
r

r

r

r
\

[

r

r

r

r

r

r

r

r
l

p;;l
l

[

r

r

r"
I

r

F'
l

Second workshop of the "Psychology of Programming Interest Group",
Wolverhampton Polytechnic (Walsall site), UK, 4-6 Jamuary 1990.

Difficulties in Designing with an Object-Oriented Language:

Abstract

An Empirical Study1

Fran�oise Detienne

Projet de Psychologie Ergonomique pour 11nfonnatique
INRIA

Domaine de Voluceau,
Rocquencourt, BP 105

78153, Le Chesnay Cedex
France

Email address: detienne@psycho.inria.fr
Phone Number: (1) 39 63 55 22

1

An experiment has been conducted to study the activity of program design developed by programmers
experienced in classical procedural languages as they use an object-oriented language. We collected data on
the design activity exhibited by eight programmers using an object-oriented language for solving two
problems. Half of the subjects were beginners in object-oriented programming (OOP) and the other half
were experienced in OOP. This paper focuses on the analysis of the difficulties programmers experienced
in understanding and using the concepts and constructs of an object-oriented language. Our results
underline the importance of transfer and reuse of solutions in the activity of design .•

1. Theoretical framework and 1oa1s

An experiment has been conducted to study the activity of program design developed by
programmers experienced in classical procedural languages as they �se an object­
oriented language. We assume that experienced programmers possess in memory
numerous schemas they have constructed through practice in their domain of expertise.
Evidences supporting this hypothesis have been found in various studies (Detienne, in
press; Detienne & Soloway, 1988; Soloway & Ehrlich, 1984).

It has been shown that experienced programmers possess schemas dependent on the
task domain and schemas dependent on the programming domain. These schemas are
evoked and used whenever programmers perform programming tasks. It is likely that
they are more or less dependent on programming languages (specifically the type of
language such as declarative, procedural, object-oriented) and on methodologies of
design such as top-down design or relational design.

The originality of this study is double.

First, there is, as far as we know, no empirical study on object-oriented programming.
Most psychological studies on software design (Adelson & Soloway, 1984; Visser,
1987) were conducted with programmers using procedural languages or, more recently,
declarative languages.

An empirical study of programming with an object-oriented language seems particularly
interesting to evaluate the claims made on the easiness to program with this kind of
languages. They are assumed to make the design process easier inasmuch as it is natural
to decompose a problem into objects and actions to operate on these objects. According
to Meyer (1988) the world can be naturally structured in terms of objects, thus, it seems

1This research was supported by the GIP ALTAIR. Altair is a consortium funded by IN2 (a Siemens
Subsidiary), INRIA (lnstitut National de Recherche en Infonnatique et Automatique) and LRI
(Laboratoire de Recherche en Informatique, UniveISit6 Paris XI).

Second workshop of the "Psychology of Programming Interest Group".
Wolverhampton Polytechnic (Walsall site). UK. 4-6 Jamuary 1990.

2

particularly relevant to organize a model of design around a software representation of
these objects.

Second, most psychological studies on learning programming were focused on
knowledge acquisition by novices. Inasmuch as experienced programmers tend to have,
more and more, new languages at their disposal, the learning of new programming
languages by experts seems an important psychological question to address.

A question this study addresses is how subjects which are experienced in programming
learn new concepts in their domain of expertise. We expect experienced programmers to
use the schemas they have constructed in the programming and the task domains so as
to construct new solutions more adapted to the new language which is, in our study, an
object-oriented language.

However it is likely that having programming schemas at their disposal may have
positive effects as well as negative effects. If the best model of design (as assumed by
computer scientists) for the object-oriented language is closer to a model of the task
domain than to models already constructed for familiar programming languages already
known, then trying to apply programming schemas already constructed may produce
negative transfer. In this case, we expect experienced programmers to encounter
difficulties and to construct non adequate solutions.

In our experiment, we collected data on the activity of program design with an object­
oriented data base system, the "Ch System" (Bancilhon et al. 1988; Lecluse & Richard,
1989) which is being developed by the GIP ALTAIR.

2. Methodo101y

2.1. Subjects

Eight professional programmers participated in this experiment. All had several years of
programming practice with classical procedural languages such as C, Cobol, Basic.
Four of them, "beginners" in object-oriented programming (OOP), had no practice in
object-oriented programming. The four others, "experienced" in OOP, had several
weeks of practice with the object-oriented language under study.

2.2. Material

Inasmuch as the kind of problem to program has an effect on the strategies developed,
and a strategy may be more or less easy to use in an object-oriented environment, we
chose to give subjects two different problems: one problem is "declarative" inasmuch as
it has been shown, in a previous study (Hoc, 1983), that the data structure guides the
program development, the other problem is "procedural" inasmuch as the structure of
the procedure has been shown to guide the program development. In the paradigm of
object-oriented programming, identifying objects and their characteristics is important in
the design process and in a declarative problem, these aspects can be more obvious to
analyze. So we assume that an object-oriented language makes the programming
activity, at least in a learning phase, easier for a declarative problem than for a
procedural problem.

The two problems were problems of management (financial management and data base
management). This task domain was familiar to the subjects.

2.3. Procedure

Each subject had the two problems to program. The order of problems presentation was
counter-balanced. The programmers not experienced in object-oriented programming
had one day for programming each problem whereas the programmers "experienced" in

l

1

�
i

1

l

l

,,
I

l

l

l

l

1

�
)

r

r

i
\

r

r

r

r ·,

r

r
I

rm'
I

r

r

i

r
L_

Second workshop of the "Psychology of Programming Interest Group",
Wolverhampton Polytechnic (Walsall site), UK, 4-6 Jamuary 1990.

3

object-oriented programming had half a day (which has been proved to be sufficient to
develop the program at least as much as what beginners did). Previously to the phase of
program design the four subjects "beginners in OOP", received a one-day theoretical
formation. Subjects were asked to verbalize while designing their programs. They were
allowed to ask questions to several experts in object-oriented programming whenever
they had problems they were not able to overcome.

All subjects had at their disposal a manual for the system, a theoretical paper on object­
oriented programming and an example-program i.e., a program written in CO2 (the
object-oriented language under study), solving a problem different from the
experimental ones. After the programming phase, subjects had to answer questions on
the difficulties they had experienced during the experiment.

We collected the subjects' verbalizations, successive versions of programs under
development, notes written during the realization of the task, questions asked to the
experts, the order in which the different traces of the activity were made, i.e., the order
for writing notes and coding programs with the verbalization recorded simultaneously.

The final versions of programs have been given for evaluation to experts in object­
oriented programming. They were asked to detect and report errors as well as
"inelegances" in design and style. They had to rank them by order of seriousness, to
classify them and to make explicit their criteria of classification.

2.4. The 02 System

The Oi system is an object-oriented data base system. A "classical" language, is used
mainly to write the methods. In the version of the system used for our experiment, this
is language C, so the whole system is called "CO2 system". An object-oriented layer,
the CO2 language, is added to the "classical" language. Subjects have been chosen so as

... . ·- -·-: to be familiar with language C. Thus they had to learn mainly the COi language.

The object-oriented programming paradigm is based on the concepts of class,
inheritance, message passing, late-binding. A class is defined as a structure (a type) and
methods. A method is a function attached to a class that describes one part of the
behavior of the objects which are instances of this class. A value is encapsulated in an
object.

There are various possible relations between classes. The "is-a" relation defines a
specialization between a class and its superclass. The "is-part-of" relation defines an
imbrication between classes. A class inherits the properties of its superclasses. This
inheritance property apply on structural properties of classes and on functional
properties of classes, i.e., a class inherits the structure of its superclass and the methods
associated to it.

A call to a method is termed passing a message. A subclass can redefine methods thus a
method can have the same name and be associated to different classes with different
code. When the program is executed, one of these methods will be called according to
the class of the object on which this method is applied: this is the principle of late­
binding.

A program has several parts. One part is the "model of classes" ("schema" in the
terminology of Oi system designers), i.e. the definition of classes which is composed
of the type specification (the names of classes, the types and names of attributes, the
relations between classes), and the method specification (the signatures of methods
which are names and parameters of methods). Another part is the code of methods.

3. Results

Second workshop of the "Psychology of Programming Interest Group",
Wolverhampton Polytechnic (Walsall site), UK, 4-6 Jamuary 1990.

4

Programmers �eveloped fairly rapidly programs with the new programming language.
The use of then- previous knowledge in programming had a positive effect in acquisition
of the new concepts of the object-oriented language. However, it is not possible to
measure how easy it was to learn this new language compared to other languages.

Although designing with an object-oriented language seemed easy in some aspects, we
will focus, in this paper, on the analysis of the difficulties encountered by programmers
in performing their task. First, we present some characteristics of strategies used by
subjects. Second we analyze some difficulties programmers experienced in using
language-specific concepts. Then we analyze some reasons of programming difficulties
which are mostly negative effects of transferred knowledge.

3.1. Characteristics of design strategies

The difficulty to program was judged different according to the type of problem solved.
Beginners in OOP tended to judge the procedural problem more difficult than the
declarative one: three over four beginners in OOP found designing the procedural
problem more difficult than designing the declarative problem, the fourth one finding
them equivalent. Two subjects "experienced" in OOP also found the procedural problem
harder to program whereas the two others found the declarative problem harder to
program.

The same kinds of reasons were given to compare the two problems by the beginners
and the experienced in OOP. It is noteworthy that the declarative problem was judged
more difficult for the structuration and composition of classes and for the association of
the functionalities to classes; this is precisely what is assumed to be easy with this kind
of language by the tenants of OOP. From the data on the design activity, it appears that

......... ,- � progcammers,. specifically the beginners in OOP, experienced many difficulties for both
kinds of problems. In a further analysis of our result we will evaluate whether or not
some kinds of difficulties are problem specific.

The design strategies followed by the programmers have the following characteristics2.

3 .1.1. Anticipation of aspects of the solution

First the design activity consisted in identifying the types of classes and the functions
(corresponding to individual methods) associated to them in a solution. Thus the
process of class creation started previously to the writing of the bodies of methods. The
subjects started their activity by the construction and the coding of the model of classes.
We observed that classes were defined by programmers either in a top-down direction
(from super-classes to sub-classes) or in a bottom-up direction. Novices in OOP had
many difficulties to construct classes, to use the "is a" and "is-part-of" relationships
between classes, and to associate methods to classes.

In this process of class creation, programmers tried to anticipate the different classes
and methods they will need in the detailed coding of methods, i.e., the procedural
aspects of the program. However, we observed they were not able to anticipate all these
aspects. When the subjects judge the model of classes to be sufficient they started the
coding of methods. Then the subjects made many modifications to the model of classes
while writing the bodies of methods. These modifications are: addition of classes,
addition of methods, addition of attributes in a class, addition of parameters in a method
signature, modification of association between methods and classes (move a method

2 A characteristic, we will not develop in this paper, is the use of simulation. We observed programmers
simulating partial solutions developed at various levels of abstraction.

1

l

i
l

1

,

1

l

i

,

l

,,
!

l

r

r

r

r
\

r'
l

r

r

r

r

pm!

I

r

Second workshop of the "Psychology of Programming Interest Group".
Wolverhampton Polytechnic (Walsall site). UK. 4-6 Jamuary 1990.

from one class to another).

3.1.2. Reuse of solution

5

We must insist on the importance of the reuse of solutions or parts of solution by both
beginners and experienced subjects. They use transfer of knowledge in designing their
solution, i.e., they evoke solutions or parts of solution, more or less abstract, that they
try to reuse. These solutions come from internal source, i.e., the memory of the
programmers, as well as from external sources, i.e., other programs (the example­
program or programs written previously by the subject him/herself) or parts of the
program being written.

As subjects develop their program, we observed that they evoke solutions already
constructed either in the same language or in other languages. They often looked to the
example-program written in CO2 they had at their disposal in addition to the manual.
Although this program solved a problem very different from the problems they had to
deal with, they used it to extract examples of syntactic structures and semantic
structures.

As soon as they have written a part of their program, they duplicate parts of programs
using the copy command. For example, they duplicated parts of the model of classes so
as to define new classes, using previous classes as templates. When they had methods
performing the same functionality and being associated to different classes, they often
duplicated the body of the first method written so as to use it as a template for writing
the other methods.

Transfer of knowledge may have a positive effect as well as a negative effect. It has
positive effects inasmuch as it allows subjects to use already constructed knowledge
structures in their solutions without having to reconstruct them which would be more
�xpensive. It has negative effects whenever the knowledge structure is used without
being correctly adapted. In this case, transfer mechanisms cause errors. This is
developed in the last section of this paper.

3.2. Difficulties with language-specific concepts

The programmers experienced the following difficulties in understanding and using
concepts of the object-oriented programming language.

3.2.1. Assimilatio& a new conce.pt to an old conce.pt

When understanding a new concept, programmers try to relate this concept to already
known programming concepts. Whereas this process helps the acquisition of new
concepts, it can lead to misconceptions when programmers assimilate a new concept to
an old one.

For example, we observed beginners in OOP have a misconception on what a class is.
They confused the new concept of "class" and the already known concept of "set". A
class represents a family whose objects structure is identical. They tended to conceive a
class as a set of objects. This misconception led them to programming errors: they
tended to associate first a method which processes a set of objects of class A to the class
A itself instead of creating a class A' whose type is set(A).

3.2.3. Usin� a same concept in different contexts

Programmers had difficulties to use a same concept in different contexts. This was
observed for the inheritance property. This property was more difficult to use when
applied to functional properties compared to structural properties of classes.

Second workshop of the "Psychology of Programming Interest Group",
Wolverhampton Polytechnic (Walsall site), UK, 4-6 Jamuary 1990.

6

The programmers beginners in OOP had less difficulties with the use of inheritance on
structural properties than with the use of inheritance on functional properties. The
programmers experienced with OOP had no difficulties in using the inheritance
properties when applied to structural properties of objects. They even tended to
construct situations in which it is possible to use this property in the future (if the
problem evolves) although it is not necessary for the present solution.

For example, several experienced subjects used the type "tuple" (which is a record
composed of parameters) as main type to describe structural aspects of classes even if
there is only one parameter in the tuple. As most structures in database management
have the type tuple, creating a class of this type allows to use the inheritance property as
its type is likely to be compatible with any other classes type. This has been ranked as
inelegant by evaluators whereas it is an overgeneralization of the way to use inheritance
properties of structural aspects of the solution.

The inheritance properties on functionalities is difficult to use by both programmers
beginners in OOP and experienced in OOP. From "inelegances" or "errors" detected by
evaluators of the last version of the programs designed, we can say that programmers
do not use this property each time they should so as to conform to OOP principles.
They sometime reuse a known solution which had been constructed in programming
with classical procedural language (without use of the inheritance property) instead of
constructing a new solution which would use the inheritance property. Moreover, when
they use the inheritance property, they often.make errors. These errors may be linked to
the lack of a good representation of control flow and data flow in their programs, in
particular, when they use the late binding process.

Programmers also had difficulties in differentiating between concepts: they tended to
confuse three kinds of entity, a class, an object and a value, when manipulating them in
a program.

3.3. Negative effects of knowledge transfer in design

Many errors and "inelegances" have been detected by the evaluators in the final versions
of the programs. From the analysis of the protocols collected on the design activity, we
have been able to analyze how some of them are produced. It appears that the transfer of
various kinds of knowledge has negative effects which explain many errors and
"inelegances" in design. Subjects, beginners as well as experienced in OOP, transfer
schematic structures they have constructed through their practice of programming.
These transfers are useful in the learning process inasmuch as they produce a structure
which can be adapted to a new device. However, in some cases, the programmers just
apply the old structure without talcing into account the new constraints and
functionalities of the new device.

In this section we present examples of these negative effects of the transfer mechanism.
We differentiate different cases according to the kind of schematic knowledge being
transferred.

3.3.1. Schematic knowled&e dependent on the task domain

Programmers possess schemas dependent on the task domain they evoke as soon as
they have information on the problem they have to solve. From these schemas they can
infer data structures and functions to perform for solving a certain kind of problem. For
example, they know that, for data base management, which is the kind of problems they
had to solve, there must be some kind of set of records in the program and some
functions are to be performed: creation, modification, deletion.

According to the hypothesis on the naturalness of OOP, we would expect that schematic
knowledge dependent on the task domain helps programmers so as to develop solution

1

,,
I

�
I

1

1

,
i

,

,
!

l

ri
I

,

l

�
I

9

l

,
i

r

r

r

r

r

r

r

r

r

r

r

r

r
l

r

F
l

Second workshop of the "Psychology of Programming Interest Group",
Wolverhampton Polytechnic (Walsall site), UK, 4-6 Jamuary 1990.

adequate for OOP. Our data suggest that it is not the way it happens.

7

We observed that beginners in OOP experienced difficulties in structuring their solution.
From the problem statements and from their schematic knowledge in the task domain,
they inferred functions and objects to use in their solution. However, they found
difficult to relate one to each other, so as to construct the model of classes, and often
tried several solutions. The model of classes seems not to be transparent in the problem
statements.

Furthermore, it appeared that very soon in the design process, the programmers, mostly
the beginners in OOP, inferred elements of solution which do not conform to OOP
principles. Although the representation they worked on was a very abstract one and still
very close to the problem statements, they added elements of schematic knowledge
relative to a methodology of design (different from OOP}, or relative to a solution in
classical procedural language. We develop below several examples of these
mechanisms.

3.3.2. Schematic knowled&e de.pendent on a methodoloey of desim

Very early in their design activity, we observed that beginners in OOP may evoke and
use schematic knowledge dependent on a methodology of design which do not conform
to OOP principles. For example, a subject evoked elements of a solution constructed
with a relational approach of data base management. According to this methodology,
different objects have a number which is used as a cue to link together objects and to
help the search in the data base. Evoking this schematic knowledge, the subject added
an attribute of type "number" to each class he had constructed previously. Then he
constructed a kind of "flat" structure of classes, without using the "is-part-or'
relationship to link together classes. According to the evaluators, the final solution,
which was a development of this abstract solution did not conform to principles of
OOP.

3.3.3. Schematic knowled&e de.pendent on classical procedural Ian&Jia�es

Very early in their design activity, we observed that beginners, as well as experienced
programmers in OOP, evoked schematic knowledge dependent on classical procedural
languages. For example, a beginner added a parameter "type of object" in a class which
allowed him to do different processing (method calls) according to the value taken by
this parameter in a structure "case of' or "Ifs". This is typically a solution constructed
for classical procedural language. In doing so, he does not take into account the
functionalities of OOP. By the late-binding and inheritance properties, he could let the
system decide during the execution which kind of object is under process so as to call
the adequate method without using a "type" parameter and a structure of selection.

3.3.4. Schematic knowled,e dependent on the oo lan&Jiaie

In their learning process, subjects construct new structures which are dependent on the
00 language and they try to transfer these structures in order to apply them in different
situations. This is a learning process which sometimes causes errors by
overgeneralization of the use of a structure.

For example, when they had several methods which performed the same functionality in
different classes, they tried to use the inheritance properties. This is possible when the
signature of the method is the same for the method associated to the superclass as for
the methods associated to the subclasses. However, many errors were produced as they
generalized this structure without taking care of the signature of methods.

Second workshop of the "Psychology of Programming Interest Group",
Wolverhampton Polytechnic (Walsall site), UK, 4-6 Jamuary 1990.

4. Discussion

8

Programming with an object-oriented language is similar to programming with a
procedural language relatively to the following characteristics: development of solutions
at different level of abstractions, top-down and bottom-up development of solution,
anticipation of aspects of the solution, importance of reuse of solution, use of
simulation.

However, it appears from our study that designing a program with an object-oriented
language is not so easy and so natural as the tenants of OOP say. For the declarative
problem and the procedural problem, programmers experience many difficulties in
understanding and using the new concepts and constructs of this type of language. This
result underlines the need for a methodology of design in OOP and a programming
environment which support, by particular characteristics, the activity of design.

In the learning process of a new language by experts, we have underlined the
importance of transfer and reuse of solutions. We have seen that previous knowledge of
programming languages may produce negative effects in the acquisition of the new
language. Beginners as well as experienced programmers in object-oriented
programming tend to not fully use the functionalities of the new programming
paradigm. They sometime use inappropriately the syntax of the new language so as to
translate an old solution. This result underlines the need for training the subjects with
examples which take into consideration their previous knowledge and, in particular, the
transfers they may do.

From questions programmers asked and from errors or inelegances made in programs,
it appeared that beginners in OOP did not have a good representation of data flow and
control flow in programs written in the object-oriented language. This should be taken
into account in the training to the new language.

An object-oriented language could be more adequate to novices in programming
compared to experienced programmers who need to unlearn, in some way, acquired
schemas. Studies (Hoc, 1989) show the importance of knowledge transferred from the
task domain in the learning processes exhibited by novices. Thus the claim on the
learnability of object-oriented languages may be more relevant for novices (Rosson &
Alpert, 1988).

This research has been conducted while the Ch system is still under development. The
designers of this system are interested in our observations on programmers' difficulties
so as to take them into account for the further development of the language, for the
training of the system's users and for the development of a methodology of design and
the documentation.

References

Adelson, B. & Soloway, E. (1984) A model of Software Design. Research report 342,
Yale University, New Haven.

Bancilhon, F., Barbedette, G., Benzaken, V., Delobel, C., Gamerman, S., Lecluze, C.,
Pfeffer, P., Richard, P. & Velez, F. (1988) The Design and Implementation
of 02, an Object-Oriented Data Base System. Technical report 20-88, GIP
Altair, Rocquencourt.

Detienne, F. (in press) Program Understanding and Knowledge Organization: the
Influence of Acquired Schemas. In P. Falzon (Ed): "Coinitiye Etionomics:
understandin& and Iearnin& Human-Computer Interaction", Academic Press,
London.

Detienne, F. & Soloway, E. (1988) An Empirically-Derived Control Structure for the
Process of Program Understanding. Research report 886, INRIA,
Rocquencourt (to appear in International Journal of Man-Machine Studies,

,
',

1

i
i

1
j

�
I
1
I

1

"i
I

1
.
1

�
I

l

l

l

1

r
!

r

r
rm;\

I_

pm
I
(

r
l

r
I

r

r '

r

r
i

r

r

r

r

F'
'

F
r

i

�
i

j

Second workshop of the "Psychology of Programming Interest Group",
Wolverhampton Polytechnic (Walsall site), UK, 4-6 Jamuary 1990.

special issue on "Psychology of Programming")

9

Hoc, J-M. (1983) Une methode de classification prealable des problemes d'un domaine
pour !'analyse des strategies de resolution: la programmation informatique
chez des professionnels. Le Travail Humain, 46 (3), 205-217.

Hoc, J-M (1989) Analysis of beginner's Problen Solving Strategies in Programming. In
T.R.G. Green, S.J. Payne & G. Van der Veer (Eds): Ibe Psycholoiy of
Computer Use. Academic Press, London, 143-1 58.

Lecluse, C. & Richard, P. (1989) The 02 Database Programming Language. Proceedings
of International Conference on Very Large Data Bases. Amsterdam, 26 Aoiit
1 989.

Meyer, B. (1988) Object-Oriented Software Construction. Prentice Hall, International
Series in Computer Science.

Rosson, M. B. & Alpert, S. R. (1988) The cognitive Consequences of Object-Oriented
Design. Research report, RC 14191, IBM, N.Y.

Soloway, E. & Ehrlich, K. (1984) Empirical Studies of Programming Knowledge. JEEg
Transactions on Software En�ineerio&, SE-10 (5), 1984, 595-609.

Visser, W. (1987) Strategies in Programming Programmable Controllers: A Field Study
on a Professional Programmers. In G. Olson, S. Sheppard & E. Soloway
(Eds): Empirical Studies of Pro&rammers; second workshop. Ablex
Publishing Corporation: NJ, 217-230.

r

r

r

r

r

r
l

r

r !

r

r
i '

r

r

WHAT ARE THE "CARRY OVER EFFECTS" IN CHANGING
FROM A PROCEDURAL TO A DECLARATIVE APPROACH?

Jawed Siddiqi,
Dept. of Computer Studies,
Sheffield City Polytechnic,
Pond Street,
Sheffield, UK.

Abstract

Babak Khazaei,
SCIT
The Polytechnic
Wulfruna Street,
Wolverhampton, UK.

This paper h igh l ights the carry over effects in
chang ing fro m a procedu ral to a declarative
approach. The resu lts of a case study into
prog ramming i n Pro log for a relatively
s imp le p rob lem is reported . The paper
describes the d ifferent methods of solutions
that these subjects used to so lve the
problem and argues that they can be
explained on the bases of strategies used for
problem decomposition and the choice of data
representation . It argues that the methods of
sol utions used suffer from a "carry over
effect" based on a procedural approach . I n
p a rt i c u l a r , t h at t h e c h o ice o f data
rep resentation used appears to be more
important than the paradigm used.

1 . % nt roduct ion

Programming i n a logic based paradigm has gathered
momentum in recent years. This is because, among several
other reasons, that the use of predicate logic allows one to
state a programming solution in a declarative form, and it
is argued that this is more natural than a procedural form
for a large number of problems [1]. Some cognitive
scientists [2] have rightly argued on the issue of naturalness
of declarative forms.

Fro m a human factors point of view the problem of
•po-programmers" (i .e . those traditionally trained and
experienced in a procedural approach) learning Prolog
programming is twofold. On the one hand, they are required
to express their solutions in a logic paradigm which is a
novel idea because they are used to "procedural thinking".
On the other hand, they would need to know and consider the
"control flow" of a logic based language which may or may
not be identical to procedural features they are familiar
with. This combination in some cases can be confusing. At
present there is l ittle empirical evidence reporting this
phenomenon.

One study reports that programmers who have been trained
in and used programming principles based on the
procedural style have difficu lties in adapting to the
declarative style [3] . We bel ieve this is because these
programmers seem to continue to use the principles of the
former rather than the latter style. It is not unreasonable

to expect this because it is known that people have strong
tendency to apply known methods rather than learn new
methods. Therefore, we argue that for Prolog programming
the u nderly ing execution mechan ism used by
PD-programmer re lies heavi ly on procedural/operational
"thinking". This tendency produces what we call "carry
over effects" which in certain circumstances can lead to
misconceptions. There is an absence of published empirical
evidence which elaborates on these carry over effects. The
aim of our investigation is to provide an insight into the
crucial issues that need attention in order to ease the
transition of PD-programmers from a procedural style to a
declarative style of programming . In so doing we will
highlight the dual procedural and declarative models used by
PD-programmers.

Section 2 discusses the declarative and procedural issues
in Prolog, section 3 details the specifics of a case study and
the results of this are presented in section 4.

2 . Declarative and Procedural
Issues in Prolog

Prolog is considered a declarative programming language.
This is claimed to be advantageous because declarative
aspects of programs are usually easier to understand (1].
However, we postulate that there are two ways of viewing
a Prolog program, declaratively as a collection of relations
or procedurally as an ordering of relations. To understand the
difficulties that novice PD-programmers experience, we
briefly investigate declarative and procedural aspects of
Prolog that influences the process of program construction
and understanding

A Prolog program consists of clauses which are either ,facts
or rules. Facts are unconditional clauses that define
relations between objects. Rules are conditional clauses
that are executed if the head clause matches the data that
occurs in its environment. A simple Prolog program to
illustrate this is shown below:

parent(tom , jane).
parent(helen,jane) .
parent(steve ,helen).
grandparent(X, Y) :-

parent(X,Z),
parent(Z, Y).

The first three clauses are facts about the parent relationship.
Each states that the first argument is the parent of the second
argument (e.g. tom is jane's parent). The fouth clause is a rule
and we can see that it defines a grandparent relationship in
terms of a parent relationship. For problems involving
relationsh ips Prolog appears to provide an attractive
medium to express problem assumptions and to represent
problem solutions. For example, in relational database
applications Prolog can act as a "higher level language"
that frees us from having to express (redundant)
procedural details. However, in practice for most
appl ications writing a Prolog program entails the

l?F)

'2.. I
'""
i

1

'i
J

�
!

r

r

r

r
I

r

r

r

r
I

r
l

r

r

r

r

r
l

r

PD-programmmer employing an executio.n mechanism based
on ordering of relations (a procedural view). For instance,
in our simple example, if we introduce a new relation
'pred' which finds the predecessor of a person one possible
solution is to write :

pred (X ,Z) :­
pred(X,Y) ,
parent(Y ,Z).

pred (X,Z) : ­
parent(X,Z).

This definition is declaratively sound, but the Prolog
system is not be able to find a predecessor for 'jane'
because Prolog executes the facts and rules in their
particular order from top to bottom and therefore 'pred'
recursively calls itself and the terminating condition for
the recursion is never reached. We need to change the order
of clauses to enable Prolog to succeed in finding
predecessors to:

pred (X ,Z) :­
parent(X,Z).

p red(X ,Z) : ­
parent(Y,Z),
pred(X,Y).

The two versions i l lustrate that in order to write and
understand a Prolog program, a programmer needs to
view the program as a collection of facts and rules as well as
a process of goal satisfactions. To investigate such issues a
case study was carried out and an account of the preliminary
results is provided next.

3 . Case Study

32 second year under-graduate computer science students
undertook an assessment for a one semester module on
functional and logic programming. The students for nearly
two academic years, had received training in and used a
procedural approach to programming. The exercise was to
produce a Prolog program for the "Bridge Hand Problem".
The statement of the problem is as follows:

Write a Prolog program which accepts as input a
representation of a bridge hand consisting of 1 3 cards
supplied in random order. The program is required to
produce as output:

(a) the hand of cards arranged in descending
order by rank within each suit.

(b) the points value of the hand (counting 4,
3, 2 ,1 for Ace, King , Queen and Jack resp.)

An example output is as follows:

CLUBS K 1 0 9
DIAMONDS J 9 4 3
HEARTS A Q 1 0 8 2
SPADES 7

POINTS VALUE = 10.

The Bridge Hand problem was the subject of a
previous observational study into designer behaviour
involving programmers using a procedural approach (4].
The choice of problem was therfore well suited for an initial
comparative study between procedural and declarative
paradigms.

Although the majority of the students had difficulties in
providing a complete working solution to this problem,
sixteen of them succeeded in producing comprehensive
working programs The analysis carried out were similar to
that of Siddiqi [5] that is the solutions were compared to
identify distinct approaches. The classification chosen was
in terms of decision made concerning "the choice of
representation". This led to subjects atttempts being
classified into two solution types. One in which the subjects
chose to transform the input representation to the desired
output representation (i.e. an ordered set of values) by
means of an explicit sort routine, hereafter referred to as
transform type. The method of solutions involves splitting the
hand into four newly created lists according to suits. Each
card in the hand is inserted into the appropriate l ist
according to its value.

The other in which subjects chose to process the input
representation in its original form with the honour cards
being revalued so as to facilitate the use of the In-built sort
routine. This solution, hereafter referred to as patch it type,
involves using a "patching" routine to convert the sorted list
into the desired output. In terms of Siddiqi's previous work
(5) transform type represents a "data driven" approach,
because the primary focus is on processing the data stream.
Whilst the patch it type represent s a "goal driven"
approach, because the goal is to "sort" the hand using the
built in sort routine.

From the 32 attempted solutions 24 (75%) were of the patch
it type. The most likely explanation for this is that
subjects were attempting to use a "do what you can and
make the rest fit around it". A strategy reported by Siddiqi
in the study of subjects using a procedural approach [5].
For the Prolog solution, subjects recognised the benefits
of making use of the in-built sort routine (i.e. an island
of certainty) and adding "patches" to facilitate this
(fitting the rest around the island). It is hypothesised that
the students who provided the transform type solution had
used a data driven approach and did not rely on the
built-in sort routine.

,
t+-

�
I

I

,
I

,
J

,,
,l

l

1

1

l

,
l

1
I

l

.,
l

!
J

,,
I

