PPIG'07 Full paper

Analysing and Interpreting Quantitative
Eye-Tracking Data in Studies of Programming:
Phases of Debugging with Multiple
Representations

Roman Bednarik and Markku Tukiainen

Department of Computer Science and Statistics,
University of Joensuu, PO Box 111, Joensuu, Finland
firstname.surname@cs. joensuu.fi

Abstract. While eye-tracking systems become gradually improved and
easier to apply, the methodological challenges of how to analyze, inter-
pret and relate the eye-tracking data to user processing remain. Studies
of programming behavior are not an exception. We have conducted a
reanalysis of eye-tracking data from a previous study that involved pro-
grammers of two experience groups debugging a program with the help of
graphical representation. Proportional fixation time on each representa-
tion, frequency of visual attention switches between the representations
and type of switch were investigated in relation to five consequential
phases of ten minutes of debugging. Therefore, we have increased the
granularity of focus on debugging process.

We found some repetitive patterns of visual strategies that were asso-
ciated with less experienced programmers finding fewer errors. We also
discovered that at the beginning of the process programmers make use of
both the code- and graphical representations while frequently switching
between them. During the process, more experienced programmers be-
gan to integrate also the output of the program and finish the debugging
with frequent switching between the three representations. We discuss
benefits and limitations of this approach to analyzing and interpreting
the quantitative eye-tracking data. As part of future research we propose
to investigate the symmetries of representation switching behavior.

1 Introduction

While the technological problems of eye-tracking systems are being continually
resolved, granting the increasing usability of the technique, the methodological
issues prevent the technology from yet spreading wider. Most challenging — apart
from the somewhat remaining technical problems — [1] list two methodological
problems with eye-tracking: labor-intensive data extraction and difficulties in
their interpretation. Modern eye-tracking systems are easy to operate, make no
interference with participants, and can capture up to 90% of population. Com-
mercially available eye-tracking systems are often supplied with recording and

158

analysis software, attempting to reduce the manual data extraction in fixation
identification. While this automation can facilitate the analysis for simple tasks,
studies of complex processing with interactive systems present a new challenge
to eye-tracking researchers.

In many cases the dynamics of the scenes being presented to participants —
such as modern computer programming interfaces — makes it hard to link the
eye-tracking data to the stimuli. Often, the only solution to this problem is to
manually annotate the video-recordings frame-by-frame. Clearly, this approach,
besides being uneffective, may bring about several unwanted outcomes. For ex-
ample, the manual extraction of the fixations might pose a threat to the accuracy
of the data analysis. To simplify the process and make it more efficient, auto-
matic quantitative methods of extracting and analysing eye-tracking data have
been employed in many studies.

A problem related to automatic eye-tracking data extraction in evaluating
interfaces is that of relating the extracted data to the underlying human pro-
cessing. Typically, the analysis process starts from selecting the eye-tracking
measures, continues through delimiting the scene into the areas of interest and
aggregating the measures with respect to the areas, to linking the observations
to the phenomena in question. In multimedia interfaces that present informa-
tion both in text and graphics — often by using animation — the analysis phase of
an eye-tracking experiment might become the most daunting task of the whole
research. To preserve the experimental validity of the eye-tracking experiment,
the researcher might not wish to impose constrains on the participants’ behavior
or employ artificial tasks and environments. Balancing the user freedom at the
costs of the constraints of interaction imposed by the study settings can further
increase the complexity of the analysis; these factors include, for example, the
presentation of several linked representations of the content in adjacent win-
dows, the freedom of users to select when and what representations they want
to see, or the possibility of the system to present dialogues such as questions.
As the complexity of the interaction increases, however, the link between the
eye-tracking data and underlying processing becomes harder to study.

Many studies in programming make use of the hypothesis testing frame-
work [2]. In studies that employ eye-tracking, one or more groups of participants
receive a treatment while their ocular behavior is recorded; researcher then com-
pares the respective aggregate eye-tracking measures between the treatments or
groups to confirm or reject the hypothesis. While this approach can be functional
with short tasks in range of tens of seconds, such as in the usability studies of
[3] and [4], in eye-tracking studies of learning or problem-solving the task par-
ticipants perform is severalfold longer and, arguably also more complex. The
analysis of such eye-tracking data, interpretation of the measures, and relation
to the underlying processes cannot be approached as has been done with the
short tasks; complex tasks are composed by hierarchies of several simpler tasks
and stages, and therefore the conventional methods do not accurately uncover
the detailed processes. Instead, using the conventional approaches, an indistin-
guishable mixture of processes is described using a single eye-tracking measure.

159

In other words, an averaged measurement is supposed to inform on a complex
and long comprehension process.

There clearly is a need for advancing the methodological aspects of eye-
tracking research to complex domains. In this paper we discuss one of the
challenges for eye-tracking in the studies of program development interfaces,
in particular in the studies that present several concurrent representations to
investigate problem-solving strategies. The contribution presented here expands
on experiences with eye-tracking in studies with multimedia displays evaluation
and focuses on methodological issues of automatic eye-tracking data analysis
and interpretation.

We begin the discussion by reviewing previous work that considered these
aspects in evaluations of computer displays. We then present a case eye-tracking
study of debugging strategies with a static program visualization. By segmenting
the whole stream of visual attention data into shorter sequences, we increase the
granularity of focus on debugging process and we tackle the problem of too
coarse analysis. Finally, we also discuss the methodological issues and inherent
limitations of this approach to automatic eye-tracking data analysis, as applied
in studies of visual attention in programming with multimedia displays.

2 Previous Work

Linking eye-tracking data to underlying cognitive processes have become the
primary challenge in eye-tracking studies. For instance, in the eye-tracking stud-
ies of usability, [1] argue that this challenge has been ”probably the single most
significant barrier to the greater inclusion of eye tracking”. There are several
methodological reasons contributing to the challenge, such as the dynamic na-
ture of modern computer interfaces, the volumes of eye-tracking data, human
factors and the concerns of the researchers to retain high validity of the studies.

One domain where eye-tracking has successfully been applied is, undoubtedly,
reading research [5]. In studies of reading, eye-tracking made it possible to gain
understanding about how visual attention is deployed, how text is processed,
or what processes are responsible for guiding the eye during reading. Several
models of eye-movement control during reading have been proposed, such as the
E-Z reader [6], based on the information obtained from eye-tracking.

In other domains with not as controllable research situation as in reading,
such as in studies of usability or driving behavior, the methodological prob-
lems of relating the eye-tracking data to the processing have been probably the
single most important challenge and barrier to progress. Practical and some
methodological aspects of eye-tracking in usability research and studies have
been previously discussed in the inspiring works of [7] and [1]. [3] proposed a
set of eye-tracking measures that allow for automation of the evaluation process.
Thus, the large quantities of raw eye-tracking data can be significantly reduced
to make the analysis of the data efficient. However, how to interpret the data
and relate them to the underlying processing or to the usability aspects are tasks
yet not very well understood.

160

The experimental interface employed in [3] was artificially made and the
task given to the participant consisted of only searching for targets with focus
on the speed. The interaction with modern computer interfaces, such as with
multimedia learning systems, can hardly be considered as simple searching for
targets without more elaborate goals. Some studies, such as the web-page us-
ability evaluation of [4], recognize this problem and employ a more realistic task
and context. Finding no significant effects of task and page interaction on eye-
movement measures, the authors argue for establishing benchmark measures and
investigating the relation between underlying processing and eye-movement pat-
terns. They also suggest that visibility of a target might influence the patterns
and that more tasks shall be studied to uncover the factors affecting the usability
and therefore eye-movement patterns.

Analysis of behavior based on visual attention data becomes popular also in
studies of programming. During programming, the programmer has to build an
understanding of what the program does and how does it do it to be able to debug
and modify the program. Previous studies in programming that employed visual
attention tracking focused, for example, on how programmers read the source
code [8], how programmers make use of and coordinate multiple representations
[9] or on the effects a graphical visualization of a program has on the visual
attention patterns of novice programmers [10].

To investigate the link between the underlying processing and overt visual
attention patterns eye-tracking researchers often make use of the hypothesis
testing framework. For example, [10] presented twelve participants with a pro-
gram comprehension task and two environments, and compared the resulting
visual attention patterns. In another program comprehension study, [11] em-
ployed a between-subject design to study differences between expert and novice
programmers in comprehension. Similarly as in previous studies, they compared
the resulting long-term eye-tracking measures between two groups. [12] however
argued that “the comprehension process ... cannot be effectively examined by
studying long-term averages [of eye-tracking measures/”. In this paper we fur-
ther investigate this problem of studying the complex mental processes using
automatic methods to eye-tracking analysis by examining the temporal changes
in eye-tracking measures during a complex problem-solving task with multiple
available representations.

In summary, little has been done in past to investigate the link between
the eye-tracking data and underlying processing in natural and dynamic com-
puter environments. Researchers have often been left with manual extraction
and annotation of the fixation data. Attempts to automatize the analysis of eye-
tracking data and to gain understanding of how to relate the resulting measures
to the tasks have not arrived to a coherent understanding of the link. Similarly,
previous research into the role of visual attention during programming seems to
confirm the challenges. This gap motivates our efforts to expand the knowledge
available about the connection.

161

3 Case Study

To prepare the context of the methodological discussion, we first introduce an
investigation in which eye-tracking has been applied. We then extend the analysis
of eye-tracking data by segmenting the process into a series of several phases and
we include the temporal aspect into the analysis.

In the study we investigated the visual strategies of programmers during
debugging. The research settings were similar to those of usability evaluations:
participants were provided with a familiarization task, were not restricted in
the way they wanted to interact with the environment, and the tasks resembled
those that the participants would be engaged in under natural conditions.

Integrated development environments (IDE) used by computer programmers
often present different views on the program or project in several windows. Pro-
grammers normally need to coordinate these representations [13] in order to
build a coherent mental model of the program. The representations usually in-
clude the source code of the program, output of the program, a visualization of
some aspect of the execution or source code, or specifications of the program.

Thus, the goals of the studies related to the cognitive aspects of programming
with multiple representations are: 1) to investigate how programmers visually
coordinate the representations, 2) whether and how the role of the representa-
tions is changing as programmer builds the mental model, and 3) what are the
effects of experience on the visual patterns during these programming activities.
Ultimately, the answers to these questions can help to better understand the
processes involved in learning and problem-solving with multi-representational
visualizations.

Relating the eye-tracking data to the underlying processes in programming is
not, however, an easy task. This is due to the fact that programming is a complex
domain involving many cognitive processes, knowledge and skills that need to be
applied to understand multiple and often hidden components and dependencies.
In fields where eye-tracking has been previously applied, such as in usability
studies, eye-tracking researchers often took a quantitative approach to analyze
the eye-tracking data. [4], for instance, collected total fixation duration, number
of fixations, average fixation duration, and spatial density and investigated their
relation to the relative usability differences between different Web-pages.

Similarly as in the usability studies, we have also approached the analysis of
the eye-tracking data in a quantitative way. For example, average fixation du-
ration has been suggested in previous research as related to the difficulties with
extracting and processing information from a display [3]. Number of fixations,
another eye-tracking measure previously employed in studies of programming
[14], shall reflect the relative importance of an area of a display. The most essen-
tial difference between our studies and the studies of usability, however, is that
during learning, problem-solving, or program comprehension the users engage
in a variety of complex and relatively lengthy sub-tasks, rather than completing
relatively simple short tasks such as search for a target. It is an open question
into which extent the quantitative approach to eye-tracking data can be assumed

162

to expose the relations of eye-tracking data and measures to the complexity of
the processes involved during problem-solving.

3.1 Case study: Visual attention during debugging with static
environment

As a part of a replication study that investigated the effects of the Focus Window
Technique (FWT) on the visual strategies during debugging, we have compared
the eye-movement patterns of less experienced and highly experienced users.
An alternative method to eye-tracking, the FWT was designed to reduce the
technical problems with eye-tracking. Whole FW'T screen is blurred except for a
small section. The study compared the visual strategies of programmers working
under the FWT mode to the strategies with unrestricted environment. Research
settings of the study, materials, and procedures were kept identical to those of
the original study [13], and can also be found from e.g. [14]. The investigation
did show an effect of the blurring condition on the behavior of users, and the
results have been reported elsewhere [15].

Method Figure 1 presents a screenshot of the IDE during the non-restrictive
condition. The environment presented the source code of a Java program (left
pane in Figure 1) that contained four non-syntactic errors. Participants — af-
ter reading specifications of the desired behavior of the program — were given
ten minutes to debug the program. Eighteen participants have taken part in
the study. Missing, corrupt or incomplete data were removed from the sample,
leaving fourteen quality eye-tracking recordings. Two groups of users, highly ex-
perienced (hereafter experts) (N = 8) and less experienced (hereafter novices)
(N = 6), were formed from the remaining data. Table 1 presents an overview of
the two groups, showing significant differences in experience and performance in
terms of bugs found.

Participants were not allowed to modify the source code. Additional repre-
sentations provided by the IDE were a visualization of the program (shown top
right in Figure 1) and the current output of the program (bottom right in Figure
1).

N Age Progr. experience Bugs found
Experts 8 25.88 (3.94) 108.00 (22.22) 2.75 (1.04)
Novices 6 26.17 (6.08) 42.00 (14.70) 1.50 (0.55)
t (12) .109 (p=.915) 6.29 (p=.00004) 2.67 (p=.020)
Table 1. Number of participants in each group, their age (SD), programming experi-
ence in months (SD), and bugs found (SD) max=4. Differences in groups on indepen-
dent sample t-test (p-value).

While some previous analyses of visual attention patterns approached similar
situation with a long-term perspective, the main difference between the present

163

ox, please say its wedule and Line musber as vell as a brief description of it outloudt* Continue

Fig. 1. A screenshot of IDE employed in the study, with 1 second of gaze overlaid.

study and previous analyses is the level of detail. To deal with the complexity
of the programming process, the whole ten minute debugging sessions were di-
vided into five two-minute segments. Our motivation for doing so was to explore
the temporal properties of the eye-tracking data with a hope to better capture
the underlying processing. Proportional fixation time (PFT) for each area was
computed as a ratio of fixation time on an area to the overall fixation time on
all areas. Number of switches per minute was computed as sum of all changes in
visual attention focus between any of the three main areas during each segment
per minute.

Results and discussion Table 2 and Figure 2 present the distribution of
proportional fixation times. For the subsequent analyses of this measure, only
data from code and output were used, because the proportional fixation times
for code and visualization were almost perfectly negatively correlated (r (5) =
-.971, p = .006). Thus, a 5 x 2 x 2 (segment, area, experience) ANOVA was
conducted and revealed the main effect of segment (F(4,48) = 4.53, p = .003, n?
= .274), area (F(1,12) = 765.14, p < .001, n* = .985), and experience (F(1,12)
= 6.36, p =.027, n* = .346).

While there was no significant interaction found between segment and experi-
ence (F(4,48) = .242, ns), the analysis revealed a significant interaction between
segment and area (F(4,48) = 3.57, p =.012, n? = .229). Other two and three-way
interactions were not significant.

The main effect of segment was analyzed using Bonferroni adjustment pro-
cedure for multiple comparisons. This showed that while proportional fixation

164

times during the last two phases were almost equal, the PFT during first two
minutes was significantly different than during second segment (p = .037) and
nearly significantly different than during fourth segment (p = .053). Although
noticeable, the difference between second and third segment was not significant.

Novices Experts
Segment (min.)|Code Visualization Output|Code Visualization Output
0-1 64.17 32.49 3.34 |74.73 22.88 2.39
2-3 91.13 6.61 2.25 197.29 1.64 1.07
4-5 63.27 27.61 9.12 |85.11 10.75 4.14
6-7 87.14 9.87 2.99 (88.41 2.67 8.93
8-9 81.53 16.91 1.56 |83.80 6.28 9.91

Table 2. Proportional fixation times (%) of Novices and Experts during the five seg-
ments of debugging.

100

—e— N Code

—B— N Visualization

—a— N output

—%—E Code

—+— E Visualization

Relative fix. time (%)

—s—E Output

01 23 45 67 89
Segment {min.)

Fig. 2. Plot of proportional fixation times during five phases of debugging.

While previous quantitative investigations of eye-movement patterns of less
experienced and expert programmers showed no differences between the visual
behavior of the two groups [11], this finding seems to contradict the past results.
Our analysis revealed an effect of experience on proportional fixation times.

Overall, throughout the whole debugging session expert programmers — who
also found more bugs — relied more on the textual representation of the program
than the less experienced programmers did. Output of the program became
more important than visualization at later phases of the debugging strategies of
experts, while novice programmers tended to rely on the visualization.

165

Table 3 and Figure 3 present the switching behavior in terms of overall num-
ber of switches per minute during the five segments of debugging. A 5 x 2 (seg-
ment, experience) ANOVA revealed main effect of segment (F(4,48) = 3.99, p =
.007, n? = .250). Experience had no effect on the number of switches (F(1,12) =
0.11, p =.745, n* = .009) and there was no interaction between experience and
segment (F(4,48) = 0.477, p =.753, n* = .038).

Similarly as with the analysis of PFT, the significant main effect of seg-
ment on the switching frequency was analyzed using Bonferroni adjustment for
multiple comparisons. First and second, second and third, and second and fifth
segments differed significantly (p = .024, p = .014, p = .005, respectively). Other
pairwise differences were not significant.

Table 3. Switches per minute between any of the three main representations during

the five segments of debugging.

Novices | Experts

Segment (min.)|sw/m SD |sw/m SD
0-1 8.00 4.57| 8.63 7.95

2-3 2.42 1.66| 1.19 1.19

4-5 8.03 4.30| 6.75 5.88

6-7 5.58 3.40| 7.50 7.51

8-9 6.42 4.47| 9.18 6.18

——Experts

Switches per minute

Std. dev. of switches per minute

——Experts

5
Segment (min) Segment (min)

Fig. 3. Plots of switching behavior ((a) mean, (b) standard deviation) during five
phases of debugging.

Finally, similarly as in [13] we have examined the type of switch programmers
exhibit during debugging. Three types of switch were possible to perform during

166

debugging: a switch between code and visualization (or back), a switch between
code and output (or back), and a switch between visualization and output (or
back).!Table 4 provides an overview of a breakdown of the switching frequency
from Table 3 into the tree types of switches.

A 5 x 3 x 2 (segment, switch type, experience) ANOVA revealed significant
main effect of segment (F(4,48) = 3.75, p = .01, n? = .238) and type of switch
(F(2,24) = 9.23, p < .001, n? = .435) on switching frequency. Effect of experience
was not significant (F(1,12) = 0.18, ns).

Interactions of segment and experience and type of switch and experience
were not significant. However, interactions of segment and type of switch (F(8,96)
=4.75, p < .001, n? = .284) and segment, type of switch and experience (F(8,96)
= 4.82, p < .001, n* = .286) were significant.

Pairwise comparisons using Bonferroni corrections showed that the main ef-
fect of switch type was due to the switch between code and visualization being
significantly most frequent than the switch type between visualization and out-
put (p = .001). The two other comparisons were not significant, although the
switch between code and visualization was notably more frequent than the switch
between code and output (p = .19) and the switch between code and output was
more frequent than the switch between visualization and output (p = .18).

Novices Experts
Code - Code - Visualization - Code - Code - Visualization -
Segment | Visualization Output Output Visualization Output Output
0-1 5.83 0.58 1.58 6.31 1.00 1.31
2-3 1.92 0.42 0.08 1.06 0.06 0.06
4-5 2.25 3.17 1.83 3.75 1.88 1.13
6-7 3.67 1.00 0.92 1.75 5.00 0.75
8-9 5.22 0.43 0.77 2.06 5.39 1.73

Table 4. Switches per minute for each of the three main types of switches during the
five segments of debugging.

Segmentation of the eye-tracking data allowed us to analyze how the fixation
patterns of programmers developed during the debugging. Visual analysis of Fig-
ure 2 and Figure 3 show saw-like patterns of visual attention in time, especially
for the novice group throughout the whole process. Therefore, it can be assumed
that the use of each representation of the program is not constant during the
process, but oscillates between 64% of time to up to 97% of time (see Table
2. Number of switches and proportional fixation time on code were negatively
correlated (r(5) = -.814, p = .093). Therefore, at times when the textual rep-
resentation is being used the most, programmers tended to not to switch often
between different representations.

! There are, in fact, six types of switches. However, to simplify the current analysis we
have considered any switch between two representations as belonging to one type.

167

Both novice and expert programmers made most use of the visualization
at the beginning of the process. In the next phase of debugging, both groups
concentrated on the textual representation of the program, while decreasing
the visual coordination activity. In the middle of the debugging process, novice
programmers again paid much more attention to visualization and to output,
and switched more frequently than in previous phase. Experts began to attend
also to the output of the program and switch their visual attention between the
three representations.

From the fourth phase, the expert group changed behavior so that we have ob-
served frequent switches between output and program code. The plots of novices’
PFT and switching behavior, on the other hand, continued in the saw-like pat-
tern until the end of the debugging. At the final stage of debugging, expert
programmers coordinated the three representations with the highest frequency
of switches.

In summary, the high variance presented in the eye-tracking data of expert
programmers indicates their diverging strategies, especially toward the end of
the session. What the visual attention tracking data seem show, however, is that
novice programmers engage in and alternate between two distinct approaches to
coordinate the code and graphical representation. They begin by high frequency
of switching between code and visualization. After this phase, they attend mostly
the code, while exhibiting low number of attention switching to other represen-
tations. Once the code reading is finished, again, novice programmers change
their strategy to the high-frequency attention switching.

4 General Discussion

Programming alone is a complex task to study. When these tasks take place
within a rich and dynamic context, the analysis and interpretation of the result-
ing eye-tracking data present a serious challenge. Experimentation in software
engineering is difficult and carrying out empirical work is complex and often time
consuming [16]. This seems to be especially true in conducting and analysing of
experiments employing eye-tracking to study software comprehension.

Program debugging and comprehension involve a variety of strategies that
a programmer has to exercise to create a coherent mental model of a program.
Modern programming environments present program-related information in mul-
tiple windows, and use graphics and animation to visualize some aspect of the
program. This presents a challenge to the users who have to coordinate the rep-
resentations by active selection of what information they want attend to. To
get deeper insights into the processes as they are carried out in the presence
of multiple linked representations, we have employed an eye-movement tracking
technique to study visual attention patterns of expert and novice programmers.

To avoid manual extraction of eye-tracking data we made use of automatic
techniques to reduce the data into eye-tracking measures. The relation of the
eye-tracking measures to the comprehension processes, however, is not a straight-
forward process. In our previous studies in programming that employed visual

168

attention tracking, we began to approach the task by studying effects of expertise
on the eye-tracking patterns.

In contrast with some previous similar investigations, however, we further
segmented the whole process into shorter sections to obtain finer level of de-
tail about the process. The resulting eye-tracking metrics were analyzed using
quantitative statistical methods, and plotted against time.

Using the proposed approach to eye-tracking data analysis, our results show
how eye-movement patterns develop during debugging with multiple represen-
tations. Not surprisingly, programmers mostly visually attended source code, a
confirmation of findings of some previous studies [13]. Our results extend on
these findings and show how the representation use developed in time during
debugging.

While we have not found any prevailing trends in the visual attention pat-
terns that would reflect increasing or decreasing changes in use of the main
representation, by segmenting the process into shorter intervals, we discovered
temporal sensitivity of the visual attention patterns. In particular, we have dis-
covered a saw-like pattern of use. We found that although there was a variance
in the strategies, more experienced programmers change their strategies during
debugging and focus their attention to output of a program at later stages of
the process. While the results related to switching frequency show that for most
of the debugging process the switching was not sensitive to expertise, toward
the end of the ten minutes session more experienced programmers gradually ex-
hibit higher frequency of switching. Based on these findings, we tend to believe
that the changes in eye-tracking measures reflect both the importance of differ-
ent representations during programming processes and differences in debugging
strategies.

Some of the most intriguing aspects of visual attention behavior, however,
cannot be discovered only using pure quantitative reductionist approaches to
eye-tracking data analysis. We have illustrated that the temporal aspects of
eye-tracking data during programming can provide valuable insights about the
representation use. There are, however, also issues that limit the potentials of
automatic methods to analyze the gaze patterns and relate them to the underly-
ing processing. In particular, arranging participants into groups — whether based
on experience or time — smooths away the individual differences. In [8] the two
most similar scanning patterns while reading an algorithm belonged to subjects
from opposite experience groups. Also in our study the individual differences
sometimes seemed to predominate over a stereotypical group behavior. This
caused the variability within a group, for example, in eye-tracking data related
to switching behavior; while the measure-means of the two groups were similar,
the behavior of more experienced group contained greater amount of variance.
These variances, in turn, seem to impair the traditional quantitative approaches
to variance analysis in their assumptions of homogeneity of variances.

Therefore, in parallel to automatic quantitative methods, we are investigating
the potentials of qualitative approaches to eye-tracking data analysis in dynamic
programming environments. These approaches to visual attention data during

169

programming are indeed required to complement the quantitative view on the
process. While quantitative methods can help us to discover interesting events in
visual behavior, we suggest that more qualitative approaches shall be employed
to provide detailed explanations.

Our study also raises several issues that need to be addressed by future re-
search into the link of eye-tracking data and processes involved in programming.
In the present study, the segments of the data were delimited based on fixed
time-interval. Although the time-based approach allows for clearly defined seg-
mentation, different participants seem to proceed with debugging at their own
pace. For example, some expert programmers found bugs faster, and therefore
might have changed their strategies sooner than programmers who have not
found bugs. Therefore, aggregating and regarding individual behaviors at cer-
tain fixed interval as representing a group behavior might be problematic.

To study individual behavior, however, boundaries based on better defined
subtasks and events shall be determined as references to behavioral units. For
example, one class of such delimitations can be related to a programmer finding a
bug, or changing a strategy. It can be then possible to examine, for instance, how
users modify their strategy after a bug has been found. We plan to investigate
this idea in future.

Another interesting observation that fuels our future research of aspects of
visual attention in programming is related to switching behavior. While most
of the visual attention switches performed during debugging were balanced and
between two representations, we have observed that more experienced program-
mers during certain phases of debugging tend to exhibit switches that coordinate
three representations. The transition matrix representing the switching behavior
then becomes asymmetrical (e.g. there are more switches from code to visualiza-
tion than from visualization to code). We propose that a degree of asymmetry
of the transition matrix could be a new higher-level eye-tracking metric.

5 Limitations and Conclusions

The main limitation of this study can be seen in the low number of participants.
However, the main focus of this study was on the methods to analyze the eye-
tracking data during programming rather than on testing the hypotheses related
to the use of visualization in programming. As there are no automatic tools to
perform the proposed analysis, we began with a reasonable yet illustrative sam-
ple size. Any further quantitative investigations shall consider recruiting more
participants to exhaustively test the hypotheses set by the present study.

In summary, our exploratory study shows that segmentation of eye-tracking
data in general seems promising. We have attempted to segment the data set
according to time into shorter segments of equal duration, one of many potential
approaches to segmentation. Consequently, both the proportional fixation time
and switching frequency showed sensitivity to the effect of different phases of a
debugging session.

170

Contrary to previous findings that approached the eye-tracking measures
from a long-term reductionist perspective, our analysis also revealed differences
in representation use during debugging. Our findings indicate that experts ex-
erted more efforts to integrate the information available and changed their visual
strategies during the process, in particular to relate code and output informa-
tion at the later stages of debugging. Novice programmers, on the other hand,
seemed to alternate between two strategies without being able to modify their
approach.

Acknowledgment

The feedback from three anonymous reviewers was valuable and has materialized
as improvements of this paper.

References

[1] Jacob, R.J.K., Karn, K.S.: Eye Tracking in Human-Computer Interaction and
Usability Research: Ready to Deliver the Promises (Section Commentary). In
Hyoné, J., Radach, R., Deubel, H., eds.: The Mind’s Eye: Cognitive and Applied
Aspects of Eye Movement Research, Elsevier Science (2003) pp. 573-605

[2] Blackwell, A.F., Whitley, K.N., Good, J., Petre, M.: Cognitive factors in pro-
gramming with diagrams. Artif. Intell. Rev. 15 (2001) 95-114

[3] Goldberg, J., Kotval, X.P.: Computer Interface Evaluation Using Eye Move-
ments: Methods and Constructs. International Journal of Industrial Ergonomics
24 (1999) 631-645

[4] Cowen, L., Ball, L.J., Delin, J.: An eye-movement analysis of web-page usabil-
ity. In Faulkner, X., Finlay, J., Détienne, F., eds.: People and Computers XVI:
Memorable yet Invisible: Proceedings of HCI 2002, Springer-Verlag Ltd (2002)

[5] Rayner, K.: Eye movements in reading and information processing: 20 years of
research. Psychological Bulletin 124 (1998) 372-422

[6] Reichle, E.D., Pollatsek, A., Rayner, K.: E-Z Reader: A cognitive-control, serial-
attention model of eye-movement behavior during reading. Cognitive Systems
Research 7 (2006) 4-22

[7] Goldberg, J., Wichansky, A.: Eye Tracking in Usability Evaluation: A Practi-
tioner’s Guide. In Hyo6n4, J., Radach, R., Deubel, H., eds.: The Mind’s Eye: Cog-
nitive and Applied Aspects of Eye Movement Research, Elsevier Science (2003)
pp- 493-516

[8] Crosby, M.E., Stelovsky, J.: How Do We Read Algorithms? A Case Study. IEEE
Computer 23 (1990) 24-35

[9] Romero, P., du Boulay, B., Lutz, R., Cox, R.: The effects of graphical and textual
visualisations in multi-representational debugging environments. In: HCC ’03:
Proceedings of the IEEE 2003 Symposia on Human Centric Computing Languages
and Environments, Washington, DC, USA, IEEE Computer Society (2003)

[10] Nevalainen, S., Sajaniemi, J.: Short-Term Effects of Graphical versus Textual Vi-
sualisation of Variables on Program Perception. In: Proceedings of the 17th An-
nual Psychology of Programming Interest Group Workshop (PPIG’05), Brighton,
UK (2005) 77-91

171

[11]

[12]

[13]

[14]

[15]

[16]

Bednarik, R., Myller, N., Sutinen, E., Tukiainen, M.: Analyzing Individual Dif-
ferences in Program Comprehension with Rich Data. Technology, Instruction,
Cognition and Learning 3 (2006) 205-232

Bednarik, R., Tukiainen, M.: An eye-tracking methodology for characterizing pro-
gram comprehension processes. In: ETRA ’06: Proceedings of the 2006 symposium
on Eye tracking research & applications, New York, NY, USA, ACM Press (2006)
125-132

Romero, P., Lutz, R., Cox, R., du Boulay, B.: Co-ordination of multiple external
representations during java program debugging. In: HCC ’02: Proceedings of the
TEEE 2002 Symposia on Human Centric Computing Languages and Environments
(HCC’02), Washington, DC, USA, IEEE Computer Society (2002) 207
Bednarik, R., Tukiainen, M.: Visual attention tracking during program debugging.
In: NordiCHI ’04: Proceedings of the third Nordic conference on Human-computer
interaction, New York, NY, USA; ACM Press (2004) 331-334

Bednarik, R., Tukiainen, M.: Validating the restricted focus viewer: A study using
eye-movement tracking. Behavior Research Methods (in press)

Basili, V.R., Shull, F., Lanubile, F.: Building knowledge through families of ex-
periments. IEEE Transactions on Software Engineering 25 (1999) 456-473

172

