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Abstract

As Bayesian approaches to probability and statistics become more widespread foundations of machine
learning, there is interest in introducing basic principles of probabilistic modelling at secondary school
level. This paper presents a series of educational experiments with simple probabilistic modelling tools
based on probabilistic programming languages.

1. Introduction

This paper reports on progress within a long-term project, following earlier reports at the Psychology of
Programming Interest Group (PPIG). The overall agenda is the use of probabilistic programming lan-
guages (PPLs) to enhance education in probability and statistics, specifically when introducing concepts
of probabilistic modelling into school and university curricula.

This educational agenda was one focus of a paper at PPIG 2019 that introduced the research field of us-
ability of PPLs (Blackwell et al., 2019), in a multi-authored paper including many of the contemporary
leaders in PPL development and research. Among other contributions, the 2019 paper suggested that the
field may benefit from a ‘furthest-first’ strategy (starting design work with those who are most excluded),
in this case by undertaking initial scoping research with school students in remote and disadvantaged
communities, in particular on the African continent. Early results reported on experiments with visual-
ising Bayesian probability in the Kalahari (Blackwell, Bidwell, et al., 2021), and use of causal models
by schoolchildren in Nigeria to estimate the risk of Covid-19 infection on the basis of observations
(Attahiru, Maudslay, & Blackwell, 2022).

These educational experiments have been planned in collaboration with an international mathematics
curriculum research team based at Cambridge University Press & Assessment (CUP&A), who have
developed a framework of mathematical concepts and learning objectives encompassing a compre-
hensive range of probability and statistics content across both primary and secondary school curric-
ula (Cambridge Mathematics, n.d.). In addition to their ongoing work, the team has recently begun
investigating how to support skills and practices in the field of digital technology-enhanced education,
including AI (Li & Zaki, 2024). One of the goals for this team is to anticipate and document future devel-
opments in this curriculum area that will enhance competencies and advanced learning in this evolving
field, much of which is dependent on fundamental principles of probability and statistics that are not yet
routinely included in school curricula (Slesinski & Fadel, 2024; Hoegh, 2020).

In this paper, we present two further projects advancing our investigation: one evaluating an interac-
tive visualisation of Causal Bayesian Networks in a UK classroom context and the other extending the
Scratch language with PPL functionality to investigate how classroom use of interactive statistical mod-
eling tools in South Africa might support curriculum priorities in that country.
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2. Previous Work

As described in the introduction, work that we have previously presented at PPIG explored foundational
concepts in Bayesian probability through a ‘furthest-first’ agenda to engage communities historically
excluded in curriculum research. This programme of work is in contrast to other initiatives that have
introduced PPLs in university-level teaching, typically at an advanced level, including Oxford, Harvard
and Columbia '.

2.1. Conditional probability in the Kalahari

The first of these explorations investigated ways of representing and thinking about probability in re-
lation to the context and needs of the Ju|‘hoansi people living near Tsumkwe, Namibia (Bidwell et
al., 2022). As hunter-gatherers, a strong ability to reason about likelihood from observed data enables
survival and success. This work explored interactive visualisations of conditional probability, using
physical spinners made from cardboard and paperclips to carry out simple Monte Carlo simulations that
quantitatively explored the causal relationship between random variables (Blackwell, Bidwell, et al.,
2021). For example, the chance of finding water under different temporal and situational scenarios (i.e.
‘after rain’, ‘within a tree’ and ‘within a tree given that it may be home to a snake’) places the founda-
tions of Bayesian ideas within indigenous knowledge practices and elevates the importance of making
Al accountable to diverse knowledge practices (Bidwell et al., 2022).

2.2. Causal reasoning during a pandemic

Following interruption of the Kalahari fieldwork by the Covid-19 pandemic, we created a simple
Javascript emulation of the cardboard spinner, allowing interactive Monte Carlo simulations to be ex-
plored remotely with our field research collaborator and translator on the screen of his Android phone
(Blackwell, Bidwell, et al., 2021). Simulated outcome frequencies were tallied in an interactive web-
page, with the proportion of different outcomes for each variable rendered as a pie chart whose sector
sizes could be compared to the relative sizes of the spinner sectors as a demonstration of long-run prob-
abilities.

These visualisations were used as the starting point for a classroom experiment in a school in Nige-
ria, where a lesson plan asked children to quantify their relative risks of being infected with Covid, as
informed by observations they might make in a local market (Attahiru et al., 2022). Likelihoods of dif-
ferent outcomes for each random variable were again visualised as different-sized sectors in a pie chart.
Causal relations between random variables were visualised as links between the pie charts, showing how
the different outcome likelihoods of an unknown variable might be updated on the basis of observations
of other variables that it is conditioned on.

Using these visualisations, a workshop with eight students was carried out remotely, using a web-based
lesson plan trialled by a teacher known to the researcher in Nigeria. The static visualisations of likeli-
hoods were not successful in this case, in large part because the lesson plans were neither clearly related
to students’ personal experiences of risk and likelihood nor to the standard curriculum in probability and
statistics as taught at that level in Nigeria.

3. Interactive Visualisation of Causal Bayesian Networks

As an improvement over the static visualisation concept evaluated in (Attahiru et al., 2022), we created a
dynamic version of the same visualisation, in which the circular nodes of a Bayesian network are again
replaced by pie charts whose sector sizes correspond to the relative likelihoods of different outcomes for
a categorical random variable. Figure 1 shows an overview of this system’s operation.

The interactive network graphs allow students to create and link nodes, specify frequencies of known
values for exogenous variables (observed data external to the model), and observe expected outcome
distributions for the endogenous variables (values inferred by the model) that are specified as child
nodes in the graphical model. The graph is constructed by interactively creating and linking nodes, with

le.g. Oxford’s Bayesian Statistical Probabilistic Programming, Harvard’s Probabilistic Programming and Artificial Intel-
ligence, Columbia’s Applied Statistics III Nonparametric Theory in Machine Learning
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Figure 1 — Overview of the interactive CBN visualisation created by Penson, showing a Causal
Bayesian Network with relative likelihood of values indicated by sizes of pie chart segments within
each node. The bottom part of the display shows a corresponding conditional probability table.

class likelihoods for exogenous variables entered via an interactive dialog, and model updates rendered
as modified pie charts for the endogenous variables.

3.1. Implementation

With the visualisation implemented in d3.js, the original plan had been to support more complex or
data-intensive models via back-end execution in the Turing PPL (Ge, Xu, & Ghahramani, 2018). Early
experiments also used the Julia implementation of BUGS, which shares Julia components with Turing.jl
(Xianda Sun & Ge, 2024). However, performance issues with that server connection, and the rela-
tive simplicity of the teaching scenarios, meant that the classroom deployment of the system could be
achieved with in-browser execution, with the graphical model compiled to the TypeScript PPL BayesJS?
(re-compiled using Browserify). An example of the BayesJS node syntax corresponding to one of our
teaching examples is shown in Figure 2.

Class Difficulty Grade
{id: "Class Difficulty", {id: "Grade",
states: ["Easy","Hard"], shates: [“A™, "B", ™MC"],
parents: [], parents: ["Class Difficulty", "Intelligence"],
cpt: {Easy: 0.6, Hard: 0.4}, cpt: [
} {when: {"Class Difficulty": "Easy", "Intelligence": "Low"},
them: { "A%; 0.3, "H": 0.4, 0% 0.5M.
Class Difficulty Intelligence . . . -
- {when: {"Class Difficulty": "Ea "Intelligence": "High"},
/ N
Easy [Hard| [ \ \ | Low [ High thens WAW: 0.9, MWB": 0.08, "C": 0.02
06 04 \V, ) Uz/‘ 07 03 { = ’ R
S {when: {"Class Difficulty": "Hard", "Intelligence": "Low"},
4 i
VR then: { "A": 0.05, "B": 0.25, "C": 0.7}},
{when: {"Class Difficulty": "Hard", "Intelligence": "High"},
Grade
Easy Low Easy, Figh! then: { "A": 0.5, "B": 0.3, "C": 0.2}}
I-Ed, Low Hard, High 1,
[AlB]C
10.050.25/0.7 |

Figure 2 — BayesJS node syntax corresponding to part of the university applications model

2github.com/bayesjs/bayesjs
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3.2. Evaluation

Where Attahiru’s project (Attahiru et al., 2022) had explored causal reasoning in relation to experiences
that were expected to be meaningful to schoolchildren in Nigeria, we evaluated this interactive visu-
alisation in a Western context, with secondary school students studying the UK sixth-form curriculum
in Further Mathematics. In this context, a cultural priority is how students will achieve the necessary
grades for admission to university. We, therefore, used a teaching example that focused on causal factors
in university admission, based on the Western approach to teaching Bayesian probability advocated by
Pearl (Pearl, 1995), and replicating teaching examples that had previously been used for school-based
research in other Western settings by (Lecoutre, 1992) and (Gordon, Henzinger, Nori, & Rajamani,
2014).

Classroom evaluation of our tool focused on the following research questions:

1. Do students employ Bayesian thinking in their decision-making? (Pre-intervention)
2. Can Bayesian thinking be induced through interaction with an interface? (Intervention)

3. Is the system’s usability sufficient to support students completing Bayesian tasks? (Usability)

An in-school trial was conducted with 20 students at Hill’s Road Sixth Form College in Cambridge. This
took place during a timetabled class in Further Maths, supervised by a classroom teacher. The study was
approved by the ethics committee of the Cambridge Department of Computer Science and Technology.

The research questions were investigated through six tasks:

» Tasks 1, 4, 5, and 6 directly address the research questions:

— Task 1 (Pre-intervention): Students answer questions about BT without using the interface.
(RQD)

— Task 4 and 5 (Intervention): Students build a Causal Bayesian Network (CBN) using either
the interface or on paper (within-subjects). (RQ2)

— Task 6 (Usability): Students complete self-directed tasks with the interface, reporting diffi-
culty and completion level. (RQ3)

 Tasks 2 and 3 (Intervention) These provide foundational knowledge for later tasks:

— Task 2: Lecture on probability and probability trees.

— Task 3: Introduction to CBNs using examples.

The order of completing tasks with and without the interface is switched between groups to avoid bias.
Overall, this evaluation aims to assess if the educational tool can effectively teach Bayesian thinking
through interaction and if the interface itself is usable for students.

Using Likert scale measures in a post-intervention survey, students reported improved understanding of
Bayes theorem, conditional and marginal probabilities, and prior and posterior likelihoods (p < 0.05).
In comparing usability between the two presentation conditions, they reported that hand-drawn CBNs
were easier and faster to create (Welch’s t test, p < 0.05), while those created using the interactive editor
were easier to modify and explore.

4. Teaching Bayesian probability in a South African context

This section reports a preparatory study exploring the potential of digital tools to introduce Bayesian
concepts in probability education in South Africa. The first author conducted interviews with educators,
curriculum designers, and NGO leaders to understand the challenges of designing future probability
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curricula and how the current South African Curriculum Assessment Policy Statements (CAPS) support
digital tools and their use in classrooms (Department of Basic Education, 2011).

The study identified several challenges in South Africa’s education system. The shift from a student’s
mother tongue to English in the Intermediate Phase (ages 9-13) creates difficulties for learners when
acquiring subject-specific knowledge. Additionally, the CAPS curriculum is outcomes-driven and rigid
in structure, with its delivery frequently affected by structural and socioeconomic inequality between
schools (Spies, 2022).

Regarding digital tools, teachers lack the resources and training necessary to integrate technology ef-
fectively into their classrooms, and CAPS does not provide guidance for employing such tools. When
considering future curricula, the importance of addressing infrastructural limitations and insufficient
teacher training for digital tools becomes clear. The findings emphasised that curricula should celebrate
African perspectives and integrate indigenous knowledge systems. However, they also acknowledge
the need for a balance between including these local contexts and ensuring students are prepared for a
globalised world.

The study also explored the challenges of teaching probability and mathematics in South Africa. Prob-
ability studies fall under the mathematics curriculum’s ‘Data Handling’ focus area, but feature few
real-world notions of likelihood beyond games of chance and simple data collection/analysis. Findings
suggest that games from African cultures could be a valuable resource for teaching probability concepts
instead of those related to suits and cards.

In designing digital tools to support future curricula, informants stressed the importance of accessibility
for learners with varying digital literacy levels. Teacher training and support are crucial for the successful
implementation of these tools. The study also highlights the need for the tools to function offline,
considering limitations like power outages that are common in South Africa. Finally, user testing in
classrooms is essential to evaluate and improve the effectiveness of these digital tools.

Overall, the findings highlighted the need for culturally-relevant curricula that integrate African knowl-
edge systems alongside globally recognised educational standards. Inclusive digital tools are necessary,
but researchers must address infrastructural challenges and ensure these tools can support diverse learn-
ers. The study emphasises the importance of ongoing collaboration between researchers, educators, and
policymakers. To this end, South African educators are committed to improving education and building
capacity for future skills, with efforts underway to integrate technology, social-emotional learning, and
indigenous knowledge into the curriculum.

5. The ScratchTuring hybrid PPL

Previous experiments in this programme of work, as reported above, have achieved web-deployable
prototypes by using visualisation libraries such as d3.js and implementing basic programmability with
additional semantic elements such as the facility to link pie charts together as nodes of a graph. In
these earlier systems, more sophisticated probabilistic modelling has been achieved either through back-
end execution using a general-purpose PPL such as Turing or JuliaBUGS or in-browser execution via
compilation to Javascript as in BayesJS.

In order to explore the potential for web-based educational PPLs in the South African context, we used
a more powerful formalism for visual computation: the well-known Scratch language and environment
originally created for school-level introductory programming classes (Resnick et al., 2009). Scratch
already has sophisticated editing, interaction, and visualisation capabilities, and is deployed in a fully
browser-based version with extension capabilities that enabled the extensions described below.

5.1. Turing interface

The ScratchTuring hybrid introduces new Scratch blocks that invoke the PPL functionality of the Tur-
ing.jl language, cross-compiled into Turing scripts that are executed on a (local or remote) server, which
can then be queried from Scratch to visualise the probabilistic model. We created Scratch-syntax wrap-
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pers for a subset of the Turing language so that Turing development tasks, such as creating and con-
ditioning models on new data, can be done within the Scratch editor. This functionality is delivered
through a constrained set of blocks specifically to support lesson plans in probabilistic modelling, as
seen in Figure 3.

Figure 3 — Scratch blocks used to interact with model distributions in Turing

5.2. Geographical data

We wanted to address the policy demand in South Africa for educational tools that relate to recent ad-
vances in machine learning while also considering the geographical and cultural context within which
South African students engage with such advances. We therefore created new Scratch capabilities relat-
ing to these concerns, in contrast to the original development and evaluation of Scratch that focused on
the Western priorities of children’s engagement with computer games and digital media.

One lesson plan was inspired by previous work that had provided schoolchildren in Ethiopia with pro-
grammable access (via simplified Python libraries) to satellite imagery from Google Earth Engine geo-
tagged with the what3words API (Longdon, Gabrys, & Blackwell, 2024). We created a Scratch exten-
sion that loads a satellite image from any specified coordinates as a ‘backdrop’. This image can then be
used in conventional Scratch code, as seen in Figure 4 where the Scratch character is making a random
walk, sampling colours from an image of the South African coast.
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Figure 4 — The ScratchTuring interface used to create a program that collects samples from a
satellite image
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5.3. Probability model dashboard

The core extension that allows ScratchTuring to be used as an interactive tool for exploration of prob-
abilistic models is a model dashboard, implemented as a new tab in the browser-based Scratch client.
The operation of this dashboard can be seen in Figure 5, which shows a teaching application where each
Scratch sprite represents an elephant in the Kruger National Park, South Africa’s largest nature reserve.
The elephant sprite reports its attributes as sample observations, updating a statistical model maintained
in Turing. The ScratchTuring dashboard can then be used to visualise a probability density function
reported by that model, showing the prior distribution before the observation, followed by (as in Fig-
ure 5) the posterior distribution. Using these facilities, a teacher projecting the dashboard can deliver
exploratory interactive lessons, and students may also experiment with Scratch to create larger or more
complex data science projects and simulations.

I'm the matriarch of this
herd, and I'm almost 60
06 years old. | stand at Am
tall and - last time |
checked - weigh 4523kg!
0.4 My trunk is 130cm long

v

- KEY §
Updated Belief
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Figure 5 — The ScratchTuring model dashboard showing prior and posterior distributions based on
reported elephant heights. After observing a baby elephant, the posterior distribution (green dotted
line) reflects an updated belief that elephants can sometimes be smaller.

5.4. Visualising image samples as a hue distribution

As an experiment in relating local understanding of satellite image data to simple probabilistic methods
in computer vision and machine learning, we implemented a model type and visualisation that renders
probability distribution for colours sampled from a hue spectrum, as seen in Figure 6. The hue sampling
Scratch block calculates a local average RGB from the background of a sprite’s location and maps
this into hue space (with saturation and brightness collapsed). This allows a distribution of hues to be
calculated across samples from a satellite, as seen in figure 6. In the figure, it can be seen that hues are
drawn from two different distributions, one corresponding to portions of the satellite image containing
the ocean, and one corresponding to the colour of the beach. Although rendering a hue spectrum as
the x-axis of a histogram is intuitively appealing, it should be noted that not all HSB colour values are
easily perceived as being similar to the same hue value with 100% saturation and brightness. To help
students appreciate this mapping, the histogram bars are rendered using the average of the saturation
and brightness values observed, rather than the bright colours shown on the axis. The actual colours
observed in the samples collected for a particular hue also pop up as a set of patches when the user
hovers over its corresponding bar.
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Figure 6 — The ScratchTuring model dashboard showing the distribution of hues sampled from a
satellite image. The samples are collected using behaviour added to the Scratch character, shown
here carrying a magnifying glass, whose lens is positioned over the part of the image from which
the sample will be taken.

5.5. Lesson evaluation

At the time of writing, the ScratchTuring prototype has been presented to UK students at a specialist
mathematics school in Cambridge. Students from the school are planning to travel to Kenya in the
summer of 2024 for a programme of activities planned to include volunteer teaching at a Kenyan primary
school. There may be an opportunity for students to use some aspect of this project during their visit.

The ScratchTuring prototype has also been demonstrated to several of the South African teachers who
participated in the study described in Section 4. Additionally, a lesson plan incorporating this tool was
recently introduced to Grade 8 students (ages 13-14) in Langa, a township in Cape Town, during a
mathematics class at a specialist maths and science secondary school.

6. Discussion

We have described two interactive prototypes, continuing a series of educational experiments studying
the potential use of probabilistic programming languages for teaching Bayesian probability and statistics
at school level. Both systems are intended for web deployment in classrooms and present an interactive
graphical front end, with a more conventional PPL used to construct and manipulate a Bayesian model.

We are especially interested in the potential for new developments in international school curricula to be
initiated in non-Western contexts, including countries in Africa. Although the authors are based in the
UK and often work with local schools as required by the practicalities of student research projects, we
are focused on curriculum ideas that can be informed by local understanding and indigenous knowledge
traditions from other parts of the world (Blackwell, 2021; Blackwell, Damena, & Tegegne, 2021). Since
the methods of Bayesian probability underpinning recent advances in machine learning already represent
a change in emphasis from the established conventions of frequentist statistics embedded in today’s
Western curricula (Slesinski & Fadel, 2024), this seems an ideal opportunity to consider the opportunities
and implications arising less WEIRD (Western, Educated, Industrialised, Rich, Developed) ways of
thinking (Henrich, Heine, & Norenzayan, 2010; Escobar, 2018).

At the 2022 PPIG workshop, Zainab Attahiru presented lesson plans that visualised conditional proba-
bility in a form intended to be accessible to students in Nigeria, allowing them to reason quantitatively
about risks in their own lives (Attahiru et al., 2022). Gemma Penson’s project, as reported here, has
implemented an interactive version of the same visualisation, demonstrating that it can be used by UK
students to reason in a probabilistic way about their school ambitions.

The series of educational experiments described in this paper aligns with key learning sciences theories
such as project-based learning (engaging students in real-world challenges), situated learning (embed-
ding education within its natural context), and simulation-based learning (using interactive, real-life

WWWw.ppig.org 141



PPIG 2024

scenarios). These perspectives afford the potential to extend the findings beyond local settings to inter-
national and global contexts.

The ScratchTuring prototype that we have introduced builds on these experiments to create a fully fea-
tured visual programming environment, with facilities supporting direct modelling of problem domains
relevant to African learners. Preliminary teacher evaluation suggests that ScratchTuring is sufficiently
robust and usable for deployment in classrooms, and we expect to be able to report on those deployments
at the PPIG workshop.
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