
Teaching Formal Software Engineering

at Loughborough

R G Stone & D J Cooke
Department of Computer Studies, LUT

Part 1 - The satisfaction of pro2ramming

It's all new
� What is the source of satisfaction in programming? One answer is

to say that as a science it is new. Computer Science is exciting.
Computing is still a young science. There are still many
'professionals' who were not trained in Computing. There have
only been 'Chartered Engineers' in Computing for a year or so.

Progression of demands on professional
As the science is maturing the demands on the professional have
changed. From 'Coding' there has been a requirement to move to
'Software Engineering', and now there is a need to move to 'Formal
Software Engineering' (cf 055 standard). As each change appeared
the source of satisfaction has also changed.

a) Coding/Getting my program to work!
Initially satisfaction was derived from overcoming the obstacles of

� actually using a computer.

Past the editor: Editors have come a long way because getting
the program 'typed in' was initially very tedious.

i) a line editor has the burden of describing the site of the
intended edit and allows arbitrary (and so possibly
incorrect) replacement.

->10,12p
begin

x: =1;
x: =2

->12s/x/y/p
y: =2

->

PPIG4 - Teaching Formal Software Engineering at Loughborough - Page 1

ii) a screen editor with its use of 'mouse' overcomes 'site of
edit' problem but still allows arbitrary replacement.

begin begin

X :=1; X :=1;
•:=2 •i:=2

iii) a syntax directed editor allows only syntactically correct
replacement.

,..
u. 1: He� I: dit UJin11ou1s form

begin

X � 1;
lllD � 2

end

<Ver _Id>

(dialog offers a scrolling list of identifiers in scope)

Past the syntax check: there is satisfaction derived from
having obeyed all the strict syntactical (grammatical) rules of the
programming language.

syntax error
--���������������--

10: begin
11: X : = (1 + y
12: y : = 2

**** syntax error 67, line 12

(but where 1s the error really?)

auto-correct
10: begin
11: X : = (1 + y;

**** closing parenthesis supplied

(but what did the programmer really mean?)

PPIG4 - Teaching Formal Software Engineering at Loughborough - Page 2

Past the static(type) check: there is satisfaction from having
obeyed all the static semantic rules including those relating to
'declare before use' and 'consistent use'

not declared

begin
:x: := 0

**** O not declared

. . . not allowed

begin
:x: := :x: + 'a string'

Past a run with simple test data: there 1s satisfaction derived
from getting a program to run once with simple data. But what of
the undiscovered 'bug' ... ?

Correct result when the test data was the number 5

read(i);
repeat i: =i-1;

write(i)
until i=O

b) Software Engineering/Past the Quality Assurance test

When a Q/ A team is involved there is satisfaction derived from
other people not being able to discover any errors in your
program. Given more methodical testing there is satisfaction
derived from knowing that individual modules of your program
have been successful in another (smaller) environment.

module then system

There is further satisfaction to be derived from knowing that
every path through your program has been checked at least once.

PPIG4 - Teaching Formal Software Engineering at Loughborough - Page 3

every path analysis

c) Formal Software Engineering/Proved

The satisfaction here derives not from the interaction with a
machine (cf Coding) or with other people (Q/A) but from achieving

very strict personal goals. Two different implementation paths are

recognised:

invent with subsequent verification against specification

Specification:

covers
+

average colour

Eureka implementations:

To use this path it is necessary to be clear how we are gorng to

establish the acceptability of an implementation.

transforming specification

transformation

To use this path it is necessary to be clear what 1s preserved
during any transformation.

PPIG4 - Teaching Formal Software Engineering al Loughborough - Page 4

Both implementation paths require formal proofs to be
undertaken. The nature of formal proof is often a high level plan

requiring a large number of small steps. To be attractive any
machine support must do the 'housekeeping' well and leave the

person free to concentrate on the high level aspects.

There is potentially a very high degree of personal satisfaction
here. However the style of work (no lines of code until well into

project time) and the kind of code produced (very simple,

stylised) requires re-education of managers to keep them

satisfied.

Part 2 - The ftrm-ttQI transfctrmer
�

The support we are offering may be called a 'Symbolic Calculator'.

It is capable of applying a selected pattern rule to a selected
(sub)expression. It keeps a record of rules applied, with restart
permitted from any previous position. It allows new rules to be

deduced, saved and applied like any other built-in rule.

The person using the transformer is only required to choose rule

to be applied and the site where it should be applied. The tedious

business of making all the relevant substitutions is handled by the

machine. Any (sub)expressions that are not of interest to the

current transformation can be 'hidden' usrng but can be re­
instated at any stage later as required.

For the 'Invent and verify ' style the use of the transformer 1s:

a) The theorem is: Implementation implies Specification

b) Transform the expression of the theorem to 'true'

Invent and Verify example from form-tool:

Suppose that pre-f(d) is the pre-condition for function f and let

post-f(d,r) specify that r is the result from f with input d. If

g(h(d)) is proposed as an implementation of f(d) then it is

necessary to prove that

pre-f(d) =} post-f(d, g(h(d)))

PPIG4 - Teaching Formal Software Engineering at Loughborough - Page 5

For the 'Transformation' style the use of the transformer is:
a) Manipulate specification to match a standard template for

which an implementation is known, or
b) Find a way of dividing the specification into smaller parts

which in sequence or in parallel achieve the complete
specification, and then applying the transformation style to
each part.

Transformation example from form-tool:

Suppose that the specification of f is given as an equation relating
d and r. The transformation consists of the algebraic process of
'making r the subject of the formula'.

� <Open} Questions
a) Is there as much satisfaction m 'proving' as m the first

successful 'run'?

b) Does the coding skill tend to coincide with proof skill m an
individual at present?

c) Can/will the skills coincide m the future with proper
training/tools

d) can machine support cover up a weakness in either coding
or proving or would a coder+prover team be more
appropriate?

e) Is a proof environment different from an IPSE?

PPIG4 - Teaching Formal Software Engineering at Loughborough - Page 6

