
Problem solving in programming 

Anabela Gomes1,2 

António José Mendes2 

1Department of Informatics Engineering and Systems, Polytechnic Institute of Coimbra  
anabela@isec.pt 

 
2CISUC – Department of Informatics Engineering - University of Coimbra 

toze@dei.uc.pt 

Abstract. We think that the major cause of the students’ failure in introductory 

programming course is the lack of a basic skill, the problem solving ability. 

Several authors frequently regarded this skill as the most important cognitive 

activity in everyday, professional and educational contexts. In traditional 

programming teaching, generic problem solving is not emphasized. In this 

paper we discuss the concepts and stages of problem solving, considering also 

how experts and novices solve problems. The idea is that this analysis leads to a 

number of important principles for teach and learn problem solving strategies. 

The main purpose of this paper is to present the features of a system currently 

under development to support programming learning, focusing in problem 

solving activities. 

1 Introduction 

Learning to program is a difficult process to many students. This causes a high failure 

rate in many institutions worldwide. Several authors have discussed different reasons 

for such problems [1, 2, 3, 4, 5]. In general they argue that programming is difficult 

due to the nature of the subject, as programming requires a hierarchy of skills like 

abstraction, generalization, transfer and critical thinking, among others. Also, some 

authors refer that teachers’ methodologies often doesn’t take into consideration the 

dynamic nature of programs, as they are presented mostly using materials. Several 

authors also refer that many students don’t follow an adequate study method for 

programming learning. Programming requires a very practical and intensive approach, 

which is quite different from what is required in many other courses (more based in 

theoretical knowledge, implying extensive reading and some memorization). Student 

background is often mentioned as a cause of problems, especially in what concerns 

problem solving skills. Often authors point out that the main difficulty for many 

students is to create solutions to problems, that is creating algorithms to solve them. 

In other words, the main difficulty is to devise and formalize a solution and not its 

codification in a particular programming language. We believe that these problem 

solving difficulties are not specific of typical programming problems, but more 

general to other types of problems. Therefore, in this paper we emphasize problem 

solving processes. We will discuss the stages and strategies involved in problem 

PPIG'07 Work in Progress Report

216



solving, the necessary abilities, as well as different approaches for problem solving. 

The difference between novice and expert students when they are involved in problem 

solving tasks in different domains will also be mentioned. Perhaps, this comparison 

may help to answer some questions, such as, Is it possible to teach how to solve 

programming problems? What abilities a novice needs to acquire to become an 

expert in programming? 

2 Problems and Problem solving 

In our view, to improve programming teaching and learning it is fundamental to 

develop student’s problem solving abilities. Based on this assumption we did a 

literature review about several aspects connected with problems and their solutions. 

2.1 What is a problem? 

For a better understanding of the processes involved in problem solving it is useful to 

know how different authors define what a problem is. For Gagné [6], it is a process 

where the apprentice/learner discovers a combination of rules previously learned that 

he/she can apply to reach a solution for a new problematic situation. Hayes [7] 

defined a problem as the gap that separates a present state from a desired state. Gil 

Pérez et al. [8] consider a problem as a situation for which there isn’t an evident 

solution. Perales [9] considers a problem as any situation that produces, on one hand, 

a certain degree of uncertainty and, on the other, behaviour in search of a solution. 

For Mayer [10], it is a multifaceted and complex concept, with cognitive, 

metacognitive and motivational aspects. The majority of the researchers in this area 

consider problem solving as a subjective state of mind. It is different from individual 

to individual, constituting a challenge, a situation not solved, whose reply is not 

immediate. Reflection, use of conceptual and procedural strategies is needed in order 

to provoke a change in the learner mental structures that may lead to problem 

solution. Finally, Flavell [11] says that it is not worth to define “problem” as it is 

something complex and instable, requiring creativity to its solution. 

2.2 Stages in Problem Solving 

To verify where students fail during programming problem solving it is useful to 

divide the problem solving process in stages. A literature review on this subject 

allows us to find theories from different ages and knowledge domains. For instance, 

Descartes [12] in his “Discourse on Method” proposed a new "method" of thinking or 

problem solving. His method consisted of four rules, which Descartes writes in the 

informal, first-person style of the entire Discourse: i) "to accept nothing as true that I 

did not know to be evidently so"; ii) "to divide each of the difficulties I was 

examining into as many particles as I could"; iii) "to conduct my thoughts in order, 

beginning with the simplest objects and those that are easiest to understand, and 

progressing, as if by degrees, to the understanding of the most compound" and iv) 



"always to carry out enumerations so complete and reviews so general, that I would 

be certain of having omitted nothing." 

Polya, in his book “How to Solve It” [13], describes many ideas on how to help 

students learn. The main ideas in the book are about problem solving which Polya 

thinks of as a four-phase process, namely: i) understand the problem; ii) devise a plan 

- it often means looking at related or simpler problems; iii) carry out the plan and iv) 

look back. 
Hyman and Anderson [14] say that the essential for a successful problem solving 

is, first of all, to run over all the elements of the problem in rapid succession, many 

times, until a pattern emerges and don't jump hastily to conclusions (similar with 

Descartes' first rule). 

Also in the scope of information processing theories some models including stages 

of problem solving processes have been proposed. Although the steps are different, on 

the whole, they express a similar sequence. According to Sternberg and Davidson 

[15] these steps are: i) problem identification; ii) selection of the mental operation to 

solve it with success; iii) internal and external representation of the information, in a 

clear way; iv) selection of an adequate strategy; v) distribution of the available 

resources; vi) monitor the different moments of problem solving, this is, having the 

conscience of what we made, what we are making and the evaluation of the solutions. 

In fact, problem solving methods are often described in a logical sequence of stages 

[16] that, together, describe the phases postulated by information processing models: 

i) input, where the problem is perceived and an attempt for understanding the 

situation or the problem is made; ii) processing, the phase where alternatives are 

generated and evaluated and a solution is selected; iii) output includes the planning 

and the implementation of the solution; iv) revision, where the solution is evaluated 

and the necessary modifications are made. 

Pretz and colleagues [17] also divided the problem solving process in several 

stages: i) to recognize or to identify the problem; ii) to define and to represent the 

problem mentally; iii) to develop a resolution strategy; iv) to organize the knowledge 

concerning the problem; v) to attribute mental and physical resources to solve the 

problem; vi) to monitor ideas so not to divert from the main goal; vii) to evaluate and 

correct the solution. 

Bransford and Stein [18] proposed the IDEAL model, which includes the following 

stages: i) Identification of the problem; ii) Definition of the problem with precision; 

iii) Exploration of strategies to reach the problem solution (based in previous 

knowledge and experiences); iv) Action, in the sense of the execution of the 

previously planned; v) Learn (or Looking back) relative to the observation of the 

effect of the carried through actions and learning according to the evaluation of the 

results of these actions. 

Also Santucci [19] synthesized in the acronym FARE several problem solving 

techniques and methods that basically retake the original model of Polya, referring the 

following stages: i) Focusing on the creation, selection and definition of the problem, 

deciding what is necessary to know; ii) Analysing, by collecting reference data, 

determining the relevant factors, and generating alternative solutions (or action plan); 

iii) Resolving, by selecting one solution, developing a plan for update and persistence 

in the organization to reach the awaited result; iv) Execution, finding a solution, 

controlling the impact during the plan implementation (evaluation of the results). 



Almeida [20] proposes a prescriptive model of the problem solving process. It 

includes the following phases: i) Recognition, definition and identification of the 

problem; ii) Analysis of the problem and generation of alternative solutions; iii) 

Development of plans; evaluation of the alternatives and selection of one of them; iv) 

Selection and effective implementation of the alternative solutions; v) Evaluation and 

follow-up or solution testing. 

Taking into consideration the latter models and also the OECD-PISA report [21]
1
, 

we can describe problem solving stages, and identify some obstacles that, according 

to our experience, students frequently face in each of them, when attempting to solve 

programming problems. 

− Understanding the problem. This stage is fundamental for good problem solving, 

but usually many students neglect it, not dedicating enough time to it. Frequently 

students are already attempting to solve a programming problem when they realize 

that they really didn’t understand the actual problem. In programming, where the 

problems are often badly-defined or incompletely described, this phase necessarily 

includes the problem definition and understanding all ambiguous or incompletely 

detailed aspects. This includes understanding text, diagrams, formulas or tabular 

information, drawing inferences from them and relating information from various 

sources. It is important to show understanding of the relevant concepts; and using 

information from students’ background knowledge to understand the given 

information. 

− Characterising the problem. This includes the way students identify the problem 

variables and their interrelationships, making decisions about which variables are 

relevant and irrelevant, constructing hypotheses, and retrieving, organising, 

considering and critically evaluating contextual information. This phase implies 

looking for related or analogous problems that students may have already solved or 

that are of their knowledge. This type of strategy is rarely or badly used by many 

students. They often don’t use interrelated knowledge, and other times they 

misidentify related problems, as they use seemingly similar problems, but that imply 

very different resolution strategies. 

− Representing the problem. This includes the way students construct tabular, 

graphical, symbolic or verbal representations of the problem. Using external 

representations and shifting between representational formats may help students to 

better develop quality solutions. The students should be more encouraged to represent 

the problems, using their favourite representations and those that better translates their 

understanding of the question. 

− Solving the problem. This includes making decisions, designing a system to meet 

certain goals, diagnosing and proposing a solution. In order to solve a problem it is 

necessary that all parts decided previously are now linked into a coherent and correct 

whole. Independently of the different approaches (top-down, bottom-up...) used to 

solve problems it is now important to make an effort to relate them and to solve the 

                                                           
1
 The Organisation for Economic Co-operation and Development’s (OECD) Programme for 

International Student Assessment (PISA) is an internationally standardised assessment that was 

jointly developed by several participating countries and administered to students in some 

schools of those countries. Learning for Tomorrow’s World – First Results from PISA 2003 

(OECD, 2004a) summarises results from the assessment of the problem-solving skills. 



task completely. It is quite frequent that students tend to give up on the slightest 

difficulty, putting aside a problem just because they don’t know how to solve one of 

its parts. 

− Reflecting on the solution. This includes examining solutions and looking for 

additional information or clarification; evaluating solutions from different 

perspectives in an attempt to restructure them, so that they can be more socially or 

technically acceptable. At this stage it is also important to be able to justify produced 

solutions. Usually the student’s main objective is to reach the fastest way to obtain a 

solution, not analyzing it later with care. This stage must include a compete analysis 

of the solution implying, sometimes, the additional search or clarification of some 

information. The evaluation of the solution from different perspectives must also be 

considered, in an attempt to reorganize the solution and optimizing it. We consider 

that programming is learnt not only by programming, but also through reflexion about 

the way we programmed the solution. Would we do it in a different way the next 

time? How did other people solve the same problem? In programming subjects, we 

also consider very useful the discussion of different student’s solutions, in order to 

verify different points of view. 

− Communicating the problem solution. This includes selecting appropriate media 

and representation to express and to communicate solutions to an outside audience. 

We think that trying to communicate the solution can help students to detect problems 

that were previously not understood and also to reflect about the produced solutions. 

We believe that the above steps, if practised during programming learning, will 

lead to a more organized and disciplined approach that will help students in the 

subject.  

The study published by Almeida [20] seems to confirm some of our ideas about 

student’s difficulties. Although this study target was mathematics secondary 

education students, many conclusions are similar to our experience with programming 

students. The author concluded that, when asked to solve a problem, in only 50% of 

the cases the students completely defined the problem (they identified the variables 

and the unknown quantities or the problem initial and final states). In 32% of the 

cases they only defined the problem partially. According to solution planning, only in 

47% of the cases the problem was properly planned. The author refers that many 

students showed a high difficulty to produce some helpful graphical representation of 

the problem. Most students only tried to create it after a suggestion from the teacher. 

The attempt to find the problem solution occurs usually immediately after a short 

contact with its description. In general, it was observed in this stage that the students 

tried to find a solution immediately, even before a careful analysis and understanding 

of what was required. This is a tendency we often noticed also in our programming 

students. In the study, the observing teacher often recommended students to pay 

attention and to meditate about their answers, but 9% of the answers appeared by 

insight, and these weren’t always correct. It was also verified that only in a few cases 

the students showed a reflexive attitude about the problem or the solutions they 

propose. For example, in 45% of cases the students accepted the solution they 

produced, just because they reached a result, without worrying about its correction or 

coherence. The author also concluded that the students that better solve problems are 

those that better understand the statements and more frequently verify, in a controlled 



way, the process and progress of the resolution, or the coherence of the solution with 

the problem data and conditions. 

3 Types of competences necessary to solve problems 

To help students to become better problem solvers, it is important to understand 

which abilities are essential to solve problems. To define a taxonomic organization of 

the necessary cognitive abilities it is useful to consider the mind as a hierarchic and 

multidimensional universe, whose different levels of organization obey to different 

rules [22]. In this direction, problem solving is considered the higher ability of a 

complexity continuous [23, 24]. 

According to the OECD report [21], problem solving is a combination of some 

different cognitive processes, organized in order to achieve a certain goal that could 

not be reached, at least in an evident way, through the simple application of a 

procedure, a process, a routine or an algorithm, already known, from a unique area. 

Problem solving involves different abilities of reasoning, thus the process of problem 

solving not only involves the student’s knowledge, but also their reasoning abilities. 

For instance, when trying to understand a problem situation, the student may need 

to distinguish between facts and opinions. When formulating a solution, it is 

important to identify relationships among variables. When selecting a strategy, the 

student has to consider cause and effect. When solving a problem and communicating 

the result, the student has to organize information in a logical manner. These activities 

often require analytical reasoning, quantitative reasoning, analogical reasoning and 

combinatory reasoning skills. 

The same report mentions that different reasoning implies diverse activities in 

different situations. Thus, analytical reasoning is necessary in situations where the 

learner has to apply principles from formal logic when he/she determines the problem 

necessary and sufficient conditions. Quantitative reasoning occurs when the student 

has to apply properties and procedures related with the perception of numbers and 

numerical operations. Analogical reasoning happens when the learner has to solve a 

problem that has a similar context to some other previously solved by the student. The 

parameters or the context of the new problem may be different, but the strategy and 

reasoning to apply are the same. The student should be able to solve the new problem, 

interpreting it according that past experience. Combinatory reasoning takes place 

when the learner has to examine some factors, to consider all combinations that can 

happen, to evaluate each one of them in relation to some objective limitations that 

may exist, and later to select or order the combinations hierarchically. 

Kizlik [25] identified a set of abilities that he considers nuclear for an efficient 

cognitive performance, namely: focalization, collecting information, memory, 

organization, analysis, execution, integration and evaluation. The author also argues 

that it is important that students are able to integrate the different abilities of the 

various types. The more they can do it the better they solve problems. The less 

developed abilities, in turn, indicate aspects to take into consideration in any problem 

solving training program. 



We agree with Sloane and Linn [26], when they state that programming doesn’t 

consist in a unique ability, not even in a set of abilities, but the necessary abilities 

form a hierarchy and the programmer has to use many of them simultaneously. Which 

abilities are necessary? What types of abilities have the experts when solving 

problems that the novices do not have? In [27] it is possible to find an analysis that 

tries to find differences in the way experts and novices solve problems in different 

knowledge domains, namely chemistry, physics and mathematics. The conclusions 

are described next, also using similar conclusions presented by other authors. 

- Some studies found that ‘experts’ use ‘working-forward’ or ‘knowledge 

development’ strategies while ‘novices’ use ‘working-backward’ strategies or 

‘means-ends analysis’ [28, 29, 30]. ‘Working forward’ strategies imply that the solver 

operates from the given problem (initial state) to the goal (the desired answer) while 

‘working backward’ strategies operate from the goal to the initial state [31]. So, 

experts working in this way construct a more complete representation of the problem 

because they have extra knowledge available. 

- Reviewing the research in the 1980s, Mestre [32] concluded that experts have 

extensive knowledge that is highly organised and used efficiently in problem-solving. 

Experts also approach problem-solving differently from novices. They categorise 

problems qualitatively and according to major principles whereas novices categorise 

problems quantitatively and according to their superficial attributes (i.e., the objects 

that appear in the problem statement). 

- Novices try to solve the problem immediately, spending little time in its 

interpretation, and sometimes they solve it by trial and error, because they do not 

possess much auxiliary knowledge. According to Neves and Anderson [33], practice 

can help shorten the time necessary to solve problems. It is more likely that experts 

can solve problems in less time, as they have developed automatic processing through 

a lot of practice [34]. Larkin et al. [29] claimed that experts combined principles, 

collected necessary information and generated new information all in a single step. 

- Experts come close to the solution through a process of successive refinements, 

starting with a rude description of the problem, through words and drawings and only 

later they examine the details of the problem. The novices start with a search of some 

principle or equation, since they do not have interrelated knowledge as the experts 

have. Experts solve problems from a general principle, using the deductive reasoning. 

- Larkin et al. [29] also verified that opposed to experts, novices analyze the 

problem superficially, through memorization tasks and they do not review their 

answers. 

- While experts tend to perceive a problem as an analysis and reasoning task, 

novices try to find the answer or solution quickly. 

- Novices tend to use rules incorrectly, to see clues where they do not exist, and to 

consider as valid the first option that appears. They often do not test hypotheses, 

many times use logic badly, ignore previous reasoning and don’t reflect on the 

problem solution. 

So, in order to improve problem-solving among students, we think that it is 

important to understand the advantages that expert problem-solvers have and 

transform these advantages into problem-solving directions. Perhaps by teaching 

expert’s problem-solving procedures to novice students, they will be able to improve 

their abilities, approaching the knowledge framework of experts. 



4 Our proposal 

Over the years many tools have been proposed to help solving programming learning 

difficulties. Many of those tools use animation and simulation techniques, trying to 

take advantage of the human visual system potential. There are many visualization 

systems, some focusing on algorithms others on complete programs. Some focus on 

low level details (e.g. showing data structures and their evolution during a program), 

while others use a higher detail level, showing program behaviours, component 

relations and methodologies. Some systems just animate pre-defined programs and/or 

data structures, while others accept student’s programs, allowing them to see how 

they work and, eventually, make the necessary corrections.  

Some systems, like MRUDS - Multiple Representation for Understanding Data 

Structures [35], tried to go a step further, in this case using multiple visual 

representations to illustrate linear data structures, such as tables, stacks, queues and 

lists. Many other systems have been proposed, using visual representations or 

algorithm animations. BALSAII [36], VIP [37], XTango [38], Jeliot 2000 [39], 

Trackla [40], BlueJ [41] and Jhavé [42] are known examples. 

Artificial intelligence techniques to support programming teaching and learning 

have also been proposed, namely Intelligent Tutoring Systems, such as Lisp-Tutor 

[43] or C-Tutor [44]. 

Microworlds are another popular proposal, seriously influenced by the turtle 

graphics of LOGO [45]. Examples include "Karel the Robot" [46], Tortoise [47], 

TurtleGraph [48] and Alice [49]. 

The above mentioned systems were created mainly in the scope of academic 

works. However, some professional systems can also facilitate programming and the 

detection of programming errors. Modern IDEs are examples of such tools. 

Acknowledging that there are many systems designed to support programming 

learning, it is relevant to ask why learning problems continue to be widely reported. 

Maybe many tools are not well suited for students that mostly need support (those 

with deeper difficulties). We may also think that different approaches are still 

necessary, so that the computational environments can really help students, adapting 

themselves to student’s preferences and needs. Our own work is an example of this 

situation. As we think that the main problem is the students’ incapacity to create 

solutions to problems, in other words, to construct algorithms, we created a system 

called SICAS (a Portuguese acronym for Interactive System for Construction of 

Algorithms and its Simulation) [50]. This system focus essentially on algorithm 

development, allowing students not only to understand algorithms, but mostly to 

design, test, try, and correct their own algorithms. 

Some experiments were made with SICAS [51]. In those experiments we verified 

that SICAS is useful for students with average skills, but not for weaker students, who 

have many difficulties related with mathematical and logical concepts and severe 

limitations concerning problem solving. 

Based on the above considerations, we believe it is possible to reduce student’s 

problem solving difficulties, through the utilization of a computer-based environment 

that proposes activities to the students according to their current level and preferred 

learning style. During problem solving the environment follows student’s work, 



giving advice when necessary. This environment is currently under development. Its 

main objectives and strategies are described in this section. 

This multimedia environment will integrate several types of problem solving 

activities. For beginning students the activities will have a more ludic nature, using 

knowledge from diverse domains, as a way to attract and to stimulate students. As the 

student progresses, the environment starts to propose problems that demand more 

elaborated solutions. Step-by-step, the activities will progress gradually towards 

programming problems. The main idea consists in continually verifying the student’s 

progress, through a stimulating and attractive system. Student’s progress must be 

analysed in terms of abstraction capacity, logical reasoning, problem solving capacity 

and cognitive autonomy. The final goal for the students is the construction of 

algorithms that solve typical programming problems, eventually using previously 

developed formalizations and transforming them into common programming 

representations, using a suitable environment, such as SICAS. 

SICAS includes support to two types of activities: design/edition of solutions 

(algorithms) to proposed problems and execution/simulation of those solutions. In the 

first case, the student can construct algorithms using visual representations 

(flowcharts) where they use graphical symbols that represent the structures 

(selections, repetitions, functions…) necessary to build the algorithm. This 

representation is independent of any programming language that may be used in the 

course, allowing students to focus on the algorithm design and not on any specific 

language syntax. In the second case, the student can simulate and animate the 

execution of the algorithms she/he designed, analysing with detail and desired rhythm 

the various phases and entities it involves. SICAS does not include theoretical 

contents, but it consists of an environment to support experimentation and discovery, 

which facilitates the detection of errors, their correction and the learning based on 

these activities. In our opinion, these activities improve problem solving skills 

resulting in the ability to build programs. 

The activities proposed in each stage to a particular student should take into 

consideration her/his knowledge level and preferential learning style. The first time a 

student accesses the environment he/she will be asked to answer a questionnaire, 

allowing the system to determine that particular student preferred learning style. 

There are different models for this purpose, for example “The Myers-Briggs Type 

Indicator (MBTI)”,[52], “The Kolb’s Learning Style Model” [53], and “The Felder-

Silverman Learning Style Model” [54]. We use "The Felder-Silverman Learning 

Style Model", mostly because its origins are in the engineering field and also because 

the diagnostic is based in a simple to apply questionnaire. 

The environment emphasises the aspects previously referred as constituting the 

main obstacles for efficient problem solving. Firstly, it is important to make sure the 

student completely understands the proposed problem or activity, preventing any 

further development before that is accomplished. This is done, for example, asking 

the student to determine which facts are known and which are uncertain and/or what 

the input and output data are. If the student can’t answer these questions the system 

summarizes the problem through different representations and according to the 

student learning style. The system must also determine if the student has the 

necessary background information to solve the problem. For instance, sometimes the 

resolution of a programming problem presumes knowledge about some mathematical 



concepts. If the student shows difficulties with those concepts, the environment uses 

challenges or activities that include them implicitly or explicitly. The system contains 

also tutorials, animations and different types of explanations about the corresponding 

topic. However, explanations will only be presented in real contexts. So the idea is to 

use authentic problems with scenario-based simulations and games and not to explain 

concepts in an independent, abstract and non contextualized way. 

Sometimes it is difficult for a student to begin a resolution. In this case, the system 

must give suggestions to students according to their previously recorded knowledge. 

So, if necessary, the environment can list several approaches, so that students choose 

which ones to use in the particular problem. Initially, most presented methods are 

wrong to facilitate the student choice. As the student progresses several methods can 

be correct, but the student can be asked about the most suitable or the most efficient. 

As the student is becoming more confident the environment will remove this type of 

help. During a problem solving activity the system will also put questions, trying to 

lead students to divide the problem in smaller components. During the student activity 

the environment monitors her/his actions and tries to detect situations where the 

student is diverging significantly from the correct problem solution.  

After the student completes a solution to the proposed activity, the environment 

puts a set of questions or mini-activities (in accordance with his/her learning style), 

trying to stimulate reflection on the proposed solution. The idea is to review the 

solution steps in order to revise and refine them. In some cases the environment can 

make suggestions, asking for small changes in the problem solution, so that it meets a 

wider set of situations. Finally the environment presents the best solution for the 

proposed activity, allowing the student to compare his/her own solution with it, 

identifying possible improvements that can be made. 

Many times there is a gap between generic problem solving and programming 

problem solving. Hence it is necessary that the environment helps the students to 

make this transition. This is done through activities such as analysing complete 

programs, completing unfinished programs, detecting errors in programs and 

showing/using programming patterns. We think that the best way to learn to program 

is to program as much as possible, looking for solutions to typical problems. 

However, to study and test previously made programs (and the strategies used during 

development) can help students to understand how they work and give them 

experience to face similar problems. To finish incomplete programs and detect errors 

can also be a good help for students in some stages of their development. 

We think that the use of patterns can also be very useful, especially when the 

student does not have any real programming experience. They can serve as good 

programming examples, but also as building blocks that may facilitate the 

development of new programs. 

During problem resolution the environment reminds the students about some 

general principles or strategies which the student surely knows or that he/she used 

before in the solution of some other problem. The recognition of patterns or 

relationships in large amounts of information, the use of analogies and metaphors to 

explain a problem, are also used intensively. 



5 Conclusion 

Low problem solving skills is one of the factors that led a good number of students to 

failure in their introductory programming courses. Based on a literature review we 

concluded problem solving skills requires many abilities, like abstraction, 

generalization, transfer and critical thinking, among others. So, in this paper we 

described the main characteristics of a new computational environment that pretends 

to help programming learning through different problem solving activities. We 

specified each of the system features based on the student’s difficulties mentioned by 

several authors, and on our experience as teachers. We hope that knowing these 

difficulties and taking them into consideration will make possible to help learning and 

teaching in an effective way, more adapted to each student needs. 

References 

1. Sloane, K. D. and Linn, M. C.: Instructional Conditions in Pascal Programming Classes. R. 

E. Mayer (Ed.), Teaching and learning computer programming. Hillsdale, New Jersey: 

Lawrence Erlbaum Associates, (1988) 137-152. 

2. Gomes, A. e Mendes, A. J.: Ambiente de suporte à aprendizagem de conceitos básicos de 

programação. In Actas do 3º Simpósio de Investigação e Desenvolvimento de Software 

Educativo, Évora, Portugal, Setembro-1998. 

3. Soloway, E. and J. Spohrer.: Studying the Novice Programmer. Lawrence Erlbaum 

Associates, Hillsdale, New Jersey (1989). 

4. Jenkins, T.: On the difficulty of learning to program. In Proc. of the 3rd Annual LTSN_ICS 

Conference (Loughborough University, United Kingdom, August 27-29, 2002). The Higher 

Education Academy, (2002) 53-58. 

5. Lahtinen, E., Ala-Mutka, K. e Järvinen, H-M.: A study of difficulties of novice 

programmers. In Proc of the 10th Annual SIGCSE Conference on Innovation and 

Technology in Computer Science Education, Pp. 14-18, Monte de Caparica, Portugal, June 

27-29, (2005). 

6. Gagné, R.M.: The conditions of learning. New York: Holt, Rinehart and Winston, (1965). 

7. Hayes, J. R.: The complete problem solver. Philadelphia: Franklin Institute Press, (1981). 

8. Gil Pérez, D., Martinez Torregrosa, J. e Senent Pérez, F.: El fracaso en la resolución de 

problemas de física: una investigación orientada por nuevos supuestos. Enseñanza de las 

Ciencias, Barcelona, Vol. 6 No. 2, (1988) 131-146. 

9. Perales, F. J.: La resolución de problemas: una revisión estructurada. Enseñanza de las 

Ciencias, Vol. 11 No. 2, (1993) 170-178. 

10. Mayer, R. E.: Cognitive, metacognitive and motivational aspects of problem solving. 

Instructional Science, Vol. 26, No. 1-2, (1998) 49-63. 

11. Flavell, J. H.: Metacognitive aspects of problem solving. The nature of intelligence. L. B. 

Resnick (Ed.) Hillsdale, New Jersey: Lawrence Erlbaum Associates, (1976) 231-235. 

12. Descartes, René.: Discours de la methode and Meditationes de prima philosophia, (1637), 

as quoted in Discourse on Method; and Meditations on First Philosophy, transl. D. A. 

Cross, Indianapolis, Hackett Pub. Co. (1993). 

13. Cross, Indianapolis, Hackett Pub. Co. 1993. Polya, G.: How to Solve It. Princeton 

University Press, Princeton, New Jersey, (1945). 

14. Hyman, R. and B. Anderson.: Solving Problems. International Science and Technology, 

(Sept. 1965) 36-41. 



15. Sternberg, R. J. and Davidson, J.E.: A four-prong model for intellectual skills development. 

Journal of Research and Development in Education, Vol. 22, No. 3, (1989) 22-28. 

16. Osche, R.: Before the gates of excellence, the determinants of creative genius. Cambridge, 

New York: Cambridge University Press, (1990). 

17. Pretz, J. E., Naples, A. J. and Sternberg, R. J.: Recognizing, defining and representing 

problems. J. Davidson and R. Sternberg. (Ed.). The psychology of problem solving. New 

York: Cambridge University Press. 

18. Bransford, J. D. and Stein, B. S.: The IDEAL problem solver: A guide for improving 

thinking, learning and criativity. New York: W. H. Freeman and Company, (1984). 

19. Santucci, U.: Problem setting. From http://web.tiscaline.it/problemsetting/ 

20. Almeida, A. C.: Cognição como Resolução de Problemas: Novos horizontes para a 

investigação e intervenção em Psicologia e Educação. PhD Thesis. Faculdade de Psicologia 

e Ciências da Educação da Universidade de Coimbra, (2004) (in Portuguese). 

21. OECD (Organisation for Economic Co-operation and Development). Learning for 

tomorrow’s world. First results from PISA 2003, Paris, available in 

http://www.pisa.oecd.org/dataoecd/38/30/33707234.pdf 

22. Demetriou, A. Nooplasis.: 0 + 1 postulates about the formation of mind. The Journal of the 

European Association for Research in Learning and Instruction [Special issue: Learning 

and Instruction], Vol. 8, No. 4, (1998) 271-287. 

23. Gagné, E.: The cognitive psychology of school learning. Boston: Little Brown and 

Company, Boston, (1985). 

24. Seamster, T. L., Redding, R. E. and Kaempf, G. L.: A Skill-Based Cognitive Task Analysis 

Framework. Chipman, Shalin and Schraagen, (eds.) Cognitive Task Analysis. New Jersey: 

Lawrence Erlbaum, (2000) 135-146. 

25. Kizlik, B.: Thinking skills vocabulary and definitions . From 

http://www.adprima.com/thinkskl.htm 

26. Sloane, K. D. and Linn, M. C. Instructional Conditions in Pascal Programming Classes. R. 

E. Mayer (Ed.), Teaching and learning computer programming. Hillsdale, New Jersey: 

Lawrence Erlbaum Associates, (1988), 137-152. 

27. Costa, S. e Moreira, M.: Resolução de problemas I: diferenças entre novatos e especialistas. 

Investigações em Ensino de Ciências, Porto Alegre, Vol. 1, No.2, (1996) 176-192. 

28. Simon, D.P. e Simon, H.A.: Individual differences in solving physics problems. R.D. 

Siegler (Ed.), Children’s thinking: what develops? Hillsdale, N.J.: Lawrence Erlbaum 

Associates, (1978) 325-348. 

29. Larkin, J. H., McDermott, J., Simon, D. P. and Simon, H. A.: Expert and novice 

performance in solving physics problems. Science, Vol. 208, (1980) 1335-1342. 

30. Larkin, J. H.: Enriching formal knowledge: A model for learning to solve textbook physics 

problems. J. R. Anderson (Ed.), Cognitive skills and their acquisition. New Jersey: 

Lawrence Erlbaum Associates, Publishers, (1981) 311-334. 

31. Schunk, D.: Learning theories: An educational perspective (3rd Ed.) Upper Saddle River, 

New Jersey: Prentice-Hall, Inc, (2000). 

32. Mestre, J. P.: Implication of research on learning. Physics Education, Vol. 36, No. 1, (2001) 

44-51. 

33. Neves, D. M. and Anderson, J. R.: Knowledge compilation: Mechanisms for the 

automatization of cognitive skills. J. R. Anderson (Ed.), Cognitive skills and their 

acquisition. Hillsdale, New Jersey: Lawrence Erlbaum Associates, Publishers, (1981) 57-

84. 

34. Shiffrin, R. M. and Schneider, W.: Controlled and automatic human information 

processing: II. Perceptual learning, automatic attending, and a general theory. 

Psychological Review, Vol. 84, No. 2, (1977) 127-190. 

35. Hanciles, B., Shankararaman, V. and Munoz, J.: Multiple representations for understanding 

data structures. Computers & Education. Vol. 29 No. 1, (1997) 1-11. 



36. Brown, M.: Exploring algorithms using BALSA-II. IEEE Computer. Vol. 21 No. 5, (1988) 

14-36. 

37. Mendes, A. and Mendes, T.: VIP - A tool to VIsualize Programming examples. In Proc. of 

the EACT 88 - Education and Application of Computer Technology, EACT 88, Malta, 

October (1988). 

38. Stasko, J.: Animating algorithms with XTANGO. SIGACT News. Vol. 23 No. 2, (1992) 

67-71. 

39. Levy, R. B., Ben-Ari, M., Uronen, P. A.: The Jeliot 2000 program animation system. 

Computers & Education, Vol. 40 No.1, (2003) 1–15. 

40. Korhonen, A., Malmi, L., Silvasti, P.: TRAKLA2: a framework for automatically assessed 

visual algorithm simulation exercises. In Proc. of the 3rd Finnish/Baltic Sea Conference on 

Computer Science Education, Koli, Finlândia, (2003) 48-56. 

41. Kolling, M., Quig, B., Patterson, A. and Rosenberg, J.: The BlueJ system and its pedagogy. 

Journal of Computing Science Education, Special Issue of Learning and Teaching Object 

Technology, Vol. 12, No. 4, (2003) 249–268. 

42. Naps, T.: Jhavé – Supporting Algorithm Visualization. IEEE Computer Graphics and 

Applications, Vol. 25 No. 5, (2005) 49-55. 

43. Anderson, J. R. e Reiser, B. J.: The LISP tutor. Byte, Vol. 10 No.4, (1985) 159-175. 

44. Song, J. S., Hahn, S. H., Tak, K. Y. e Kim, J. H.: An intelligent tutoring system for 

introductory C language course. Computers & Education. Vol. 28 No. 2, (1997). 

45. Papert, S.: Mindstorms, children, computers and powerful ideias. New York: Basic Books, 

(1980). 

46. Pattis, R.: Karel the Robot: A gentle introduction to the art of programming. (2nd Edition), 

John Wiley & Sons, (1981). 

47. Brusilovsky, P.: Program visualization as a debugging tool for novices. In Proc. of 

INTERCHI'93, Amsterdam, 24-29 April (1993), 29-30. 

48. Jehng, J., Shih, Y., Liang, S. e Chan, T.: Turtle-Graph: A computer Supported Cooperative 

learning environment. In Proc. of the ED-MEDIA’94. (1994) 293-298. 

49. Cooper, S., Dann, W., Pausch, R.: Teaching objects-first in introductory computer science. 

In Proc. of the 34th Annual SIGCSE Technical Symposium on Computer Science 

Education, Vol. 35, No. 1, Reno, Navada, USA, (2003) 191-195. 

50. Gomes, A. e Mendes, A. J.: “SICAS: Interactive system for algorithm development and 

simulation”, in Manuel Ortega y José Bravo (Ed.), Computers and Education in an 

Interconnected Society, Kluwer Academic Publishers, January (2001) 159-166. 

51. Rebelo, B., Marcelino, M. J., Mendes, A. J.: Evaluation and utilization of SICAS – a 

system to support algorithm learning, In Proceedings of CATE05 – Computers and 

Advanced Technology in Education, Oranjestad, Aruba, August, (2005). 

52. Myers, I. B. and McCaulley, M.H.: Manual: A Guide to the Development and Use of the 

Myers-Briggs Type Indicator. Palo Alto, CA: Consulting Psychologists Press, (1985). 

53. Kolb, D. A.: Learning Style Inventory: Technical Manual. McBer and Company, Boston, 

(1985). 

54. Felder, R. M.: Learning and Teaching Styles in Engineering Education. Journal of 

Engineering Education, Vol. 78, No. 7, (1988) 674-681. 




