Visual Programming and Visualisation of Program Execution in Prolog

Simon HOLLAND

Department of Computing Science
Kings College

University of Aberdeen

Aberdeen

Scotland AB9 2UB

Tel : 44 224 27 2284
Fax: 44 224 48 7048
email (Janet) : simon@uk.ac.abdn.cs

Extended abstract

A new, simple, expressively complete visual formalism for programming in Prolog is
presented. The formalism is shown to be equivalent to the standard textual notation for Prolog.
Some aspects of Prolog programs are identified that appear to be clearer for novices when
presented in the graphic formalism, while other aspects of Prolog are noted that may be clearer
in the standard textual notation. The design of a computer environment dubbed VPP (short for
"Visual Programming in Prolog") is presented that supports visual programming in Prolog
using the graphical formalism. Two different implemented experimental prototypes of VPP are
discussed.

An extension of the programming environment is presented that allows Prolog execution
spaces to be visualised in complete detail (or presented in various compressed, pruned or
abstracted forms) using a simple three-dimensional extension of the same formalism. This
approach is unique in that the same formalism can be used both for visual programming, and
then ('stacked' in three dimensions), for complete visualisation of execution. This appears to
offer two major advantages over other approaches described in the literature. Firstly, only one
simple formalism need be learned, by contrast with systems where two different formalisms
must be learned (and mentally interrelated) for programming and execution visualisation.
Secondly, compared with systems that use only two dimensions for execution visualisation,
clutter and complexity is greatly reduced, and multiple interrelationships can be shown clearly
without a need to switch view.

A prototype of this environment, dubbed VPE - short for "Visualising Prolog Execution” - is
currently under construction. VPE is shown to provide complete information on Prolog
execution (as does the Transparent Prolog Machine (TPM), due to Eisenstadt and Brayshaw
(1987) - although TPM has no facilities for visual programing). Relationships are identified
that are more directly expressed in VPE than in TPM. Particular pruned views of VPE traces
are noted that allow recursion to be visualised in an intuitively satisfying nested "Russion doll"
fashion. Note that in order to distinguish the formalism for visualising execution spaces from
the environment (VPE) that uses the formalism, the notation for visualising execution spaces is
dubbed "3D-Prolog execution notation".

A further extension of VPP and VPE for visualising and manipulating lists is presented that can
be used to help make clear the action and purpose of commonly occurring list unification
programming techniques.

Some widely used prototypical Prolog programming techniques are identified which appear to
be particularly lucid in the VPP formalism for lists. It is argued that translation of a library of

prototypical Prolog "techniques” into the visual formalism and their examnination in VPE may
be a valuable way of helping novices to learn key Prolog programming skills .

Uses for VPP and VPE in teaching Prolog to novices, and in building domain specific
application kits are discussed. A simple factory construction metaphor or "story" is presented
to help novices make sense of Prolog execution traces. The metaphor distinguishesin a detailed
way between features of pure logic programming and "impure" procedural features like cut, not,
assert, etc. The metaphor makes this distinction by means of a detailed contrast between
assembling machines in a factory in an orderly fashion from components and blueprints, and
"trades union" activities such as-"cut" and "not" that restrict or alter normal working practices.
This metaphor seems to be particularly helpful in helping beginners to understand
backtracking, recursion, negation, cut, etc.

As well as supporting the factory metaphor, VPE is shown to have good low-level perceptual
visuo-spatial properties in allowing users to retrace backtracking behaviour continuously with a
finger in a "natural” way.

Connections with related work on graphic formalisms for programming in Prolog and Prolog
execution visualisation are noted. Connections with recent work on 3D techniques for the
visualisation of flat trees using 3-dimensional cone trees, cam trees, etc. at Xerox Parc are
noted. We informally analyse the structure and properties of the notation from an abstract

human-machine interaction viewpoint. Limitations and possibilities for further work are
identified and discussed.

Finally, itis shown how VPP and VPE can be extended into a domain independent graphical
logic programming tool kit (dubbed the Picture Machine) adaptable to become a domain-specific
application kit in any given suitable domain. Itis required that there should exist a mapping
from a given space of domain-specific diagrams into relations representing the meaning of the
diagrams. The Picture Machine (currently under implementation in prototype) should allow
non-programmers interested in some domain to manipulate domain-specific diagrams as a way
of querying and reprogramming existing domain-specific logic programs.

Interim Report on

OVERVIEW OF TALK
Ve o 0P Visual Programming
« Unique features of VPP+VPE Visualisation of
e et caon s Pro gram Execution
- exec model wses 3 spatiah dons in Prolog

» Visual programming in Prolog
« Visualisation of Prolog exccution Simon Holland

* Factory Metaphor . simon@ul:.ac.abdn.csd
* Visualising list processing

 Implementations

« Related systems,comparisons, origins Dcparlmcnl_of Computing Science
,) P € Kings College -
« Hypotheses about VPE and VPE University %f Aberdeen
(™ Limitations & further work Aberdcen

« Summary & Conclusions Scotland AB9 2UB

| Clauses with shared

trd

constants in database VISUAL PROGRAMMING IN PROLOG
Facts in a database in VPP
D '
bob parcni(abe.ben).
@\ | infccts-with(ben,X.mcasles).
_I— @ paren: pat ’T@— jim
fom abe parent —— ben
‘-@— tiz -
parent(pam,bob).
parcnt(bob. ann). ben infects-with
parent(iom,bob). X

parcnt(bob, pat).
parcnt(pai, jim).
parcnt(tom, liz).

» Constants and variables - links
- Rclations - boxcs

"Common" display of aloms not compulsory

« Can be displaycd as scparatc clauscs

+ In somec situations. can hclp 10 show potcntially
inferrable relationships casily

. NR; P ot isplay may o
I\Bnl:l %%%2’,;’;-5"“3“0"5' this style of display may « Upper and lower-casc distinction for

variablcs/constants as usual

* Box shapc docs not matier
(just number of ports and namc)

« Editor docs not allow sharcd variables between clauscs Orderi fel in datab
- except in querics rdering of clauses in databasc

« except within rules « Jeft 10 right, top 10 bottom

+ (no conjunctive clauses allowed in databasc) * but °p“2::“lli:|‘]’3’§$£cg d?':“::“

numbering sysiem ordered view

SCHEmATC pULELVIMY

Database Query
(n.Eumu; e uus) 1
ben parent X
abe ——| parent ben
ben parent charlie
Answer
—
charlie ——| parem eaait ben ! parent }— charlie

Metaphor /stories (ref)
Logical view
* Program = sct of axioms,
+ Computation = constrc prl of goal stat from prog.

Constraint satisfaction view
+ program = scl of constraints, rcls or specifications,
+ computation = constrc of cntity 1o satisfy constraints.

Advantages
+ within familiar cxpericnce of beginners
« links to logical account
« extends well 1o impure aspcects of prolog

3 arcas on screen,
« storcs / warchouse
* the order book
* construction arca

Warehouse carrics 2/3 kinds of stock,
« objects
* tcmplates
* blueprints

Stock laid out in order to be searched.

Pure Prolog

* "fiashing” as stock inspccied,
« copy of matching stock moved to construc arca
« "exploded diagram” meiaphor
- requests for an aliernative design...
- pantial failurc
* Sub-component breakdown - ‘Polar view' - recursion

c

Rules
sister(X,Y):-

parent (Z,X),
parent(Z,Y),
female(X),
different(X,Y).

>

sister

o

parent >*

Z different

2

« Within a rule, optional variable & constant sharing
(c.g X,Y,Z above)

\r

+ As with clausc order in program, clauscs in rule
ordered left 1o right top to bottom.

* Adjust clause order by moving ciauses physically

« Optionally, may usc (and altcr) numbers to ovcride
dcflault ordering

Current prototype (slightly idcaliscd)
Programming using VPP

T Tiie - (G- Uiew :Seorch Order. Fonls Query tindows:. . |
I —

Al 7|l x—d—d=p—-

olo L

Ol T—

Far' —
LN X 0 e 10 s HfO— 2
— —_—
*—-'go

Cusiom

T Tasem

Tone

I o

menu & strip of graphical tools
windows for - prog/query/answer
soldering iron to connect up boxes
scissors

boxes types to choose frem
Lyping tool to name boxes and variables

Boxes may be grown or shrunk for rules.

» Boxes can be moved or dcleted.

Moving boxes en massc - waich wircs

* Any sizc programs - scrollable window
+ Can gencraltc text prolog in new window

+ magnificd, reduced & alicrnative views

indexes and find functions

- numbcring too!

clauscs within programs
goals wiihin rules
docks within a box.

2ak

Find solstion:

(Er) () () (o)

D)
%)
qe)
D R
] 8 E
~— <]
< I e
a ,)/
S| /2 z [
N Zl(E (3 /-
AR AVAE
® | =
| g
! £ _
o 2 E
Impure features of Prolog: Trades Union 1l
(L Metaphor ‘
e Cut, not, assert, etc
anContrast
\ assemble components & blucprints, ancesior —
« alteration of normal work practices.) ben [ancestor ok
addany charlic
parent parent parent
Cut ‘J
* restrictive prac blt into blueprint. dc
» cordons off any work already done to .
satisy a blueprint up to ! instruc =

+ any demand to re-do work in cordoned-
off area refuscd.

* ban on scabbing - no alt blueprints to
one subj to indust action
* symbol...

not
cut fail blueprint,
or, boycott,

if not(sthAfricOrnges) in blueprint,
provided sthAfricOrnges not in
storcs,
asscmbly may proceed
If, sthAfricOrnges found in storcs,
'not ‘operation fails

(3

Backtracking, cut, not, etc

party(X):- happy(X), birthday(X).
panty(X):- friends(X,Y), sad(Y).
happy(X):- hot, humid, not raining,!,
swimming(X).

happy(X):- cloudy, watching_tv(X).
happy(X):- cloudy, having_fun(X).
cloudy.

hot.

humid.

having_fun(iom).

having_fun(sam).

swimming(john)

walching_tv(john).

sad(bill).

sam(sam).

birthday(tom)

birthday(s:un)

fricnds(tom,john).
friecnds(tom,sam).

Figurc 10. A simplc cxample program rcproduced
from Eisenstadt and Brayshaw (1987).

query
party(Name)?

Structured terms
Example

cquals(triangle(poini(-1,0), P2, P3)),
(triangle(P1, point(0,1), point(0,Y)).

tisnple ————————— giangle
‘0N “1 ~
L4 ~ - ~
'

[~ |
rd ~ - ~

point P2 P3 point point
PN \ N

Compound terms (structurcs)
can be vicwed as trce-structured variables.

Must distinguish
* lines showing common occurrences of terms and
* lines showing tree structuring of variables

Nesting of componcnts
* nesting of functors and terms within structurcs
shown by dotted lines.

Notation Folt USCIS 2 D

{HILY

append((l.L.LL

I Illl.ll.LlIlIlLfllw
sppend] appentl bL2. 12

Appending 2 fist 10 nves olement v
i

Ju

L

'
List processing

Lists arc special case of trec-structured variables
» may bc shown as trees using dot functor,
- or conventional textual notation for lists

Identical tenms in compound siructurcs
 Nced not always be shown by single graphical
instance
- Somctimes positively hinders clarity

Example of unclear diagram for a rule

conc(XIL], L2, XIL3):-
conc(L1, L2, L3).

X1 L} —————— eone | X | L3
T conc 5
L

B
conc
X I L] ————p ——— X113
o

—

L1 L
L2—

L —
B

Present reccommendation
- show lists conventionally
- dont try 1 show common 1crms if unclecar

11

Prototype IMPLEMENTATIONS of VPP

X

Philip (1991)

Sunview C SPARC

Generates textual prolog code from diagrams
Ad-hoc

Works but has some bugs

Treglown (1991)

X-windows C SPARC

More sysicmatic, uses formal visual grammar cct
incompicte

Larger than a student projecl.....

VS enoc 1

. - (LBLATED LomC

ICAHH 2 SARASUAT
FEX PaAke

)
(e)

LAPRET & Rarker

PAY 2 buen (m;)
/1:?"
Vit of
Procnm execuran {Lo-Teck)

rm por — N

¢ - Tex¥ed, we iy SeUe

VMt & SARASOMT -~ ‘bu K yed L
ekl ce VP

[NFe VISu A 1en

Qem ranc)

i foste eTC

PETAILS OF Unigi(Atred

2 { SWeo -

e

5 Related Work
VPP
« Kahn & Saraswat (Xerox Parc 1990)
« programming similar?
« not optimised for clarity
* no 3d execution model - storyboard

« Ladret & Rueher
« Neat connectivity idea (could borrow)
- programming rather different
* no executioi: model

Kurita & Tamura
+ Programming similar
- not so developed
* no execution model

VPE

+ Dewar & Cleary
debugger oniy -
Vizzprol

« TPM - best graphic tracer
« no graphic prog lang associated
« diff notation for prog & exec model
+ some alternatives not shown
« does not take advantage of 3D
« prob better for professs progs (so far)

«Colgan Rankin Spence (Impcrial)
e not Prolog: Eng design
+ somc similariiies

- IN€O UisusLisEn (rfn.;}

o

|
oanyt'irre)
? ~

[.
[

|
Swimmng(ohn)

] PR RS S0 Il YA e o i

'

Fpwe 5 Imermeciot: ADRT A srapzhol afier ine

QuIn - party(Name) Birthens 1 ras e lailze

CILE b ow R T TR

5 ——
(\)‘ e oy "Ll ;‘L Fisenvisdi & Brayenaw: Iniepeniest Prnlig Emvanmanens, Pope u
5 L i
e o i o . e AT NP des amB s G ociray paakal DIRTLAT
| i o w3 '
' 2 Yo Lt
G, v, ; I~ e
’ M \/ =) v b I, 343 > R TR LA
Le%y B

ve tre tel ! InT ged
Jag APIEC ceAuCT
PPt LT T
The pom molelalh
gemugper Tamaaln, e
Y RLYE SUIoTIE U L
1 B! 1 COmMIINaT Lot
\ fotinPul 1E1hedes.
o wners (€0 2 Many
mrdig of 2 107
! 1oy empARE QUM

e anle TR R

{D!n:eafx,}
s

| o |

o
lf\>’jm—:ﬂ!‘)!>< t—qm

5 minany o
Aoy €38 bt Pein

nEases €1) B3

P
Whazh 8 WA chwn

< Y S

"

ooy well arnoae

[

fioade © ‘ 2 | sews grazsisatty
o Py — | tootirer a3 Mg
. H :—-I
e | A \ GrAmTAL DIBY
s LA e
S

Many praptucal -
Sent nf ihtee €0
erpNanze e i
¥ 1 tatrs) 10 =Pkt

D1

LAV

| eriec slee vane

“TF S et i =] Mucr of ara
! — ~ = sranaga i ny
. A reemaning cand
3 ANETA whapshe: ¥ ’ N = semteacitg ¢
¥ oS pArtNamel partadl dae SUECECOPE Witk Namie = soom 8 Nop i eavaaas
IR LG Re achar s 5 - 5% WA
sl esdR RT Thackrae, PO ftrte vepns iy .
9 1) 1 [SENe eiam iy LARTSE qrmvivang e O e geliber gy o = vert i ate me
- o backpatking gL SIS BOX COmEONG:TS 1 Ciagss 1 af svivnmo o P :
< for bazerazking ig o idznciy the byl e R fo Tae -

L FNNL b2 A 1 m that 1<), §

b i iaige 5 b e

o{“d carmy On. Siazs there ars no other clapses for swimmin=

-: gmtbxu}.vnon INNprocegwe siaius box), and lixewaes 3
remeli g he ‘dark £ . .

: m},:‘. 3 l'll;'rry;hu(ln; carkeming’ of the frozes cioud indizates thar
Cyp el c’_au. ©72 0L RaDDN recenes & peiyerose comb:
- ONErathang. Ciause brgnshos sue and o

o2 S I nd the T
ader st i and three of nap

1= P 4
COLLY, 50 18- procediee sQluc ey for hnr‘“
P

RN IS NISTTNN
- 1318 30 1his poing g
forihe cut. There are na aihee

onature, 103t
having tebecr

CGme ofthe o
ol tre weery €0
e, gt
be dipinee

t
4
[shagh 17 41300

A% ANEIPT wae miade 310
10N 10 shosk that 11 g iy
have peen ehminaied i o ¢,

i] Shety the pee
= Ll b eon AT £4r g .
Th2 etain € s2atus boas fcieicavel] of party therefos Ao LTy dutin s | e

5 " TIVERA s ¢f,
g €02l suceseds yppnualiv on o

y "y =4 AN 05 riauet ane

} fails {.n. r !u:k..n.‘mn: {which leave sz g fercicy in the
-rmlu friends sycceeds an Ciause twe uih friendesum
F AT A roal To mdicae thers hoe b

tow atlempaed. Taz fricnds HEgEn o
LC fuiendsatpajahin, Jy
dGieSe xS box [clanse Te
LM THES Loaudh 1o, pew

t TtV s o

te some

Bie T A Lieaies @erlos 0 Foaser svorsmen im bt 1

N the
TRPACT A shaded! prinst it dim . i ko
S 16 181 Ao Wn, The gaallne P aicge [SITE T

< figure) ‘.':35.\:1 tand hence Namen e yeony : : .

LI FTT LI R PR

Youn - - o R o jele
FROR I massd 10 the SR Ties gt sty ot

Ao Yy e 2 e

Pareni\, mather, A))
Fit. 1 is & eneresponding piagram in Disler D Trncodure deciaratunn
Initewing ke hasic swons

Qo

are maie of

vhares

A "rame-hos * tepresenis & et ol pracedore declaranons = bl e
predicate mame py the faiel There are too mampedoars ar

ame hrad

Fopo 1 wash tie davele

and " parent”

* represeniy a precedure o

1oan wmemEedoe wmnes squaee

Kol 2 mameos. Fre example the namedan =parent " hay tme glatsinrs i fa)

“The mame comes liom the scmse that the programn
Qi hined dwars

A predicate in the body of & procedure declaratnn i represented by o “hlack e

£an e NS oAner Hauriue

Sceond fyr
(vraiomon |

Farsi ligr

.
¢/_\ 'MGE“D
=)

D)\ Furg: b3t foliowe g by ar; ong
N ‘_‘_‘l
HIINANG—2

Appene

Fik. 1 Freomeiel vepesiemiatinn of pepesinse devierwivast

Figure 1: & Simpile Evampiz

Pvormam 1o Append Lisy
- 5y -

i

o

” i g
utora & A7 i C /

o

Figure 3
FUIe 2 The Animation o 3 Sucesstul hyle Mach

Fipase 3 vm -
Fure 3 Tne AMmation of 3 Ryie Co 1me:
Milmen:

Fipure ¢ Tre Animiation of L » - :

Akt Shnnsang anz Apenys i.nu!u.,-

s i ; g EQZ o ™
LOGIC PEORIRAMMING LANGUAGE 181 EST L S
w = o e
=BT -— L
SRR RER g w
[etit fill-in | i3 % _{'
' S5 = R
=73 | Eig &
‘;Lz_zilm | z .-:._E 0 \
| = — TEE S {
t l , i E esa gl
. =l EEE= |
bl - TET. .
- =EE =
I e £ .
e SET;~ | =
sies { e e — -
: = £ 5 =
B E Tez 3
Ze] 2 5 8= P
=L = - = e
&2 b = PR O
ZE "~ 2 A<y
.: N -
TE U § e B
= | | - % be
v E A E b
Y : 3
=St | = -
- { =
vk | =
25 i B ¢
ZE L B o
£g = 55]
" M = u o
bt 1} = = =
= 1" £ < .3
=g] <
Lo g =
2 [§ . %
ae g S
N £ i &
= =4 ¥ &
£ = ¥ X
= %
= A
=
R
- S e
- 33w
2.'-\ :-:- -
/ >
”
Freure 23(b). Unng she standard pactern for celiming appumseny

corresponds 10 e foliowing Praiog clauses.

Lavker £
set (Ev, [Ev]) CAPRED «
,c:bf:f'c:". o jug wefe 144

end-cccomp (Ev, Scvi, Scv?),
sei hnny, S,
sct (dev?, ST),
uron (51, 55 5

set (Ev, S):-

o

st (B2 S)e.
or-gecomp (v, Sevi, 56va)
seta(Sevs, 8,

General motivations for Visual
Programming(Myers, 91)

+ Human visual information processing
optimised for mulii-dimensional data (Myers,91)

* Flowcharts & indenting known to help (Smith,77)

« 2 D displays of d:ua structures in program visualisation
systems known to be helpful (Backer, Myers)

« Higher lcvels of abstraction can often be shown casily

« Can represent relationships that are hard to verbalise

+ Can show mutiplc relationships conciscly and clearly
without cognitive overloading

« Structures can be casier to remember. Shu (1988)

+ Clarissc (86) : graphical reps canbe -
* ncarer to presumed mental reps of problem
* manips ncarcer to thosc performed on phys ohjs
« casicr to understand & gencerate for
nonprograminers or programmer novices

+ Catalogue of psychological motivations (Smith 1977)

ﬂ%

« Use perceptual processing to frec up scarce cognitive
resources 10 deal with higher level probiems. (Ncrox
PARC, Information Visualiser)

LIMITATIONS AND
WEAKNESSES OF VPP

Current implementations very limited

“Following origins. so far optimised for
domain specific programming Kits & for
non-prolog programmers

cf Labview
Max
Melody Machine
Picture machine

Parts of design siill being refined - c.

a
large scale views, list processing. cic

Studies of users required

Origins

Inspired by

« Stcele's (1980) notation for constraint
programming
(clectronics DIP metaphor)

* Design of a graphic programming
language for beginners for a domain
specific constraint-based planner
(music) (Holland, 1989)

« Generalised to Prolog 1990

* 3D Exccution modcl devised 1990 but dropped
on grounds of impracticability until saw
rcporis of Xcrox information visualiser

« Picture machine deviscd 1990
+ Two implementations 1991

* Refined cxecution model with reference to TPM
(Eisenstadt & Brayshaw)
1991 - otherwise developed in ignorance
of related work

Hypotheses
« NB - all open to experimental test

» General - 1 cevkair cans
+ unloads tasks from cog facs to
percept facs,
- provides casily grouped ‘visual
caches'
« exploits gestault percept skills in
lieu of problem solving skills

Integrated gomi:
+ less to leamn
* less cog load in matching source
+ excc lrace

+ [Factory metaphor
« makes sense/ usable for novices
with no Prolog at all
» clear story for pure/fimpure features

« 3D execution model . of 45
« more distinctions clear at a
glance using low level percept skills
« cxploits strengths of iiliely new
wave of GUIs

CONCLUSIONS

VPP and VPE

Unique fcatures of VPP + VPE
* integratcd system: one formalism
complete overvicw
» factory mctaphor: non-progs?
« excc modcl uses 3 spatial dims

IHypotheses
« General
* unloads tasks from cog lacs to pcreept facs,
» provides casily groupcd 'visual caches'
« cxploits gestault pereept skills in licu of problem
solving skills

*Integrated
* less to Icarn
* less cog load in matching source cxcc trace

» [Factory metaphor
» makes scnse/ usable for novices with no Prolog
» clcar story for purc/impure featurcs

* 3D cxccution modecl
« more distinctions clcar at a glancc using low
level percept skills
» cxploits strengths of likely new wave of GUIs

Fixperimentation & more refined implementation
required

IF'URTHER WORK

» More refined implement & design VPP
 Implement VPE (Holland, Treglown)
Instantiation flows
Selective views, prune,zoom,
3D rotation
Long distance vicws view

 Various extensions or VPE have been
designed which in principle could make
it as fully-featured a debugger as TPM,
although that is not its primary purpose.

« Experiment with symbology for VPE
animation vs notation :
"7" marks vs flashing etc
lists

» [Formative evaluation: experiments with
users

