In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 18 Pages 131 - 139

Comparing API Design Choices with Usability Studies
A Case Study and Future Directions

Jeffrey Stylog, Steven Clark&and Brad Myers

1 Carnegie Mellon University,
5000 Forbes Ave, Pittsburgh, PA, USA
{ jsstylos, bam}@s. cnu. edu

2 Microsoft,

1 Microsoft Way, Redmond, WA, USA
st evencl @n crosoft.com

Abstract. There are more APIs than ever, and designing &Rilisare usable by
their target audience is difficult. Work at Micrdsbas demonstrated that run-
ning controlled usability studies with participarfitem different personas and
analyzing the results of these studies using tlgaitiwe dimensions framework
is effective at identifying and preventing usabiliroblems in APls. This paper
presents a generalization of that technique infolhen of usability studies of
common API design choices. By studying a singlegheshoice from multiple
perspectives, we can generalize our results toA&ythat might be affected by
the design choice. We show the feasibility of approach with an initial study
on whether or not to require constructor paramet@msl present our current
and planned work to study more API design choices.

1 Introduction

An important and challenging programming activisyuising application program-
ming interfaces (APIs), frameworks, toolkits anrdiries. Programmers implement-
ing new functionality need to figure out which ARtsuse and how to combine them
[10]. Programmers reading or modifying code havernderstand how existing code
that calls APIs works, what assumptions the codkesiaand how to change or add to
the code without breaking these assumptions. Ttaesks are increasingly challenging
with the growing number and size of APIs; there @@y options of which frame-
works to use and current frameworks have tensafgands of classes and methods.

One way to help this problem is to design APIs #ratmore usable by their target
audience. Well designed APIs can be more quickd) effectively used and can lead
to fewer programming bugs. However, the usabilityio API can be difficult for an
API designer to predict ahead of time, and diffical fix after releasing an API, be-
cause of compatibility concerns.

Running a usability study of a specific API befdris released, using programmers
representative of the target audience and the comsinon programming tasks that the
API is intended to support, is an effective techeidor detecting non-obvious usabil-
ity issues with APIs and improving the usability tbé released APIs [4]. However,

18th Workshop of the Psychology of Programming Interest Group, University of Sussex, September 2006 Www.ppig.org

Stylos, Clarke and Myers

these studies are expensive to run on thousandPRIsf and organizations producing
only a few APIs might not have the resources alilléo run a controlled study.

This paper presents a technique that generalines funning usability studies on a
specific API to usability studies that focus onatjgular design choice that is com-
mon across many different APIs, for example howttacture an object's constructor
parameters. The next section describes this teglriig more detail, using as an ex-
ample an initial case study we performed. We thesent our plans for specific stud-
ies of other API design choices. Finally, we relate research to existing work and
offer conclusions.

2 API Design Choice Studies

2.1 Compared to Specific API Studies

To study the usability of a specific API, one cderitify the common tasks that an
APl is designed to provide and watch programmepsesentative of the API's target
population solve these tasks. By performing thésdiess in a usability lab, recording
them and asking programmers to think aloud as W@k, one can review and iden-
tify the specific problems encountered by differeisers and the assumptions and
strategies that led to these problems. For exartpletudy the usability of a file API,
participants might be asked to write code that seaflle in one task and writes a file
in another task. Screen captures can record thenoonproblems — for example,
programmers of a particular persona might havefecult time selecting or combin-
ing the objects needed to write a file. Audio relhogs of programmers' spoken
thoughts can then identify the reasons for theeblpms — they might assume that the
classes have a different name, or they might exfmecinly have to use one object
instead of combining the multiple objects that Ak provides.

Usability studies of an API design choice can uselar techniques, however in-
stead of having programmers solve tasks from theesaPl, they solve small tasks
using different APIs that make different choicesuatta common design decision.

2.2 Constructor-Parameter Options

To better understand how to design object consiractve created a study that com-
pared two different approaches.

The first approach was to provide only object cargtbrs that required as parame-
ters all of the "essential" properties of that ebjé-or example, a file object would
provide a constructor that required a string combgi the path of the file:Fi | e
(String path)", or an email message might require a sendeisstj subject and
body: "Wai | Message (Mail Address sender, Mail Address recipient,
String subject, String body)". By providing only constructors that required
the necessary objects, these APIs could statipadlyent certain errors. For example,

PPIG 2006 University of Sussex 132 Www.ppig.org

Stylos, Clarke and Myers

a programmer could write compilable code that ttedead a file without specifying
which file to read, or tried to send a messagemitispecifying whom to send it to.

The second approach was to provide, either ingié#duese constructors or in addi-
tion to them, "default" constructors that requiredparameters. Using these construc-
tors, a File object could be created with a callFfl e() " or an email message with
"Mai | Message()". To specify the essential information, such asfile-path or mail-
recipient, programmers could set individual projsrtof an object, such as
"file.path = "foo.txt"" or "mai | Message. reci pient = "cj @sn. coni'".

We called this approach, "create-set-call," sindeviolved creating an empty object
and setting essential properties before callingrothethods (such as read or send). A
seeming disadvantage of this approach is thatds aimt make the API's dependencies
explicit at compile-time — a programmer might nabl that a mail message requires
a sender, or might forget to specify one.

2.3 Case Study Design

Our study design used several small programmirkstas/olving objects that used
both of these construction patterns. We used r&as An some tasks and artificially
constructed APIs in others for the sake of factput experience with real domains
and being able to control the number of requiredupaters. We also created alternate
versions of real APIs that used the opposite caogir choice to directly compare the
two constructor options on the same objects.

We were interested in not just the activity ofimlittode creation but also the ac-
tivities of reading code and modifying and debuggixisting code. For example, we
wanted to find out if setting individual propertieghere the property name and value
are shown together, was more readable than cotwtrealls, where only the values
are shown. Different tasks in our study lookedaateccreation and modification.

To factor out the influence of the developing eomiment, we also designed tasks
outside of an IDE. For example, we had programmeite the code they would ex-
pect to write to solve a task using only the Notepext editor. These tasks helped
capture programmers' initial assumptions and esfiecs.

2.4 Case Study Results

We found the tasks and techniques we used in thiy svere effective at showing

common effects of the constructor design choicesisers of different personas. In
particular, we found that users of some persowser expected constructors to re-
quire parameters, and were less successful usésg tbonstructors, even after being
exposed to several different APIs that used thikepa We also found that even when
programmers did not have strong expectations agaorsstructor parameters, they
preferred and were more successful with APIs tichindt require them, preferring to

use the "create-set-call" pattern of object consivn instead. One reason for this was
that required constructor parameters forced programs to instantiate each of the
parameter objects before they felt they could expline constructed object using

PPIG 2006 University of Sussex 133 Www.ppig.org

Stylos, Clarke and Myers

design-time tools like code completion. This cauaqutoblem opremature commit-
ment [8] in the APIs that used required constructoapaters.

We were surprised to find that the “create-set qadlttern, which seemed to allow
more errors at compile-time, was actually more atiife at helping guide program-
mers toward effective use of the APIs, and wereeraged by the effectiveness of
running usability studies on API design decisions.

3 Planned Work

Based on our experience with studying constructweqmeter API design choices, we
propose to apply similar methodology to study ot#&Bt design choices. This section
presents several specific design patterns for éustudy.

3.1 The Factory and Builder Construction Patterns

Another construction-related design choice is waetbr when to use factories to
generate objects, instead of constructors [7]. &les take several forms in object
oriented languages, including factory classes aaticsconstruction methods on the
target class. Our experience with studying conibngarameters suggests that use of
factories is likely to have discoverability problefor some personas in many if not
all situations. While we also have anecdotal evigethat supports this for specific
cases, we still do not understand the entire péctur

For example, we found that even when programmeesitah models of an object
included required properties, they did not extelnid to their expectations for the
constructor. However, if some programmers’ mentaddefs include the idea of a
factory, it is possible that, unlike the construgbarameters case, these expectations
would change how they would try to construct olgect

Our goals will be to discover in what cases progrems of different personas ex-
pect factories (and when this is due to specifagpamming experience as opposed to
assumptions about how objects should interact), wimat the impact is when their
expectations are not met (by either the presenebdsence of a factory).

3.2 Compile-time versus Runtime Error Messages

A more general design choice, for APIs as well egetbping environment and lan-
guage design, is the decision of when to providellfack to the programmer about
incorrect API usage. While the amount of error-¢ieg an API can do at compile-

time is generally limited to what can be encoded istatic type-checker, it is often
possible to postpone errors and display them amierexceptions. For example, a
method that requires a certain object could eidmode that requirement using a
required parameter to the object (by placing théhoe on the required object itself)

or it could use a property and throw a runtime pkioa when it is invoked before the

property has been set.

PPIG 2006 University of Sussex 134 www.ppig.org

Stylos, Clarke and Myers

Convention wisdom suggests that catching more ®rearlier is usually better.
However we were surprised to find in our study ofstructor parameters that pro-
grammers were usually more successful using objsbtsse incorrect use was al-
lowed but always caused a runtime exception thgectdh that statically enforced
correct usage. One reason for this seemed to bevtiem programmers encountered
compile-time problems — because they omitted nacgssbjects in a constructor or
method call — they tended to assume that the prollas syntactic and try to fix it by
the insertion or deletion of parentheses or tiev' keyword. They would tinker with
what was usually already correct syntax, oftenoificing new problems before dis-
covering the true source of the problem. Indeedir tassumption that the problems
were syntactic was so strong that many programmversgd not fully read the error
message, even when explicitly prompted to by thgesmenter. On the other hand,
these same programmers would tend to read and siaddrthe runtime exceptions
relating to the same problems, and were fastermok successful at fixing these
problems using these exceptions.

One reason for programmers’ assumptions might besgrecific location of the
messages in the developing environment — programmeght be trained to think of
messages on the bottom of the screen with a camespy wavy-red-underline as
being related to syntax. Another possible factdhéstiming of the messages, at com-
pile-time while there in the middle of typing anpegssion versus when they are step-
ping through the logic of their code. Still anotiparssibility is that the specific word-
ing makes a large difference, although in our ahitibservations many programmers
tended to read only a few words if any of most emessages.

While one argument against delaying messages oatilpile-time is that they
might not appear during testing, causing an undegefailure later, large classes of
errors can be guaranteed to occur at runtime. fAlhe exceptions we observed had
this property.

A study that looked specifically at how programmezad and respond to different
types of error and exception messages could teséthypotheses, identify the objects
and situations for which programmers respond difidy, and use these to make de-
sign recommendations.

3.3 Object Decomposition

A fundamental API design decision in an object mtee language is the question of
how to decompose functionality into different olifed-or example, there might be a
“mail-client” and “mail-server” object, or this fetionality might be combined in a
single “mail” object. Whether or not to use thetfag design pattern is also a specific
case of an object decomposition decision.

Our initial experience suggests that programmensheave strong, unconscious as-
sumptions about which objects exist, and when thgiectations are not matched by
the objects provided by an API, then programmeesséow to recognize or question
these assumptions. Instead then tend to first iguetteir assumptions about what the
object is called, where it would be located, or thike the API is even capable of the
desired functionality. For example, users wouldnspme analyzing all of the meth-

PPIG 2006 University of Sussex 135 Www.ppig.org

Stylos, Clarke and Myers

ods of aMai | Message class multiple times looking for 8&end() method before
considering that there might bevai | Ser ver class.

Because mismatch between the programmers’ expatsatibout what objects exist
and what the API provides is so strong, we wolkd tb better understand what influ-
ences programmers’ expectations and how APIs anld tmn mitigate the problems
that occur when the expectations are not met. kKample, the code completion in the
IDE did not help in the mail example because it showed ordyntiethods provided by
the existingvai | Message class and provided no easy way to discover thetenge
of theMai | Server class.

3.4 Asynchronous Functionality

A specific question in the creation of some APlkasv to expose asynchronous func-
tionality; for example, a file read operation theitl run simultaneously with other
computation. An API might provide no direct suppfat asynchronous file reading,
requiring the programmer to explicitly create aaepe thread and manage its syn-
chronization. Or, an API might provide a file reamtthod that accepted a callback
that gets called when the read completes or ab8msilarly, there might be event
system that allowed multiple objects to registerb® automatically notified about
different file events.

These and other patterns can expose the same tyjuaationality in different
ways. Some of the advantages and disadvantagée dfifferent approaches are ini-
tially apparent. However, a comparative lab stuoyld help us better understand the
tradeoffs and the types of assumptions programmeise for different types of ob-
jects.

3.5 Usability Study Challenges

One challenge in following our research at Microsdath the design and execution of
the above studies in our research at Carnegie Néflahe difference in available
programmers. In particular, it is much harder twdfiexperienced professional pro-
grammers and easier to find undergrad and gradstatients of varying levels of
expertise. An important question is whether theésdesits represent each of the pro-
gramming personas that we would like to study, #redextent to which results for
students of a particular persona can generalipghier programmers of that persona.

Because the strategies and behaviors of programwetsave observed correlate
much more strongly with persona than experienceamgeoptimistic that the relative
inexperience of the student population will notebkarge factor. We are unsure as to
how well represented some personas — in parti¢chtaisystematic persona — will be
represented in this population however.

PPIG 2006 University of Sussex 136 Www.ppig.org

Stylos, Clarke and Myers

4 Related Work

4.1 Usability Studies of Individual APIs

Our work follows most directly the usability studief specific APIs at Microsoft [4].
We were able to borrow and adapt techniques frasetitab studies and use of similar
evaluation techniques.

The creators of the Alice programming environmenn that studying how pro-
grammers used their graphics APIs allowed themréatty improve their usability
[5]. The encountered usability problems highlighfettain to naming — fixing mis-
matches between the vocabulary of the system anddér by using words like “up,
move and speed” instead of “z, translate and rate.”

In addition to studying individual APIs, there Haesen research looking at the us-
ability of APIs developed and consumed internallighim a company [11]. When
developing APIs for external use, there is a broadelience and there are different
tradeoffs.

4.2 Eliciting Programmers’ Assumptions and Stratgies

Some of our techniques are influenced by otherarekeinto the psychology of pro-
gramming. For example, John Pane’s formative studieen developing a new pro-
gramming language and environment [13][15] usetirtiepies like “paper program-
ming” to capture how programmers (and non-programmrmulated algorithms
and expressed Boolean constraints [14].

We adapt a similar technique to see what assungpfioogrammers make about
imagined APIs and how they naturally express sohgtiusing them by having them
write code in an informal (non-programming tool)viganment, though in our case
our programmers are mostly constrained to an egistinguage.

Our overall strategies of understanding programhiserisavior and using empirical
studies to test specific hypothesis is influencgdhe human-centered techniques in
the Natural Programming Project [12].

4.3 Cognitive Dimensions Framework

During and after our study, we used the Cognitimadhsions Framework [8] to in-
terpret the results. This framework was designedvialuate programming language
environment usability, but has previously been gethpo evaluate API usability as
well [3].

The framework allows for the classification of difént problems users encounter
using a particular API, to be able to better comicate the problems to others and to
better understand the problems through the progkstassification. For example, a
user spending a long time browsing through docuatemt might at first seem to

PPIG 2006 University of Sussex 137 Www.ppig.org

Stylos, Clarke and Myers

indicate a problem with the documentation; howdweeking at the user’'s goals and
behavior might reveal that the problem arouse bex#ey could not find the method
name they were looking for —rale-expressiveness problem — and so a more appro-
priate fix would be to change the class or methamta

Others have proposed a reduced set of dimensiorsPbusability [2]. While we
feel there is potential value to be gained frompdifying and clarifying the dimen-
sions for this particular domain, we felt that #ag@articular reduced set of dimensions
were too simplistic for our purposes.

4.4 Framework Design Guidelines

There is a small but growing field of literaturattadvises those faced with the chal-
lenge of designing an API, framework, library ooltat [6][9][1]. While many of
these guidelines are insightful, sometimes the comassumptions which design are
wrong, or there are conflicting opinions.

Performing studies to see empirically how represtéré programmers actually
work lets us validate or challenge these guidelimsswell as refine and generalize
them and build a greater understanding of why tey useful based on models of
programmers’ behavior.

5 Conclusions

We provide a generalization of the approach ofyshglthe usability of specific APIs
to more abstract studies of design choices thastaeed across APIs. Our experience
studying the usability effects of construction AdRsign choices suggests that this
technique is a valuable tool for informing the desof many new APIs and gaining a
broader understanding of how programmers consunis. Ale present several spe-
cific API designs for future study that this tedjumé could help illuminate.

6 Acknowledgements

This work was started at Microsoft in the Visuald@b User Experience Group and
was aided by the guidance of Monty Hammontree.

It has continued at Carnegie Mellon University amgbartially supported by NSF
grant 11S-0329090 and the EUSES Consortium via g&ht ITR- 0325273. Opin-
ions, findings and conclusions or recommendatiox@essed in this material are
those of the author and do not necessarily reftexgte of the NSF.

Andrew Ko, Christopher Scaffidi and Michael Cobletantributed helpful ideas
and feedback.

PPIG 2006 University of Sussex 138 Www.ppig.org

Stylos, Clarke and Myers

References

1. Bloch, J.: Effective Java Programming Languag&& Mountain View, CA, Sun Microsys-
tems (2001)

2. Bore, C. and S. Bore: Profiling software AP&bitity for consume electronics. Consumer
Electronics, 2005. ICCE (2005)

3. Clarke, S.: API Usability and the Cognitive Dims@ns Framework,
http://blogs.msdn.com/stevencl/archive/2003/10/08/®.aspx (2003)

4. Clarke, S.: Measuring API usability. Dr. Doblosithal (2004) S6-S9

5. Conway, M. J.: Alice, Easy-to-Learn 3D Scriptfiog Novices, University of Virginia (1997)

6. Cwalina, K. and B. Abrams: Framework Design @liftes, Addison-Wesley Professional
(2005)

7. Gamma, E., R. Helm, R. Johnson, J. VlissidesigdePatterns: Elements of Reusable Ob-
ject-Oriented Software. Boston, MA, USA, Addison-$\& Longman Publishing Co., Inc.
(1995)

8. Green, T. R. G. and M. Petre: Usability Analy#i&/isual Programming Environments: A
'‘Cognitive Dimensions' Framework., Journal of Viduenguages and Computing 7(2)
(1996) 131-174

9. Jacques, M.: API Usability: Guidelines to impeoxour code ease of use. The Code Project.
http://www.codeproject.com/gen/design/APIUsabilittiéle.asp (2004)

10. Ko, A. J., B. A. Myers, H. H. Aung: Six Leargifarriers in End-User Programming Sys-
tems. Visual Languages and Human Centric Compufi6@4 IEEE Symposium on. (2004)

11. McLellan, S. G., A. W. Roesler, et al.: "BuildiMore Usable APIs." Software, IEEE 15(3)
(1998) 78-86

12. Myers, B. A, J. F. Pane, A. J. Ko.: "Naturabgramming languages and environments."
Commun. ACM 47(9) (2004) 47-52

13. Pane, J. F.: Designing a programming systerohfiddren with a focus on usability. CHI
'98: CHI 98 conference summary on Human factooimputing systems, Los Angeles,
California, United States, ACM Press (1998)

14. Pane, J. F. and B. A. Myers: Improving userfquerance on Boolean queries. CHI '00:
CHI '00 extended abstracts on Human factors in ctimg systems, The Hague, The Neth-
erlands, ACM Press (2000)

15. Pane, J. F. and B. A. Myers: The impact of mueentered features on the usability of a
programming system for children. CHI '02: CHI '02emded abstracts on Human factors in
computing systems, Minneapolis, Minnesota, USA, ABMss (2002)

PPIG 2006 University of Sussex 139 Www.ppig.org

