory. Computer Science Education, 27(2), 121–148.

25. Hyman, Michael & Sierra, Jeremy. (2016). Open- versus close-ended survey questions. NMSU
Business Outlook. 14.

PPIG 2024

www.ppig.org 87

26. Ian Sanders, Vashti Galpin, and Tina Götschi. 2006. Mental models of recursion revisited. SIGCSE
Bull. 38, 3 (September 2006), 138–142. https://doi.org/10.1145/1140123.1140162

27. J Terrell, Steven. (2012). Mixed-Methods Research Methodologies. Qualitative Report. 17. 254-
265. 10.46743/2160-3715/2012.1819.

28. Jawed S, Amin HU, Malik AS and Faye I. (2019). Classification of Visual and Non-visual Learners
Using Electroencephalographic Alpha and Gamma Activities. Front. Behav. Neurosci. 13:86.

29. Johnson, R. B. & Onwuegbuzie, A. J. (2004). Mixed-methods research: a research paradigm whose
time has come. Educational Researcher, 33(7), 14-26.

30. Kavale, K. A. and Forness, S. R. (1987). Substance over style: Assessing the efficacy of modality
testing and teaching. Exceptional Children, 54(3), 228–239.

31. Kavale, K. A., & Forness, S. R. (1990). Substance over Style: A Rejoinder to Dunn’s
Animadversions. Exceptional Children, 56(4), 357-361.
https://doi.org/10.1177/001440299005600410

32. Kurland, D. M., & Pea, R. D. (1985). Children’s Mental Models of Recursive Logo Programs.
Journal of Educational Computing Research, 1(2), 235-243. https://doi.org/10.2190/JV9Y-5PD0-
MX22-9J4Y.

33. Maiorana, F., Csizmadia, A., Richards, G., Riedesel, C. (2021). Recursion Versus Iteration: A
Comparative Approach for Algorithm Comprehension. In: Auer, M.E., Centea, D. (eds) Visions
and Concepts for Education 4.0. ICBL 2020. Advances in Intelligent Systems and Computing, vol
1314. Springer, Cham. https://doi.org/10.1007/978-3-030-67209-6_27

34. McCracken, D. D. (1987, January). Ruminations on computer science curricula, viewpoint column.
Communications of the ACM, 30, 3–5.

35. OFQUAL (2023). Official Statistics, Provisional Entries for GCSE, AS and A Level: Summer
2023 Exam Series. Gov.UK. Retrieved December 24, 2023, from
www.gov.uk/government/statistics/provisional-entries-for-gcse-as-and-a-level-summer-2023-
exam-series/provisional-entries-for-gcse-as-and-a-level-summer-2023-exam-series

36. Pashler, H., McDaniel, M., Rohrer, D. and Bjork, R., 2008. Learning styles: Concepts and
evidence. Psychological science in the public interest, 9(3), pp.105-119.

37. Poth, C., & Munce, S. E. P. (2020). Commentary—Preparing today’s researchers for a yet
unknown tomorrow: Promising practices for a synergistic and sustainable mentoring approach to
mixed methods research learning. International Journal of Multiple Research Approaches, 12(1),
56-64. doi:10.29034/ijmra.v12n1commentary

38. Renée McCauley, Scott Grissom, Sue Fitzgerald & Laurie Murphy (2015) Teaching and learning
recursive programming: a review of the research literature, Computer Science Education, 25:1, 37-
66, DOI: 10.1080/08993408.2015.1033205.

39. Reynolds, M. (1997). Learning Styles: A Critique. Management Learning, 28(2), 115-133.
https://doi.org/10.1177/1350507697282002.

40. S. M. Haynes. 1995. Explaining recursion to the unsophisticated. SIGCSE Bull. 27, 3 (Sept. 1995),
3–6. https://doi.org/10.1145/209849.209850.

41. Sanders, I., & Scholtz, T. (2012). First year students’ understanding of the flow of control in
recursive algorithms. African Journal of Research in Mathematics, Science and Technology
Education, 16(3), 348–362

42. Scholtz, T. L., & Sanders, I. (2010). Mental models of recursion: Investigating students
‘understanding of recursion. In Proceedings of the 15th Annual Conference on Innovation and
Technology in Computer Science Education (ITiCSE 2010)(pp. 103–107). Bilkent, Ankara,
Turkey.

43. Schoonenboom J, Johnson R. B. (2017). How to Construct a Mixed Methods Research Design.
Kolner Z Soz Sozpsychol. 2017;69(Suppl 2):107-131. doi: 10.1007/s11577-017-0454-1. Epub
2017 Jul 5. PMID: 28989188; PMCID: PMC5602001.

44. Segal, J. (1995). Empirical studies of functional programming learners evaluating recursive
functions. Instructional Science, 22, 385–411. https://doi.org/10.1007/BF00891962

45. Shorten A., & Smith J. (2017). Mixed methods research: Expanding the evidence base. Evid Based
Nurs, 20, 74–5. http://dx.doi.org/10.1136/eb-2017-102699

46. Sinha, A., and Vessey, I., (1992) Cognitive Fit: An Empirical Study of Recursion and Iteration,
IEEE Trans. Software Eng. 18, 368-379.

PPIG 2024

www.ppig.org 88

47. Sue Sentance, Jane Waite, and Maria Kallia. 2019. Teachers' Experiences of using PRIMM to
Teach Programming in School. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (SIGCSE '19). Association for Computing Machinery, New York,
NY, USA, 476–482. https://doi.org/10.1145/3287324.3287477

48. Susan Wiedenbeck, Learning iteration and recursion from examples, International Journal of Man-
Machine Studies, Volume 30, Issue 1, 1989, Pages 1-22, ISSN 0020-7373,
https://doi.org/10.1016/S0020-7373(89)80018-5.

49. Sweller, J. (1988), Cognitive Load During Problem Solving: Effects on Learning. Cognitive
Science, 12: 257-285. https://doi.org/10.1207/s15516709cog1202_4.

50. Syslo, Maciej & Kwiatkowska, Anna. (2014). Introducing Students to Recursion: A Multi-facet
and Multi-tool Approach. 124-137. 10.1007/978-3-319-09958-3_12.

51. Tarver, S. G., & Dawson, M. M. (1978). Modality preference and the teaching of reading: A
review. Journal of Learning Disabilities, 11(1), 17-29.
https://doi.org/10.1177/002221947801100104

52. Velázquez-Iturbide, J. Ángel. (2000). Recursion in gradual steps (is recursion really that difficult?).
ACM SIGCSE Bulletin. 32. 310-314. 10.1145/331795.331876.

53. Wanda Dann, Stephen Cooper, and Randy Pausch. 2001. Using visualization to teach novices
recursion. SIGCSE Bull. 33, 3 (Sept. 2001), 109–112. https://doi.org/10.1145/507758.377507.

54. Willingham D. T. (2005) Do visual, auditory, and kinesthetic learners need visual, auditory, and
kinesthetic instruction? American Educator, 29, 31–35.

55. Wu, Cheng-Chih & Dale, Nell & Bethel, Lowell. (1998). Conceptual models and cognitive
learning styles in teaching recursion. ACM Sigcse Bulletin. 30. 292-296. 10.1145/273133.274315.

PPIG 2024

www.ppig.org 89

