An Analysis of Novice Programmers Leaming a Second Language

Jean Scholtz
Computer Science Departiment
Portland State University, Portland, OR

Susan Wiedenbeck
Department of Computer Science and Engineering
University of Nebraska, Lincoln, NE

Abstract

This research studied novice programmers with some Pascal knowledge durlng their ini-
U uuullpm ai weaiiiih ig ahudher programn nhg Ly Se
gramming knowledge they had previously acqu1red and 1o determme how they ‘were able
to use this knowledge in learning a second language. We found that plan structure differ-
ences could be used to predict problems programmers encountered. This both
(f@\ strengthens the claim for plan knowledge and suggests some basis for tutoring develop-
ment. Additionally, we discovered trends showing that when the language was more dis-
tant from the one programmers knew a bottom up or plan creation methodology was
more successful than a plan retrieval process.

Introduction

During an undergraduate program in Computer Science, the typical student takes such
courses as programming languages, data structures, operating systems, algorithms and
theory. While studying these courses, students are required to write various types of pro-
grams in several different languages. Students typically learn a first language such as
Pascal or Modula 2. They then use C in courses such as operating systems and compiler
theory. They may use Lisp or Prolog in a course in Artificial Intelligence. They may also
be introduced to object oriented languages and parallel languages. Much of the early
empirical work has focused on novice programmers, what they know (Soloway et
al.,1984; Soloway, Bonar, and Ehrlich, 1988) and misconceptions they have(Bonar and
Soloway, 1988; Spohrer, Soloway, and Pope, 1988; Spohrer and Soloway, 1988). While
students in their second or third year of study are still relatively new at programming, we
feel their process of learning a new language will differ significantly from the process

(™involved in learning a first language. Students will be building on the knowledge they
acquired in leamning the first language. We felt that an interesting study would be to
examine the knowledge novices have about programming and see how or if this
knowledge is used in the process of learning a new programming language.

Soloway et al. (1984) formulated the idea of a plan in program knowledge. Rist (1991a)
defines a plan as a series of actions that achieve a goal. So a running total plan involves
declaring a variable to be used for the counter and incrementing this variable by one after
the appropriate condition has occurred. Plan knowledge is classified as strategic, tactical
or implementation plan knowledge. Strategic plans are defined to be plans independent
of language, having to do with a global strategy. Tactical plans are considered to be
language independent but at a more detailed level than the strategic plans. At this level
of planning, Soloway maintains that the programmer would consider such iems as
abstract data structures needed, the action to be accomplished and the output. Implemen-
tation plans then deal with the code for this particular tactical plan given a particular pro-
gramming language. In experimental studies, Soloway discovered that less than 60% of
the novice programmers (students in first and second term programming courses were

used) successfully completed any of three programs they were asked to write. These
three programs emphasized looping constructs. An analysis of the errors subjects made
revealed that the majority of the unsuccessful solutions could not be attributed to "silly
mistakes"”. Further analysis also showed that the correct choice of language construct did
not predict success in solution generation. However, the correct choice of strategic plan
did indeed correlate with success in generating a working solution.

Other researchers have looked at plan knowledge in programming. Rist (1991a) looked
at extracting plan structure from program code. Rist makes a distinction between surface
plan structure and deep plan structure. We believe that his "deep " plan structure is com-
parable to Soloway’s strategic and tactical plans. His surface plan structure compares to
the implementation plans defined by Soloway. A program is composed of many complex
plans that are linked together. Complex plans are likewise composed of basic plan units.
A basic plan unit possesses the following parts; declaration of variables, initialization (or
inputy of vaiues, calcyiauon onsidered 10 be e fucal portion of the plan) and outpu:

Output may result in a physical print statement or the production of a value which may
by used by other plans. Rist presents an algorithm for deriving the plan structure from
any given program. Actions or lines of code are connected by data flow and control flow
links. The plan dependencies can be one of four types: use, make, obey, or control. Use
and make refer to data flow. A calculation line such as total:= a + b uses two values, a
and b, and makes one value, total. Obey and control refer to control flow. A loop line
would control all the lines within its block. The algorithm traces out plan structure by
starting from the output and then tracing backward, identifying use links for the vari-
ables and control links. See Figures 1, 2 and 3 for sample plan structures obtained using
Rist’s algorithm. In the plan structure diagrams, control flow is represented by arrows to
the left and data flow is represented by arrows to the right.

Rist (1991b) also looked at plan creation and plan retrieval for novice and éxpericnccd
programmers. Planretrieval is seen when the elements of the plan appear in a top down
fashion. For example, initialization or inputs would appear prior to the focus or calcula-
tons line. Plan creation is done by generating backwards from the focal line. Rist found
strong evidence for plan creation in solution plans for novices. A shift from plan creation
to plan retrieval was shown for the more experienced subjects. Although, even experi-
enced programmers were shown to resort to plan creation for difficult problems.

We wanted to explore several aspects of transfer to a new programming language.

1. If we assume that students have prior programming knowledge in the form of plans,
would they attempt to use this knowledge in writing a program in a new language?

2. Would this knowledge help or hinder subjects in producing correct solutions in the
new language?

3. Would a correct choice of strategy again correlate with success in producing a
correct solution?

4 Would the type of new language have an effect?

In order to find answers to the above questions we conducted exploratory protocol studies
with novice programmers writing programs in one of three languages. One language was
the language they were all familiar with, Pascal. The other two languages used in this
study were Ada and Icon. Our analysis included the following: plan creation versus plan
retrieval, percentage of effort devoted to Soloway’s three different types of planning, and

-3

correlation of this effort to differences in plan structure between programs in the three
languages.

Methodology

The subjects used were Computer Science students at either the University of Nebraska
-Lincoln or at Portland State University. They had either just finished their first term of
Pascal or were just starting the second term. (Pascal was the first language taught at these
universities at the time these studies were conducted.) These thirteen subjects were ran-
domly assigned to one of three groups: three students wrote the program in Pascal, five
students wrote the program in Icon, and five students wrote the program in Ada. Verbal
protocols were collected, transcribed and analyzed to obtain the data discussed in this

paper.

The two languages, Ada and Icon, were selected to represent languages not different in
type from Pascal. That is, all three languages are procedural in nature. Icon, however, is
a string oriented language that possesses many functions that operate on strings as enti-

(Qm ies. Icon also contains the pattern matching features of SNOBOL. Therefore, tactical
plans appropriate in Pascal would not be appropriate in Icon. In this respect, Ada is more
similar to Pascal. In this study, the data abstraction features and concurrency features of
Ada were not used.

The program that subjects were asked to write a solution to was called the Count A’s
problem. The following description was given to the subjects:

You are asked 10 write a program which reads in lines of text

counting the number of a’s and outputting-this number. N

Subjects were provided with computer facilities and text books on the language in which
they were asked to write solutions. Video equipment was used to collect subjects’ ver-
balizations as they "thought aloud” and also to collect the information displayed on the
computer monitor during a session. Sessions lasted a maximum of two hours. Subjects
were allowed to quit if they became completely frustrated (only one subject took advan-
tage of this option) or if they finished the solution prior to the two hour time limit.

Subjects’ protocols were transcribed and analyzed by two independent evaluators. The
transcriptions were first broken into episodes. An episode was defined as a behavior dis-

(™ inct from surrounding behavior. Therefore, the start of a new episode could be signaled
by a shift in physical behavior. A time frame in which a subject who had been reading
the text book and then began writing code would signal the beginning of a new episode.
A shift in mental focus would also determine the beginning of a new episode. So a sub-
ject who has been looking at for loops and then switches to looking at while loops would
exhibit a change in episode. The thirteen protocols contained 1148 episodes. The
evaluators then classified each episode as to whether it dealt with syntax, semantics, or
one of the three classifications of planning: strategic, tactical or implementation. The
evaluators had a 94.8% agreement on their independent classifications. Disagreements
were then resolved by discussion between the evaluators. The range on agreement levels
was from 88.9% on one Ada transcript to 100% on one Icon transcript.

_4-

program countas (input,output);
var count: integer;

ch: char;

. [\}

begin '

writeln ("input text);

count :=(; “

while not eof do
begin
read (ch);
if ch = "a" then count := count + 1
end;

writeln ("number of a’s", count)

end.
Pascal solution
while not eof do var ch:char

\\a

3

read (ch) var count: integer

if ch = 'a' then count:=0

count := count + 1

e

writeln (count)

Pascal plan structure

Figure 1: Pascal Solution and Plan Structure

with ada_io; usc ada_io;

with text_io; |

procedure counung 15
count: integer:=0;
ch: character,

begin N
put (“enter text);

newline;
while not tcxl__ip.cnd_of_ﬁlc loop

while not tcxt_lo.cnd_of_linc loop

et(ch); .
igf c(h — 'a’ then count := count + 1;

end if;
end loop;
skip line:

end loop; e
put (“the number of a’s is);

put (count);
end counting;

Ada solution

with text_io 3

while not text_io.end_of_file
with ada_io; use ada_io

while not text_io.end_of_line

R \ /t[:haracter ch

get (ch)

.f Ch = [] L] th n)
, . K integer count:=0

count = count + 1

put (count)

Ada plan structure

Figure 2: Ada Solution and Plan Suucuure

procedure main ()
count :=0
while line :=read() do {
every find ("a", line) do
count +:= 1}
write (“the number of a’s is", count)
end

Icon solution

while line:= read()

\ W

every

\ }ne{ = read()

find ("a",line) count:=0

count +:= 1

.

write (count)

lcon plan structure

Figure 3: Icon Solution and Plan Structure

Solutions Produced

Figures 1,2 and 3 show one solution to the Count A’s problem in each language. Of the
three Pascal novices, all three produced a working soluton. Two of these solutions
closely resembled the solution given in Figure 1. The third subject thought there was a
need to retain all input and devised a system of arrays of records with each record con-
taining a line (stored as an array of characters) and the number of characters in it. All of
these subjects used an end of file condition to indicate the end of the input. All three
solutions contained a label for the output but none prompted the user for the input.

Four of the five Ada subjects produced a working solution. Of these, three psed a sen-
tinel character to represent the end of the input. The fourth asked for a specific number
of characters to be input and was only attempting to do one of these limited lines. The
sole subject trying to use end_of file as a terminating condition did not get his solution to
..... Sl Tave sihinnes vead Snant meamnte and tun veed Antaane Tahale Thi fnnoee aeaminte

Y . L K =]
were most likely produced because of the necessity to indicate what the terminating char-
acter was.

W"'I’hree of the five Icon subjects produced working solutions. All of these solutions were

- similar to the suggested solution in figure 3. A fourth subjects used string scanning and
did not get this put into a loop to do more than one line. The fifth subject was attempting
to use a sentinel value to terminate input and was using the subscripting feature to exam-
ine a character at a time from each line. Four solutions contained input prompts. Three
solutions contained labeled output.

It was interesting to note in the protocols that none of the subjects working in Pascal con-
sidered using a sentinel character for termination. And only one subject in Icon felt the
necessity to do this, having not discovered the success and failure aspect of the read func-
tion. In Ada, several subjects did not even attempt to locate an end of file. A few who
did quickly gave up and resorted to a sentinel character.

Input prompts and output labels seem to be optional for novice programmers. If this type
of input or output seems difficult, it is skipped. This was the case in Ada where puz, the
output procedure, can only be used with one parameter at a time.

Analysis of Program Development

- syntax | semantics | 1mplementation | tactical | strategic
Pascal 6.8% Q 58.4% 26.5% 8.4%
Ada | 27.4% 5.2% 52.3% 12.3% 2.8%
Icon | 23.7% 17.6% 51.5% 5.4% 1.7%

Figure 4: Percentage of time in each area of program development

All classified episodes were timed. Non classified episodes had to do with concerns
about using the text editor or were merely comments uttered by the subjects while wait-
ing for the program to compile. When verbalizations had nothing to do with solving the
problem, they were not classified and were not counted in the solution time for the sub-
ject. The tme that each subject spent in the five areas of program development, the three
planning categories previously discussed and syntactic and semantic concerns of the
language, were then added up and divided by the total amount of classified time. Figure

-8-

4 shows the results of this classification. First of all, we expected that syntactic concerns
would consume more effort in the new languages. Subjects working in Icon spent some-
what less of their effort in syntax, most likely because the syntax of Icon is somewhat
simplier than that of Ada. Ada has matching keywords, like if and end if and loop and
end loop while Icon consistently uses curly braces to group statements. The percentage
of episodes devoted to semantics is much higher in Icon. This is to be expected as Icon
contains many unique functions that students needed to investigate. Implementation
planning effort does not differ much from language to language. Pascal subjects spent a
greater percentage of their time in tactical and strategic planning than did Ada and Icon
subjects. While on the surface this seems contradictory, remember that these Pascal sub-
jects spent little time on syntax and no time on semantic issues. Also, the Pascal subjects
were able to exhibit more "thought-out" solutions than were the other subjects.

We constructed "optimal” solutions to the Count A’s program in all three languages. An
ontimal snlution 1o 1< nses uniane constructs that are available in the lancuage to achieve
a solution with the most elegance and least possibility of error. ‘Theretore, we consider
solutions that decompose and subsequently recompose data structure elements inferior to
solutions that operate on the entire data structure. Decomposition followed by composi-
tion is more error prone. Figures 1, 2 and 3 contain our solutions and the corresponding
plan structure derived using Rist’s algorithm. Again, note that in the plan structures
shown in those figures, the left arrows represent control flow and the right arrows
represent data flow. Rist’s algorithm does not incorporate declarations into the plan
structure. We felt, however, that the use of a variable in many languages depends on
having declared it previous. We felt that subjects would express concemns about this dur-
ing program development. Therefore we included declarations of variables in our "ver-

sion” of the algorithm.

Differences in Plan Structure

Looking at the Pascal and Icon solutions and plan structures (figures 1 and 3), the follow-
ing differences are apparent:

1. InIcon, there is no need to declare variables. A declaration is used only if variables
are local to that procedure.

2. In Icon, the auto increment capability of C is used (count+:= 1). However, the
longer version (Count : = count + 1) is also syntactically valid.

3. Inlcon, every is a generator which is used to loop through all characters positions of
a string. Every, therefore, produces a vector of output.

4. The Icon statement, while line:= read() is used for two purposes. line := read()
reads in a line of input and assigns its value to the variable line. The read function
also returns an indicaton of success or failure. That is, if the end of file has been
reached, the read function fails, causing the while loop to terminate.

5. findis an Icon function that looks in a character string to find the first occurrence of
a substring. This function returns either the position of the occurrence or failure.

Looking at the Pascal and Ada solutions and plan structures (figures 1 and 2) there are
few large differences. Some minor differences are:

-9.

In Ada, the procedures get and put are used for input and output. Newline is used to
advance to the next output line, whereas Pascal uses writeln for writing and

automatically supplying a carriage return.

In Ada, variables may be initialized at the same time as they are declared. A
separate assignment statement (as in Pascal) also serves to initialize variables.

The input and output routines in Ada are contained in several packages. In order to
use any of these routines, one has to be sure that with statments have been included
that reference those packages. The use statement indicates that the package name
does not have to be declared as a prefix when referencing a routine in the package.
This is similar to the dot notation used in Pascal to refer to record fields.

Thewor fanend S0 8% cendition in Ada is treated somewhat differently than Pas-
cal. In order to process multiple lines of text using an end of file exception, one
must use two loops: an inner one for end of line and an outer loop for end of file.
This is necessary as each condition is handled using a different exception handler.

We hypothesized that differences in surface plan structure could be used to predict the
kinds of problems programmers would have in attempting to learn a new language. In
order to talk about "kind of problem" we will refer to which of the five areas of program
development the programmer will need to devote some effort.

We made the following hypotheses about plan structure differences and their effects:

1.

If a makes or uses structure element is missing in the new language, (e:g. declara-
tion statements) the programmer will spend some time validating that these are not
needed. This would result in implementation concerns.

If the structure of the element maps onto a similar structure but the corresponding
statements differ, the programmer will first need to locate the appropriate construct
and then understand how it functions, resulting in implementation and semantic
concemns. For example, the Ada procedure get is used for input as opposed to read
in Pascal. Programmers need to find the ger statment (implementation) and verify
how it works (semantics).

If the control structures of the corresponding elements differ efforts will have to be
devoted to tactical plans, that is, a rethinking of how the flow works.

If the new language requires makes or uses structure elements which are not
required by the original language, programmers may have difficulty discovering,
and using these. This would result in implementation concerns. That is, program-
mers would attempt to get a particular concept working although its hidden depen-
dency has not been discovered.

To see whether our hypotheses showed any validity we looked at several lines in Icon
and Ada which illustrated these structure differences. We then counted the number of
episodes in each area of program development per subject for each of these lines. We
looked at the number of episodes here rather than time. As we already have an indication
of where the majority of the efforts are, we were more interested in seeing the type of
concerns expressed for each of these differences.

-10 -

We looked at the following four differences between Icon and Pascal:

Icon Pascal H 1
find ("a", line) if ch="a" then ypo?thSIS
while line :=read() while not eof do read (ch) 3
(no declaration needed) | var count: integer; ch: char 1
every (no corresponding Pascal function) 3

Figure 5: Plan Structure Differences between Icon and Pascal

From our hypotheses we expected that we would see semantic and implementation
episodes in find, tactical episodes for while line:= read(), implementation concerns for
tem m%lz“‘ dLCh "‘u 15, and taciica! cpe IS odes for CIdvay.

line subject | syntax | semantics | implementaton | tactical | strategic
find S1 7 4

S2 2

S3
S4

line= read S1 1

v
v
i
— Wl N
WAL =N\~
|

w

H
—
— N

declaratuon S1 2

[%2]
N
Db

every

72,
(-
[\
AN -
o)) & HON——

Figure 6: Number of Program Development Episodes for Plan Structure Difference in Icon

Figure 6 lists the number of episodes per subject per line for Icon subjects. For find,
there are numerous semantic and implementation episodes, thus supporting hypothesis 2.
For while Line:= read(), the episodes deal with semantics and implementation but also
with tactical concerns, thus supporting hypothesis 3. For declarations, we found imple-
mentation episodes, giving support to hypothesis 1. For every, we expected to see sup-
port for hypothesis 3 and again see more tactical episodes than occurred. This was not
the case. A plausible explanation is that subjects in these experiments found several
examples of every that were easy to extend to the desired result without actually fully
understanding the construct. We need to further investigate this.

For Ada, the following differences were examined:

— 1§ -

Ada Pascal Hypothesis

while not text_io.end_of file while not eof 4
get(character) read(ch) o 2

ada_10 (no correspondence) 4

while not texl_lo.cnd_of_line (no correspondence) 3

Figure 7: Plan Structwure Differences between Ada and Pascal

For the references to the 10 package, text_io, needed to use end of file, hypotheses 4
predicts that implementation concerns will arise. That is, because end of file in Ada
requires a with text_io statement whereas no such statement is required in Pascal. Indeed
we did see subjects searching for how to implement this. Subjects who produced work-
ing solutions made a decision not to use end_of file and instead used a sentinel character
W eitiliiaie Wipui, Tesuiiiig 1o suind weucw and sucdiegle revisions. Tad subjects per-
severed in attempts to use end of file, more 1mplememauon episodes would have
occurred. The additional loop on end_of line condition needed for Ada would suggest by

. hypothesis 3 that tactical episodes are needed. However, as subjects gave up on the
end of file condition, no data was available for end of line. Subjects simply failed to
develop this partacular portion of the plan.

The ger input statement and put output statement of Ada are only different constructs
from Pascal. Therefore, implementation and semantic concems will be seen. Indeed,
implementation concerns dominate. The one subject showing higher tactical concerns
was attempung to read in an entire line but later revised this, thus requiring some tactical

planning.
P

The references to the Ada_io package necessary to use the ger and put procedures have
no corresponding requirements in Pascal, therefore hypothesis 4 predicts implementation
concems. This prediction did not hold true. While a few implementation concerns
appeared, syntax and semantics were investigated more frequently. A possible explana-
ton seems to be suggested by the protocols Again, subjects saw examples of programs
using the with ada_io and use ada_io statments and were content to incorporate these
into their programs. The questions arose as to what their function was. Most subjects
quickly resolved that this was some statement that allowed you to use input and output
statements and were content to let it go at that.

-12 -

Statement subject | syntax | semantics | implementation | tactical | strategic

end_of_file SI 1

1
1 1

get/put S1 |

(7]
[\®]
[
— H W WO\ — W

ada_10 S1 1

end_of_line NA

Figure 8: Number of Program Development Episodes for Plan Structure Differences in Ada

Although this study was small and exploratory in nature, we feel that the differences in
surface plan structure can serve to give some guidance about problems that programmers
will have in constructing a solution in a new language.

Another difference in plan structure also exists. The composition or decomposition of
plan elements may cause problems. For example, Pascal requires the programmer to use
two separate statements to declare and initialize variables. In Ada, an initialization can
also be accomplished this way but can also be accomplished by initializing the variable
when it is declared. (integer count:=0) Likewise, the autoincrementing feature in Icon
(count +:=1) was not discovered as subjects could also use the standard incrementing
plan (count := count + 1). These composition /decomposition differences seem to be
overlooked in many cases. A question for further investigation is how a programmer
eventually discovers some of these unique features. In this study subjects used the two
statement approach and never bothered to look further for an alternative approach.

The use of newline in Ada to cause the output file to be advanced one line was also inves-
tigated. In Pascal, the writeln procedure incorporates this automatically. Three Ada sub-
jects found and used newline. Two of the subjects used it correctly. The third subject
seemed to feel it had something to do with the input file. They had few total concerns
however (5 episodes). Implementation concerns made up two episodes with one episode
each of tactical, semantic and syntactical concems. Subjects saw this procedure used in
an example and once again, merely duplicated it with few questions.

Plan Creation Versus Plan Retrieval

We also wanted to examine plan retrieval as opposed to plan creation when using a new
language. Are novice programmers able to retrieve any plans and use them in a new
language? Is this, in fact, an appropriate strategy in transferring to a new language?

Figure 9 shows the plan name and the corresponding statements in each language.

- 13-

Plan Pascal Ada Icon

Read writeIn("input text™) put("input text") write("input text™)

read(ch) newline line:=read()
get(ch)

Running total | count:=0 integer count:=0 count:=0
count:=count+ 1 count:=count+1 count +:=1

find a read(ch) get(ch) line:=read()
if ch =’a’ then if ch =’a’ then find(’a’,line)

output wnte('number of a ") | put("number of a") | write("number of a”)
write(count) put(count) write(count)

Figure 9: Plans in Pascal, Ada and Icon

Each plan in figure 9 shows an initializatuon portion first, followed by the focal or calcu-
lation line. If the plan appears in this top down fashion, it indicates retrieval. If a subject
creates a plan he starts with the focal line and works backward. The plans in figure 9
would then appear reversed, so creation of the running total plan would be seen if
(,m\ ount:= count + 1 appeared prior to count:= 0. To examine creation versus retrieval, we
noted the subjects’ verbalizations about each plan. We did not analyze the actual appear-
ance of the line of code. We felt that if a subject thought about a particular line, even if it
was not written down at the time, he, in fact, had entered it into his mental representation

of the soluton.

Pascal(3) | Ada(5) | Icon(5)

Plan B F [BI]F[IBJF
running total | 2 I 41141
Read 3 0 S10141]1
find A 0 3 0151213
output 0 3 4 | 114 1

Figure 10: Plan Creation and Retrieval in Each Language

(ﬂfigure 10 shows the number of subjects in each language producing the plan forward (F)
" adicating retrieval or backward (B) indicating creation. Note that the Pascal group con-
tained only three subjects.

The two plans where the most differences were shown were the find A and output plan.
In the input and output plans a missing prompt or label was scored as appearing later than
the focal line. Therefore, as a backward plan or creation of a plan. Pascal subjects all
produced a labeled output in a forward fashion. This was not true of the Ada and Icon
subjects, who either did not label the output (50%) or created the plan(50%). The find A
plan was retrieved and used for both Ada and Pascal. For Icon, three subjects did the
planin a forward fashion. Of these three, only one was able to produce a working solu-
tdon. Two subjects created the plan. Both of these subjects were able to produce a work-
ing solution closely resembling the suggested solution. It is interesting that the find A
plan was the plan retrieved more of the time than any other plans regardless of language.
The other plans were often created due to the initalization line portion either appearing
later of not appearing at all.

We also looked at the order in which each plan making up the loop of the solution was

- 14 -

generated. A top down generation would result in the following order:
loop control
read
find A
running total

Notice that the read plan is separated with the initialization or prompt for the input out-
side the loop control and the actual read statment contained within the loop.

The find A plan is considered the calculation or focal point of the complex plan so a crea-
tion of the complex plan would start by looking at this basic plan. For Pascal, only one
subject out of the three showed retrieval for this complex plan. The other two developed
the enclosed basic plans in order, then put the loop around them. For Ada, one subject
out of five was able to do this in a forward fashion. Two subjects used a backward
development. A fourth subject developed the body of the loop in order, then enclosed it
with the control statements. The fifth did a mixed order, developing the read plan first,
then the remainder in a top-down fashion. For Icon three subjects used a strictly bottom
up or creation approach. All three of these subjects produced good, working solutions.
The remaining two subjects, neither of whom produced working solutions showed either
forward or mixed development. In Icon, it seems that subjects, who looked at the focal
line first discovered the find function and the generator, every, were more likely to pro-
duce a working solution. Again, thisis an exploratory study but this trend bears further
investigation. Perhaps as one moves to languages that are less similar to familiar
languages, the bottom up or creation of plans and complex plans allows the programmer
to discover more suitable plans.

An Interesting Observation \

The Icon language also contains a reads function. This function is used to read a
specified number of characters from the input, failing if that many characters do not exist
between the current position in the file and the end of file. The default number of charac-
ters is one. An alternative solution to the Count A’s program would then be the follow-

ing:

procedure main()
count :=0
write("input, please™)
while ch :=reads() do
if ch = "a" then count +:= 1
write ("The number of a", count)
end

This solution produces a plan structure very similar to the Pascal plan structure.
Interestly, none of the novice programmers considered using reads. Even the one subject
who decomposed his line into single characters to check for a’s did not consider reading
in a single character. Although both read and reads are described in the appendix of the
Icon text, only read is used in early examples in the text. This tendency of subjects to
reuse code that they see in examples needs to be investigated. What is the interaction, if
any, of code reuse and the programmers’ plan knowledge?

-15 -

Conclusions

This study has perhaps raised more questions then it has answered. Although exploratory
in nature, definite trends have been revealed in the analysis. First, it seems as if plan
structure differences can be used to predict areas of program development that program-
mers will have concerns about. This assumes a programmer’s capability to produce a
working, stereotypical solution in the familiar language. Will this generalize to other
languages, such as object oriented and declarative? Is the same true of more experienced
programmers? This study suggests that as languages become more distant a bottom up or
creation model is likely to lead to more success. Again, this needs to be investigated
more thoroughly and with respect to language type and expertise.

This study suggests that perhaps a new approach to automated tutoring systems is
needed. The model for tutors currently being developed is reactive (Rich and
Waters,1990: Johnson and Soloway, 1985; Anderson and Reiser, 1985). That is, once
the tutor observes that the student has deviated from the correct plan, it steps in to help.
We suggest that a proactive tutor might be more beneficial especially in the early stages
of leaming. Rather than waiting until an error or deviation has occurred, a proactive

@\tutor would converse with the student and help the student formulate optimal plans ini-
dally. The plan structure differences could be used as a basis for building a tutor that
would predict the appropriate level of help given. When the tutor sees plan differences in
control flow, the tutor might step in and help the student in plan creation. Rather than
presenting the new plan in a typically top down fashion, the bottom up or creation model
might be more acceptable and natural to the student.

References
3

Anderson, J. and Reiser, B., (1985). The LISP Tutor. Byte. 10(4). pp 159-178.

Bonar, J. and Soloway, E. (1988). Preprogramming Knowledge: A Major Source of
Misconceptions in Novice Programmers. in E. Soloway and J. Spohrer (Eds.) Study-

ing the Novice Programmer. (pp 325 -355). Hillsdale, N.J.: Erlbaum.
Johnson, W. and Soloway, E. (1985). PROUST. Byte. 10(4). pp 179-192.

(@\ Rich, C. and Waters, C., (1990). The Programmer’'s Apprentice. New York, N.Y:
ACM Press.

Rist, R. (1991a). Search through Multiple Representation. NATO ARW User Cen-
tered Requirements for Software Engineering Environments. Bonas, France. (to be
published as an ARW proceedings)

Rist, R. (1991b). Knowledge Creation and Retrieval in Program Design: A Com-
parison of Novice and Intermediate Student Programmers. Huwman-Computer
Interacnion, Vol. 6, No. 1, pp. 1-46.

Rist, R. (1989). Schema Creation in Programming. Cognitive Science. 13.3.pp.
389-414.

Soloway, E., Ehrlich, K., Bonar, J. and Greenspan, J. (1984). What do Novices
Know About Programming? in A. Badre and B. Shneiderman (Eds.) Directions in

-16 -

Human-Computer Interaction (pp 27-54). Norwood: N.J.: Ablex.

Soloway, E., Bonar, J. and Ehrlich, K. (1988). Cognitive Strategies and Looping
Constructs: An Empirical Study. in E. Soloway and J. Spohrer (Eds.) Studying the
Novice Programmer (pp 191-208) Hillsdale, N.J.: Erlbaum.

Spohrer, J. and Soloway, E. (1988). Novice Mistakes: Are the Folk Wisdoms
Correct? in E. Soloway and J. Spohrer (Eds.) Studying the Novice Programmer (pp
401-416). Hillsdale, N.J.: Erlbaum.

Spohrer, J., Soloway, E. and Pope, E. (1988)., A Goal/Plan Analysis of Buggy Pas-
cal Programs. in E. Soloway and J. Spohrer (Eds.) Studying the Novice Program-
mer (pp 355-400). Hillsdale, N.J.: Erlbaum.

