
Effects of Experience on Gaze Behavior during Program
Animation

Roman Bednarik, Niko Myller, Erkki Sutinen, and Markku Tukiainen

Department of Computer Science, University of Joensuu,
P.O. Box 111, FI-80101 Joensuu, FINLAND

firstname.lastname@cs.joensuu.fi

Abstract. The purpose of program visualization is to illustrate some aspects of
the execution of a program. A number of program visualization tools have been
developed to support teaching and learning of programming, but only few have
been empirically evaluated. Moreover, the dynamics of gaze behavior during pro-
gram visualization has not been investigated using eye movements and little is
known about how program animation is attended by learners with various lev-
els of experience. We report on an empirical study of the gaze behavior during a
dynamic program animation. A novice and an intermediate group, a total of 16
participants, used Jeliot 3, a program visualization tool, to comprehend two short
Java programs. Referring to previous literature, we hypothesized that the perfor-
mance as well as the gaze behavior of these two groups would differ. We found
statistically significant differences in performance measures and in fixation du-
rations. Other commonly used eye-tracking measures, the fixation count and the
number of attention switches per minute, seem to be insensitive to the level of
experience. Based on the results, we propose further directions of the research
into gaze behavior during program visualization.

1 Introduction

Program visualization is used to illustrate visually the run-time behavior of computer
programs. These systems can be utilized, for example, in programming courses to sup-
port teaching of programming concepts to novice programmers. Jeliot 3 is an interac-
tive program visualization system that automatically visualizes data and control flows
of Java programs. It has been successfully used in classroom settings to teach program-
ming to high school students [1].

Although several program visualization tools exist, only few have been evaluated
and little knowledge is available about the aspects of gaze behavior during a dynamic
program visualization. It is not clear how different users attend the animation and what
cognitive efforts they have to exercise in order to comprehend the dynamic visualiza-
tion. Therefore, in order to improve program visualization systems to fit their users best,
it is a crucial issue to investigate the visual attention paths of users while visualizing
a program. If a purpose of program visualization is to support the novices in their un-
derstanding, it is reasonable to study how their behaviors differ from the behaviors of
intermediates. In other domains, eye-movement tracking has been successfully applied
to investigate the gaze patterns of participants while performing their tasks. However,

In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 17 Pages 49 - 61

17th Workshop of the Psychology of Programming Interest Group, Sussex University, June 2005 www.ppig.org

no eye-movement based analysis of the gaze behavior during a dynamic program visu-
alization has been conducted yet.

We report on an initial study in which we have employed a remote eye tracker to
measure the gaze behavior of programmers during program comprehension facilitated
by an animation tool, Jeliot 3.

The rest of the paper is arranged as follows. In Section 2, we review some related
work in eye tracking research and program visualization, and Jeliot 3 is introduced. The
experiment and results are described in Sections 3 and 4, respectively, and discussed in
Section 5. Conclusions and future work are presented in Section 6.

2 Related Work

2.1 Eye Tracking

Humans move their eyes in order to bring an inspected object or a portion of it onto
fovea, the high-resolution area of retina. This way the visual attention is closely linked
with the direction of the eye-gaze, and most of the time it is also diverted to the point
of visual inspection. Following this assumption, if we can track the movements of eyes,
we can also get insights into and investigate the path and focus of attention during a task
such as program comprehension. Furthermore, knowing which objects have been visu-
ally inspected and in which order and context, we can attempt to infer what cognitive
processes were involved to perform the task related to these objects.

Eye tracker is a device that records eye movements. Most of the current eye trackers
use infrared light emitters and video image analysis of the corneal reflections and pupil
center to relate them to the direction of gaze. Typically, the accuracy of current eye
trackers ranges around 1 degree, while the data is sampled at rates of 50–500Hz. Current
eye trackers are relatively cheap and able to reliably and unobtrusively collect gaze data.

From the signal obtained from an eye tracker, two most important types of eye
movements are usually identified: saccades and fixations [2].Saccadesare rapid bal-
listic movements of eyes that are executed to reposition the eyes from one location of
attention to another one. A single saccade can last between 30 and 120 ms, can span over
1 to 40 degrees of visual angle [2], with velocities ranging up to 500 degrees per second
[3]. No visual information is extracted during a saccade, a phenomena called saccadic
suppression [4].Fixationsare eye movements stabilizing the image of an object on the
retina. Typical fixation duration ranges between 200–300 ms [3]. It is assumed that dur-
ing the period of a single fixation the information is extracted, decoded, and interpreted.
The fixation duration can be therefore thought to be related with a required processing
to extract and interpret the information [5, 6]. An accurate measurement and analysis of
eye movements in terms of saccades and fixations provide researchers with the details
of cognitive processing and related visual attention allocation within a performed task.
For instance, the fixation count or sum of fixation durations on a certain element can be
related to the importance of the element. In the context of program visualization inter-
faces, the relative fixation count measure can correspond with the relative importance
of a representation (e.g. a code or a state diagram) of a program.

It is a well-known fact that eye movement patterns of experts and novices differ. Pre-
vious eye movement studies in other domains than program visualization have shown,

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

for instance, that (1) search strategies differ between novice and expert radiologists [7],
(2) expert-pilots’ eye movement patterns were better defined and the dwell times were
significantly shorter than those of novices [8]. A common denominator in these and
other reports is that domain knowledge and experience of participants seem to be the
main factors influencing not only the performance, but also the related gaze behavior.

Visual attention tracking during program comprehension has been previously stud-
ied by Crosby and Stelovsky [9]. They used an eye tracker to discover the relation-
ship between cognitive styles and individual differences, and code-reading patterns. In
their study, novices and experts were eye tracked during an algorithm comprehension.
However, only one representation of program was used (the code) and the focus of the
research was mainly on the critical, but surface features of code, not on the behavior
during a dynamic program visualization.

In the direction of investigating issues such as visual attention switching or a multiple-
representation use during program comprehension or debugging, previous studies in-
volved only a static precomputed stimuli and the analysis was based on a recording of
mouse movements over a blurred interface [10, 11]. The validity of such an approach
was shown to be questionable [12, 13]. To our knowledge, no eye movement based
analysis of behavior during program animation has been conducted yet. This is cer-
tainly surprising, considering the importance of knowledge how the visual attention
and cognitive processes involved in program comprehension are influenced by program
animation.

2.2 Program Visualization

A number of program visualization systems have been developed over the previous
years to teach programming or to visually debug programs. Here we will briefly review
those systems that in some aspects are similar to Jeliot, the program visualization tool
employed in the present experiment.

Javavis [14] is a tool that visualizes automatically the runtime behavior of the Java
programs. It shows changes in the state of the program during execution using animated
UML-like object and sequence diagrams. DDD [15], a debugging front-end, uses dia-
grams to illustrate the references between data structures during program execution.
The diagram can be seen as graphs where nodes are the separate data structures (e.g.
struct in C) and vertices are the references between them. The DDD does not explicitly
visualize the control flow of the program. Jive [16] uses a similar approach to Javavis
and DDD to visualize the program state using diagrams. The references, primitive val-
ues and variables are visualized similarly in Jeliot 3 and these systems. However, only
Javavis visualizes control flow, but in less detail compared to Jeliot 3.

PlanAni [17] is a program visualization system that illustrates the data flow of a
program during its execution. The use of variables in different purposes is illustrated
through the roles of variables. The expression evaluation and control flow are also vi-
sualized. Currently, the animations must be programmed beforehand by an instructor
and the visualization of object-oriented concepts is not supported. The organization of
the user interface in PlanAni is similar to Jeliot. However, Jeliot does not visualize the
roles of variables as PlanAni and PlanAni does not visualize the control flow.

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

2.3 Jeliot 3

Moreno at al. [18] have developed a program visualization system, called Jeliot 3. Its
predecessor, Jeliot 2000, has been successfully used to improve the teaching of intro-
ductory programming helping the novices to acquire vocabulary to explain program-
ming structures and concepts [1]. Jeliot 3 retains the novice-oriented GUI and anima-
tion display of Jeliot 2000. Jeliot 3 introduced a new design in order to make the system
extensible and to allow for adding new features into the visualization. It visualizes au-
tomatically the execution of user-written Java programs by illustrating the data and
control flow and object-oriented features of the program. Jeliot 3 can visualize a large
subset of novice-level Java programs (seehttp://cs.joensuu.fi/jeliot/).
The user interface of Jeliot 3 is shown in Figure 1.

The interface consists of four discrete areas. A code editor on the left hand side
shows the program code, and during program visualization, the currently executed state-
ment or expression is highlighted. A control panel in the bottom left corner is used to
control the animation with VCR-like buttons. The largest area of the user interface of
Jeliot is occupied by the visualization view showing the execution state of the pro-
gram on the right hand side of the window. Visualization consists of method frames,
local variables, expression evaluation, static variables, objects and arrays. Finally, an
output console lies in the bottom right corner of the window, showing the output of
the executed program. To sum it up, Jeliot provides four different areas of interest to
the user: code view, animation view, control panel, and output console. Moreover, ani-
mation view is further divided into four different areas of interest: method, expression
evaluation, constant, and object and array areas. Furthermore, there are separate spe-
cialized visualizations where only the call tree of the program or the execution history
are shown.

In a typical session with Jeliot, a user either writes or loads a previously stored
program. User can compile the program through the user interface of Jeliot. When the
program is compiled, a visualization view, where the user can see the animation of the
program execution, is opened. Jeliot shows the execution either step by step or contin-
uously. User can control the speed of the animation and stop or rewind the animation
at any point. User can select the current visualization with the tabs on top of the visual-
ization view.

3 Experiment

The present research investigates the differences in the gaze behavior during program
animation of participants with different levels of programming experience. Based on
the results from available literature, our hypothesis was that the performance and gaze
behavior of novices and intermediates differ during the program animation. In other
words, our aim was to answer the question, whether intermediates and novices pay at-
tention to the animation in a similar or different way. Our hypothesis is not surprising,
since we naturally assume that a different level of experience shall result into a dif-
ferent gaze behavior and performance, as it has been found in other domains. More
experienced programmers are expected to form better hypotheses about the problem
and this knowledge should guide them to use the available representations in a distinct

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

Fig. 1.User interface of Jeliot 3. Area 1 is code editor, area 2 is animation frame, area 3 is control
panel and area 4 is output console.

way, compared to novices. We had a further assumption that novices would rely more
on the visualization than code and the other way around for intermediates.

To validate these hypotheses, we conducted an empirical experiment where we used
a remote eye-tracker to record the gaze behavior of the participants during program
comprehension task aided by an animation. Two groups of participants with different
level of experience used Jeliot 3 to comprehend three short Java programs while their
eye movements were simultaneously tracked.

3.1 Method

We used a between-subject design with experience (novice or intermediates) as the
factor. The depended variables were: relative fixation count over the areas of interest,
number of switches per minute and mean fixation duration over the areas of interest and
in overall. The fixation count is a measure related to the level of participant’s interest in
an area. The number of switches per minute is a measure of attention allocation dynam-
ics. The mean fixation duration is associated with the depth of processing required to
understand an attended element. Only the gaze data during the program animation were
used in this analysis because that is the only time when all the representations were
available concurrently and the selection of the attended representation would make a
difference in understanding the program. Most of the analysis was carried out using
ANOVA and planned comparisons based on t-test.

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

3.2 Participants

Eighteen participants were recruited from high-school students attending a university-
level programming course, undergraduate and graduate computer science students from
local university. Due to technical problems with the eye tracking, data from two partic-
ipants had to be discarded. Therefore, the results are based on the data collected from
16 subjects (13 male, 3 female). Participants were divided into two groups according
to their level of programming experience. Participants with less than 24 months of pro-
gramming experience were regarded as novices and above 24 months as intermediates.
The characteristics of the two groups are presented in Table 1. Groups’ mean values for
programming experience (in months) and Java experience (in months) and counts for
previous experience with Jeliot 3 (yes=1, no=0) and previous experience as professional
programmer (yes=1, no=0) are shown. Standard deviations are shown in parentheses.

Table 1. Characteristics of the groups. * marks a significant difference between groups in two-
tailed t-test (interval values) orχ2-test (nominal values) withp < 0.05

Experience levelCount Prog. exp.* Java exp.* Jeliot exp.Prof. exp.
Novices 8 12.8 months6.4 months 3 1

(6.9) (4.6)
Intermediates 8 85.5 months19.8 months 2 1

(56.4) (15.0)

3.3 Materials and Apparatus

Three short Java programs, factorial computation, recursive binary search, and naı̈ve
string matching were presented to the participants. The lengths of the programs in lines
of code were 15, 34, and 38 respectively. Each of the programs generated only one line
of output and did not require any user input. The names of methods and variables were
altered so that the recognition of a program based on these surface features would be
difficult.

In our study, we used an adapted version of Jeliot 3 which logged all the user ac-
tions and all the changes in the visualization of the programs to be compared with the
eye tracking data. However, this material is not used in this analysis. The specialized
visualizations, the execution history and the call tree, were disabled to avoid problems
in interpreting the gaze behavior.

The remote Tobii ET-1750 (sampling rate 50Hz) eye tracker making no contact with
participants was used to track eye movements; the eye tracker is built into a TFT panel
so no moving part is visible and no sound can be heard during the recording. Only
a computer mouse was available during the experiment to interact with the tool. The
interaction protocols (such as mouse clicks) were collected for all the target programs,
and audio and video were recorded for a whole session. Fixations shorter than 100 ms
were disregarded from analysis. We have defined four main areas of interest matching

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

the four main areas in the Jeliot interface: the code, the animation, the control, and the
output area. Figure 2 illustrates the experimental settings used in the study.

Fig. 2.Experimental settings.

3.4 Procedure and Design

The experiment was conducted in a quiet usability lab. Participants were seated in an
ordinary office chair, near the experimenter, and facing a 17” TFT display. Every par-
ticipant then passed an automatic eye-tracking calibration. During the calibration pro-
cedure, a participant had to follow sixteen shrinking points appearing one by one across
the screen. If needed, the calibration was repeated in order to achieve the highest possi-
ble accuracy.

After a successful calibration, participants performed three sessions, each consist-
ing of a comprehension phase using Jeliot 3 and a program summary writing phase.
Participants were instructed to comprehend the program as well as possible and they
could interact with Jeliot as they found it necessary. The target programs contained no
errors and were always preloaded into Jeliot and compiled. The duration of a session
was not limited.

The first program was factorial computation and it was used as a warm-up and the
resulting data were discarded. The order of the two actual comprehension tasks was
randomized so that half of the participants started with the recursive binary search and
other half with näıve string matching.

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

4 Results

4.1 Completion and Animation Times

Mean completion times for the comprehension phase were 17.6 minutes (SD= 10.0)
for novices, and 9.8 minutes (SD=2.6) for intermediates; the difference was statistically
significant according to a two-tailed t-test(t(7) = 2.48, p < .05). From that time,
novices spent on average 85.4% (SD=9.6) animating the program whereas intermedi-
ates spent 52.9% (SD=20.0) of their time to animation; the difference was statistically
significant according to the two-tailed t-test(t(7) = 5.38, p < .01).

4.2 Fixation count distribution

Figure 3 shows a relative fixation count distribution over the areas of interest during
the animation. Both groups spent most of the viewing time fixating the animation area,
57.4% (SD=11.9) novices, and 54.8% (SD=15.2) intermediates, of all fixations during
the program animation. Next, 39.4% (SD=11.2) and 43.3% (SD=14.5), novices and in-
termediates, respectively, of all fixations was paid to the code area. No significant effect
of experience on the distribution of fixations was found, without any interaction be-
tween the area of interest and experience. The fixation count has significantly differed
between all four areas of interest,F (3, 42) = 105.75, p < .001. The planned compari-
son revealed a significant difference in the fixation count between the two most attended
areas, the code and the animation(t(15) = 2.29, p < .05).

4.3 Switching Behavior

Figure 4 illustrates the switching behavior as expressed by the number of switches per
minute between the different areas of interest. The average number of switches per
minute was 30.15 (SD=10.66) and 27.57 (SD=8.04) for novices and intermediates, re-
spectively. The analysis of the effect of experience on the switching behavior discovered
no significant change in the number of switches per minute,F (1, 14) = 0.004, ns. The
switch between the code and the animation areas was far most common,F (5, 70) =
145.25, p < .001. Finally, the interaction effect between type of switch and experience
was not significant,F (5, 70) = 0.421, ns.

4.4 Fixation Durations

Figure 5 shows the mean fixation durations during animation for the four main areas
of interest and the overall mean fixation duration. These have been computed as a sum
of durations of all fixations landing at an area of interest divided by number of the
fixations. Since the programs did not generate an extensive output, some of the partici-
pants were not gazing to this area of interest. For the analysis, the missing values were
replaced by the mean value of a group.

The overall mean fixation duration was 406.49 ms (SD=81.40) and 297.26 ms
(SD=80.52) for novice and intermediate group, respectively. The effect of area of inter-
est on the mean fixation duration was nearly significant,F (3, 42) = 2.79, p = .052.

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

Fig. 3.Relative fixation count distribution during animation.

We also found an interaction between the fixation durations on the areas of interest and
the level of experience,F (3, 42) = 2.87, p = .048. The effect of experience on the
mean fixation durations was significant,F (1, 14) = 8.98, p = .01. Moreover, the ef-
fect of experience on overall fixation duration,F (1, 14) = 7.16, p = .018, was also
significant.

5 Discussion

Intermediates completed the comprehension phase much faster than novices. Intermedi-
ates also spent significantly less time animating the programs which was in agreement
with the hypothesis that intermediates would concentrate more on the code reading.
This happened, however, only before they began and after they stopped visualizing the
program. Both times can be kept as measures of performance. The initial code-reading
episodes could have affected the behavior of the intermediates during the program ani-
mation compared to novices. Sajaniemi and Kuittinen [17] reported that during exercise
sessions, students using PlanAni did not pay attention to the program code as much as
to the visualization. Our results agree with this observation. Although both areas were
attended with high fixation counts, it was more common to use the visualization than
the code area during program animation, in our study, regardless the experience.

Analysis of the comprehension summaries have been done elsewhere in Bednarik et
al. [19] with the program summary analysis by Good and Brna [20]. In this analysis, the
summaries of intermediate subjects were found to be slightly better in the quality, but

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

Fig. 4.Number of switches per minute between the main areas of interest.

there were no statistically significant differences found. Intermediates used higher level
of abstraction than novices but again there were no statistically significant differences.

The results of this experiment related to the gaze behavior during program anima-
tion show that the relative fixation counts and the switching behavior between the areas
defined in this study are insensitive to the level of experience. The distribution of fix-
ations between code and animation was slightly more balanced for more experienced
participants, but did not significantly differ from the distribution of novice fixations.
With respect to these measures, we have to reject our hypothesis. Most of the animation
time was spent on viewing the visualization part of the Jeliot interface.

The switches between code and animation areas were the far most common during
the animation and therefore the sum of all switches is mostly composed by this type of
switch. The code-control and animation-control switches were higher for novices. This
is probably due to the fact that novices were interacting more with the tool during the
animation than intermediates and therefore attending the control panel more often [19].
In terms of the total number of switches per minute, the two groups exhibited about the
same behavior.

With respect to previous eye movement studies investigating the relationship be-
tween gaze behavior and expertise, these result are rather surprising. Several factors
could, however, explain the results. One explanation seems to be that the features of
animation attract equally novice and intermediate programmers to attend the animation
in similar patterns. The visualization environment restricts the access to the elements
of the graphical representation to only a short period of time, therefore the effects of

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

Fig. 5.Mean fixation duration during animation.

experience cannot materialize in the gaze measures used in this experiment. We also
believe that more accurate measures have to be developed to reveal the differences be-
tween these two groups. For example, we could measure the disassociation between the
current animation step and the gaze of the subject. Another possibility for not observing
differences in the gaze behavior could be the number of subjects involved in the study
and this will be taken into the consideration in the further studies. Finally, the gap be-
tween the skills of the two groups involved in this experiment might not be big enough
to yield statistically significant differences in gaze behavior during animation.

Despite not finding differences in fixation count distribution and switching behav-
ior, we did find a significant effect of experience on the mean fixation duration. For all
the main areas (except for the control area) of the display and in overall, the mean fixa-
tion duration of intermediates was shorter than that of novices. This supports the results
from previous studies and could be explained by at least two facts or a combination of
both. One possibility is that, during the animation, intermediates might have an advan-
tage of already formed hypothesis about the visualized problem. This hypothesis would
be formed during the initial code reading before animating the program. The second
explanation could be the available domain-knowledge and programming experience of
the intermediates which would enable them to interpret the animation faster. From the
mean fixation duration over the control panel, we can observe that novices and interme-
diates alike needed about the same time (300 ms) to decide what buttons they are going
to use in order to control the flow on the ongoing animation.

Altogether, these findings could indicate that a difference in the programming ex-
perience can be seen in the mental efforts paid while attending the animation, while it
does not affect the general patterns how the animation is attended. Both groups attend

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

the suggested attention loci in about same way, but the more experienced programmers
extract the information faster and, most probably, are therefore able to pay attention
to the surrounding context. When a consecutive attention switch is suggested by the
animation, both groups will follow it and thus exhibit similar switching behavior.

6 Conclusion and Further Work

We have conducted an empirical experiment to discover the aspects of gaze behavior
during the dynamic program visualization. We employed a non-intrusive remote eye
tracking equipment to record the eye movements of programmers with various level of
experience. Our results, in terms of the attention switches between different program
representations and the distribution of fixations, show no difference in the gaze behav-
ior between novice and intermediate group of programmers during program animation.
In other words, the focus of visual attention seems to be distributed in time and space
evenly regardless of the experience in programming. When the level of processing re-
quired to attend the animation is measured as a mean duration of fixations over the
main areas of interest and in overall, our results show that novice programmers spend
significantly more time on extracting the features of animated concepts. We propose this
difference to be linked to the experience level and with a pre-established model of the
algorithm being animated. The performance measures seem to support this hypothesis.

Our initial experiment provides a take-off mark for further studies investigating gaze
behavior related to the dynamic program visualizations. Several directions for future re-
search can be taken. Based on the general, macro-level patterns presented in this paper,
we aim to deconstruct the behavior into more micro-level sequences. Between our next
aims belong to investigate the effects of the discrete animation elements on the gaze
behavior as well as the changes in the behavior in a course of time. Among the ques-
tions raised by the present study belong, what kind of suggested switches are consumed
during the animation and whether the decision differs given the level of experience.

To answer the questions, we plan to develop a methodological framework for a re-
liable application of eye-movement tracking in the context of program visualization.
These studies shall provide us with a deeper understanding about the cognitive pro-
cesses involved in program comprehension during program visualization.

Acknowledgments

We would like to thank all participants for taking part in this study. We acknowledge
Andrés Moreno for a help with preparation of this study.

References

1. Ben-Bassat Levy, R., Ben-Ari, M., Uronen, P.A.: The Jeliot 2000 program animation system.
Computers & Education40 (2003) 15–21

2. Sibert, L.E., Jacob, R.J.K.: Evaluation of eye gaze interaction. In: CHI 2000, ACM Press
(2000) 281–288

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

3. Rayner, K.: Eye movements in reading and information processing: 20 years of research.
Psychological Bulletin124(1998) 372–422

4. Matin, E.: Saccadic suppression: a review and an analysis. Psychological Bulletin81 (1974)
889–917

5. Carpenter, P.A., Just, M.A.: Eye fixations during mental rotation. In Senders, J.W., Fisher,
D.E., Monty, R.A., eds.: Eye movements and the higher psychological functions. Erlbaum,
Hillsdale, NJ (1997) 115–133

6. Goldberg, J.H., Kotval, X.P.: Eye Movement-Based Evaluation of the Computer Interface. In
Kumar, S.K., ed.: Advances in Occupational Ergonomics and Safety. IOS Press, Amsterdam
(1998) 529–532

7. Nodine, C., Mello-Thoms, C.: The nature of expertise in radiology. In Beutel, J., Kundel,
H., Metter, R.V., eds.: Handbook of Medical Imaging. SPIE Press (2000)

8. Kasarskis, P., Stehwien, J., Hickox, J., Aretz, A., Wickens, C.: Comparison of expert and
novice scan behaviors during VFR flight. In: The 11th International Symposium on Aviation
Psychology. (2001)

9. Crosby, M., Stelovsky, J.: Subject Differences in the Reading of Computer Algorithms.
In Salvendy, G., Smith, M.J., eds.: Designing and Using Human-Computer Interfaces and
Knowledge-Based Systems. Elsevier (1989) 137–144

10. Romero, P., du Boulay, B., Cox, R., Lutz, R.: Java debugging strategies in multi-
representational environments. In: The 15th Annual Workshop of the Psychology of Pro-
gramming Interest Group (PPIG’03). (2003) 421–434

11. Romero, P., Lutz, R., Cox, R., du Boulay, B.: Co-ordination of multiple external represen-
tations during Java program debugging. In: Empirical Studies of Programmers symposium
of the IEEE Human Centric Computing Languages and Environments Symposia, Arlington,
VA (2002) 207–214

12. Bednarik, R., Tukiainen, M.: Visual attention tracking during program debugging. In:
NordiCHI’04, ACM Press (2004) 331–334

13. Bednarik, R., Tukiainen, M.: Effects of display blurring on the behavior of novices and
experts during program debugging. In: CHI ’05: CHI ’05 extended abstracts on Human
factors in computing systems, ACM Press (2005) 1204–1207

14. Oechsle, R., Schmitt, T.: JAVAVIS: Automatic Program Visualization with Object and Se-
quence Diagrams Using the Java Debug Interface (JDI). In Diehl, S., ed.: Software Vi-
sualization. Volume 2269 of Lecture Notes in Computer Science., Springer-Verlag (2002)
176–190

15. Zeller, A., L̈utkehaus, D.: DDD — A Free Graphical Front-End for UNIX Debuggers. ACM
SIGPLAN Notices31 (1996) 22–27

16. Gestwicki, P., Jayaraman, B.: Interactive visualization of Java programs. In: IEEE Symposia
on Human Centric Computing Languages and Environments. (2002) 226–235

17. Sajaniemi, J., Kuittinen, M.: Program animation based on the roles of variables. In: ACM
symposium on Software visualization, ACM Press (2003) 7–16

18. Moreno, A., Myller, N., Sutinen, E., Ben-Ari, M.: Visualizing Programs with Jeliot 3. In:
Advanced Visual Interfaces (AVI 2004). (2004) 373–376

19. Bednarik, R., Myller, N., Sutinen, E., Tukiainen, M.: Analyzing Individual Differences in
Program Comprehension with Rich-Data Capture. Submitted (2005)

20. Good, J., Brna, P.: Program comprehension and authentic measurement: a scheme for
analysing descriptions of programs. International Journal of Human-Computer Studies61
(2004) 169–185

Bednarik, Myller, Sutinen and Tukiainen

PPIG 2005 Sussex University www.ppig.org

