The Importance of Cognitive and Usability Elements
in Designing Software Visualization Tools

Glauco de F. Carneiro Manoel Mendonca

Software Engineering and Applications Group Software Engineering and Applications Group

(GESA/NUPERC) (GESA/NUPERC)
Salvador University — Bahia/Brazil Salvador University - Bahia/Brazil
glauco.carneiro@unifacs.br mgmn@unifacs.br

Keywords: POP-I1I.B program comprehension, POP-INiBualization POP-V.B observation

Abstract

Modern IDEs offer built-in support for developintug-ins. More recently, we have seen a growing
number of plug-ins that offer non-conventional a@ite visualization interfaces. They usually aim to

help programmers to understand unfamiliar sourde &y representing it in visual structures such as
trees, scatter-plots or graphs. Although very dtitra visually, we need to know more about the

effectiveness of these interfaces in conveyingrinfiion to software engineers. In this paper, we
discuss some concepts and guidelines regardingethérements of visualization tools for software

comprehension as well as the set-up of an infreisire to empirically evaluate how useful are those
tools in supporting software comprehension acésiti

1. Introduction

Software comprehension is the basis for softwar@te@ance activities. Extracting information from
industry strength software systems is difficult dioe their size and complexity. As a single
programmer is only capable of understanding a spuation of a large system, more and more design
anomalies are introduced into a system as it egsobxer time. As a result, the quality of a system
maintained by different actors tends to decay owee (Lehman, 1996), mainly because changes are
executed without an incomplete understanding ofsthele (Parnas, 1994).

Visualization has been pointed out as a possibletiso for supporting better understanding of
complex systems. The cognitive process of humangseis more intuitive, effective and efficient

when supported by visual resources such as imagaajngs and signs (Tergan and Keller, 2005).
Graphics communicate knowledge visually rather tharbally and, when well designed, they can
transfer large amounts of complex information fowgpammers. As it goes the saying “a picture is
worth a thousand words”, graphics show rather teliTidwell, 2005).

It is no surprise that the use of visualization oftware comprehension is becoming a participént o
interest in the software engineering communitjhds been used by the scientific community and by
the industry in different stages of the softwareleyas illustrated by the list of 58 tools surviye
(SGC Smallwiki, 2008). However, most of the tooked nowadays uses single visual paradigm
(Code Surfer, 2008) (Sotograph, 2008). This lintits full potential of the use of visualization in
software comprehension, because software is usuradlgrstood from multiple perspectives.

Our work intends to explore how visual paradigmsnoitiple views (Baldonado et al, 2000) can be
used in software visualization activities. In pewtar, we want to explore: (a) information
visualization key principles that are not yet ugednany of the software visualization tools (Catd e
al., 1999) (Shneiderman, 1992); (b) the usabilitg aognitive principles used in building a multiple
visualization infrastructure and how it maps totwafe comprehension principles; (c) the design of
an environment to capture the use (as opposed@setution traces) of visualization infrastructyres
and (d) empirical studies to characterize tool-sufgal comprehension activities.

In order to study (characterize and evaluate) heipfhl visual interfaces are in supporting software
engineering tasks, we developed a prototype expat@mh environment that integrates software

PPIG, Lancaster 2008 WwWWw.ppig.org

visualization interfaces into Eclipse and allowgagollect data directly from the interface ushisT
environment currently offers four non-traditionawalization interfaces and is able to log datanfro
primitive operations executed on them. These dapduce interactions with both the visual areas and
filtering controls made available by the infrasture.

We are now using this experimental infrastructuwweexecute a series of observational studies to
characterize how effective and efficient are vigualadigms in supporting software comprehension
activities. This paper describes our visualizafitnastructure design, the experimental environment
setup and reports the initial results we have akthion our pilot studies.

The remainder of this paper is organized as folldsestion 2 briefly describes key design principles
for visual interfaces with an emphasis on multiilews. Section 3 presents our cognitive model for
software comprehension with multiple views. Sectodiscusses what we have done so far to set up
an extensible visualization-based software comprgba environment. Section 5 explains the infra-
structure we built to execute observational studiehrow programmers deal with multiple views in
supporting software comprehension activities. $adéi presents our conclusions and future work.

2. Visualization for Software Comprehension

The use of software visualization allows humanglitectly analyze multiple aspects of complex
problems in parallel (Stako et al., 1998). Thislgsia takes place in the context of the understamndi
process and is often associated with cognitiomviblves process such as learning, problem solving,
perception, intuition, and reasoning (Les et aQ0&). All those elements constitute key design
principles for building multiple views so that thegn provide more effective software understanding.

2.1. Design Requirements for a Software Visualization Interface

Design principles for visual interfaces come fromagbical experience as well as psychological
theory. People are far more effective thinkers wisempported by appropriate cognitive tools.
Combining a computer-based information system Wéxible human cognitive capabilities, such as
pattern finding, can be an effective way to aidihenan cognitive process.

A software visual interface should address a seteqgfiirements to match the human cognitive
process. Shneiderman (1992) presents the "EighteBdRules of Dialog Design" to accomplish this
goal:

(1) strive for consistencyonsistent sequences of actions should be rejunirgimilar situations;
identical terminology should be used in promptshose and help screens; and consistent
commands should be employed throughout.

(2) Enable frequent users to use shortcuts the frequency of use increases, so do thésuser
desires to reduce the number of interactions atmctease the pace of interaction.

(3) Offer informative feedbackor every operator action, there should be soystes feedback.
For frequent and minor actions, the response camduest, while for infrequent and major
actions, the response should be more substantial.

(4) Design dialog to yield closuresequences of actions should be organized intopgravith a
beginning, middle, and end. The informative feettbatcthe completion of a group of actions
gives the user the satisfaction of accomplishmemd, an indication that the way is clear to
prepare for the next group of actions.

(5) Offer simple error handlingAs much as possible, design the system so threcasaot make
a serious error. If an error is made, the systeaulshbe able to detect the error and offer
simple, comprehensible mechanisms for handlingethar.

(6) Permit easy reversal of actianghis feature relieves anxiety, since the usemisthat errors
can be undone; it thus encourages exploration fanuitiar options. The units of reversibility
may be a single action, a data entry, or a compgletep of actions.

PPIG, Lancaster 2008 WWW.ppig.org

(7) Support internal locus of controéxperienced users strongly desire the sensdhbgtare in
charge of the system and that the system resporttigit actions. Design the system to make
users the initiators of actions rather than thporders.

(8) Reduce short-term memory loatlhe limitation of human information processingsinort-
term memory requires that displays be kept simpieltiple page displays be consolidated,
window-motion frequency be reduced, and sufficilining time be allotted for codes,
mnemonics, and sequences of actions.

These principles were derived heuristically fronpemence and are applicable in most interactive
systems after properly refined, extended and ingééeg.

2.2. A Reference Model for Information Visualization

Figure 1 presents a reference model for informatignalization and provides a high-level view of
the (information) visualization process. The moaldumes a repository of raw data. This data has to
undergo a set of transformations to produce a mgani visualization scenario for a user. Data
transformations comprise filtering of raw data, gotation of derived data as well as data
normalization. These steps result in a set of fommed data in a unified structure. Visual
transformations map the pre-processed data ontorrasponding visual structure. From this visual
structure, a set of views can now be generateceaphbred by the user. A key point of this model is
that data transformations, visual mappings and viemsformations should be as interactive as
possible. In other words, it is not only necesshat a visualization tool produces a visual scenari
but also that a user can interactively interferalinaspects of this scenario with just a few mouse
clicks. The response time between interactionsrandering should be instantaneous for all practical
purposes. This interactivity is essential to suppoegviously listed requirements such as easy saver
of actions and internal locus of control.

Data Visual Form

Task

Raw Data

)] 2] ()]
c (=] c
.2 = 2
=1 [=% =
[1s] =} ©
£ g £
S = S
7]
o= 3 z 2
s 8 2 L@
[my > > =
L L L)

Human Interaction
Figure 1: Reference Model for Visualization (Catdak, 1999)

This model has been used as a reference by inflamueisualization tools such as Spotfire (2008)
and TouchGraph (2008). Figure 2 shows a snapstetigualization scenario made available on-line
by Spotfire (2008). The regions marked as A anddsgnt data views selected by the user. Region D
presents widgets like checkboxes and range slitkefiiter what should be shown in the views,
implementing the data transformations illustratedrigure 1. At any moment the user can change the
variables associated with visual attributes likéoors, x-axis, y-axis, and bar or circle sizeshe t
views. This accomplishes the visual mapping illtstd in Figure 1. Range bars, such as the one on
the bottom of Region A, can be use to zoom or par @ given diagram, resulting in the view
transformation illustrated in Figure 1. In all tlkosases, the time overlapped between a user action
and a view update is practically instantaneous,mfilie those in a video game.

PPIG, Lancaster 2008 WWW.ppig.org

Other features enrich the user cognitive experief@gion C shows a text to contextualize the
information presented in the overall scenario. Bedd permits easy reversal of actions and offers
informative feedback about operations done by tbgnammer.

|€ Warld Energy - TIBCO Spotfire Web Player - Windows Internet Explorer mE=]
@ v | £] htip://65.214.56. 176 /Publi lysis. aspx?file = Publi rld d615102dcffle4380b90f22a1 e [#2 [¢ R |~
Fle Edt View Favorites Tools Help

pdf - [v] B3 co 0| = por

Google |G- vlco @D Ef ~ | ¥ sookmarks~ | ‘P check =y Autolink - | Send to~ @ settngs~
i = P @ =~ M~ eFavorios = / [F (- p@speces - &8 - @ ~
I 4r | & world Energy - TIBCO Spotfire Web Player = g v [hPage - (G Toos - @~ (T & B
(© Spotfire Web Player
World Energy - pulisher, 31/1/2008 20:25:10 @ ten Cose
WELCOME | WORLD OVERVIEW | OIL consumpTion RS EIa Ll) TRENDS | LEARN MORE
G Tonnes Oil I I
P \.e.,l Consumption SLIRRAN L'—"I
W, vearly ol consumption divided by population par capita,
] sorted by I I
9 On the bar chart, mark a country to see its I country Couniry I
lecation in the map. =
= Color by: I
The United States is often thought of as Region - |
‘ hawving the largest oil consumption per capita| 0 Geography

B [4sia Pacific
= WAfrica = [] Asia Pacific
&

g W Europe & E # [7] Atrica

but surprisingly, it ranks seventh -- the
country with the highest per capita
consumption is Singapare.

New Zea

BEMiddle East II

BN America Europe & Eurasia

[S & CAme [7] Middle East I
= I = [l u America
Consumption per I = [#s & CAmerica I

‘ Next, ses some interesting trends! II

Capita in 2005

II Year

Size by: 1578 2005
Yearly per eapita consu I L 3] I I
®:98 I [Country Data - Advanced

+ 500 II ¥ Energy Data - Advanced I

") Loading 7854 of 10482 rows | 0 marked | 22 columns

Done & mternet H100% v

R T . [0 | T [#c | 0w ST ETTOr ¥R I TRRER9 AL v

Figure 2: Information Visualization Snapshot (Spetf2008)

Figure 1 reference model and Shneiderman’s eidgés present an excellent set of criteria to evaluat
any of today’s software visualization tools. Mostteem would not pass afhose criteria. We add to
those general information visualizatiamiteria the principles summarized by Hundhaustrale
(2002) specifically for software visualization

a) Epistemic Fidelity (Roschelle, 1990) (Hundhays&899) emphasizes the value of a good
denotation match between the graphical representafid the expert's mental model. The higher the
fidelity of the match, the more robust and effitienthe transfer of that mental model to the vieafe
the visualization, who decodes and internalizestéiget knowledge. Its key assumption is that
graphics have an excellent ability to encode aredgmental model of an algorithm in a visual
metaphor, leading to a robust and efficient transfehat mental model to the viewer.

b) Dual-coding (Mayer and Anderson, 1991) procefeois) the assumption that cognition consists
largely of the activity of two partly interconnedtbut functionally independent and distinct symboli
systems. One encodes verbal events (words) andttiee encodes non-verbal events (pictures).
According to Mayer and Anderson (1991), visualizas that encode knowledge in both verbal and
non-verbal modes allow viewers to build dual repnéations in the brain, and referential connections
between those representations. As a consequerateyviguwalizations facilitate the transfer of target
knowledge more efficiently and robustly than dasaiézations that do not employ dual-encoding.

¢) Individual Differences theory (Cooper, 1997)aassthat measurable differences in human abilities
and styles will lead to measurable performanceetifices in scenarios of software visualization. For
example, within the scope of epistemic fidelity ahgs knowledge transfer model, individual
differences with respect to learning style (Ridargl Rayner, 1998) might enable some individuals to
decode visualizations more efficiently and robu#itign other individuals.

d) Cognitive Constructivism (Letovsky, 1986) assethat individuals actively construct new
understanding by interpreting new experiences withie context of what they already know. Its
emphasis on active learning has important implicegifor the effective use of software visualization

PPIG, Lancaster 2008 WWW.ppig.org

In particular, it suggests that individuals do mstdnd to benefit from the technology by merely
passively viewing visualizations, no matter howhhitpe level of their epistemic fidelity. Instead,
software visualization users must interact with\ttseial scenario in order to benefit most fronTtie
scenario is not only a conveyer of knowledge, taad a tool for knowledge construction.

2.3. Multiple View Systems

In a multiple view system, two or more distinctwie can be used to support the investigation of a
given conceptual entity. The example in Figure @sua dual view system. Multiple view systems —
systems that use two or more distinct interfackave been proposed to support the investigaticen on
wide range of information visualisation topics (8ahado et al., 2000). North and Shneiderman
(1997) observe that multiple view systems offer tfwdlowing advantages: improved user
performance, discovery of unforeseen relationstapd,unification of the desktop.

Two or more views are distinct if they allow theeugo learn more about different aspects of the
conceptual entity. Three important issues for mldtiviews are: selection of views, presentation of
views, and interaction among views.

Selecting an appropriate set of views is indeedngyortant step of the comprehension process. It
should be driven by the peculiarities of a giverimtamance task. For example, the appropriate set of
views to evaluate a mediator pattern (Gamma e1985) implementation would probably differ from
the one to support the detection of the bad srhelg) Method (Fowler, 1999).

Given an appropriated set of views to support kg, tgs time to decide the types of presentatioat t
are useful to gather information related to a djetsk. It depends on the programmer to analgee t
views sequentially or simultaneously. This choisesirongly influenced by his knowledge of the
domain and how much of the program’s functionaitlee already knows. This is based on the
Letovsky’s (1986) cognitive constructivism theoiseady mentioned in the Section 2.1.

Each single view may have independent affordaneeg, selection capabilities or navigation
functionality such as pan and zoom. These afforescean be tied together so that actions in one view
may have an effect in another view (Baldonado ¢t2800). Linked interactions between the views
consist of the navigational slaving. It involvesnslironizing associated views when a navigation
action is performed on any one of a set of linkiesvg.

The use of multiples views is a promising apprd@actsoftware comprehension. Software is complex
and usually understood from multiple perspectiidewever, multiple view systems are highly
challenging to design. They often use sophisticatedrdination mechanisms and layout and, in
addition, subtle interactions among the many dinoaiss of the design space complicate design
decisions (Baldonado et al., 2000). Deciding whied Bow to apply multiple views to information
visualisation problems involves balancing a sedegign tradeoffs. On the one hand, multiple views
can provide utility in terms of minimising some thie cognitive overheads engendered by a single,
complex view of data. On the other hand, multipeavs can decrease utility when added to a system,
both in terms of higher cognitive overheads (eqy.dontext switching) and in terms of increased
system requirements.

These challenges are very much present, in the chsoftware visualization. We foresee the
following requirements for a multiple view softwarisualization system:

One shall have a small but significant set of views

2. The views shall match some typical software comgmelon needs such as visualization of
hierarchical structures, relationships betweenwso# entities and artefacts, and entities
attributes (e.g. size and complexity).

The views shall complement each other fulfillingital software comprehension needs.
The views shall be coordinated in a way that astiorone view is reflected in the others,

The presented views shall be easily configurabte igpical or user preferred software
comprehension scenarios.

PPIG, Lancaster 2008 WWW.ppig.org

6. The views shall meet the general purpose informatitd software visualization requirements
established by Shneiderman (1992), Hundhausen @042) and Baldonado et al. (2000), as
previously presented in this Section.

3. A Cognitive Model for Software Comprehension with Multiple Views

We aim to build a system with multiple views, mplé& coding and interactions mechanisms to allow
the user to configure the most appropriate visaahario to a given software comprehension task.
This deals with individual differences and fosteognitive constructivism, matching Hundhausen’s

guidelines on the use of software visualizationdade understanding (Hundhausen et al. 2000). This
infrastructure enables the programmer to seleavs/ithat are most suitable to gather information

from source code and that can be gradually adjuligdg the comprehension process.

The key challenge of this study is to capture, fifjerand understand the heuristics applied by
programmers during the comprehension process.labrwe implemented a functionality to log data

from primitive operations executed by the programsmen the system. These data capture
interactions with both the visual areas and fittgricontrols (widgets) made available by the

infrastructure. We believe that this logging funoglity can be used as an experimental platform to

at least partially - capture the heuristics applgdorogrammers while performing specific software

comprehension tasks. The heuristics used by exmeikor successful programmers — those who
performed well in controlled environments - coltlén be used as reference cognitive models.

These cognitive models can them be reused to gowmeel, inexperienced and unsuccessful
programmers. Due to individual differences, progrers performing the same activity will apply
adjustments to the scenarios. We aim to identiéyrtiost successful heuristics and the corresponding
scenarios that were used by them.

Figures 3a and 3b present the approach that wesienyiwhere visual scenarios are built by
experienced programmers by combining and gradaajysting views and code metrics (Figure 3a).
The heuristics applied during this process is aqagtand can be passed on as a sequence of suggested
visual scenarios to novel programmers (Figure 3b).

I_Visual Scenario 1 I

The interactions by experts are registered to reveal the blueprint of succesful I

|Software Developer or

Maintainer . L L
software comprehension heuristics (a set of reference cognitive models)

software

' . |
| |~ ~ | |
| | > (Y > | |

Visual Scenario 2
| | | | |
| \ , I =l PaY;ZLilg rlns SOLI:IItheriSs o Views interactively -> I M I
| \ y /(,\éiggyg I < \1/ \1/ \l, adjusted via widgets > I I
| Q I > Selected by heuristics - | viount Scenarios |
| | | |
> />

| | | |
| The person who knows the I The blueprint (reference cognitive models) can them be reused to I

I I

guide novel, inexperienced and unsuccessful programmers.

Software Knowledge Resulting Visual Scenarios

Figure 3a: A Cognitive Model for Software Compresgien - visual scenarios built by experienced
programmers

PPIG, Lancaster 2008 WWW.ppig.org

I |
T v |
l Decodé .. I I
£ 1 > |
| I
Q I > < Visual Source Code .)) > > I l
I Decode * @. Paradigms Metrics Views interactively I I
l PR I adjusted via widgets
s~ Vv > | |
I Selected by heuristics | v |
I Q I g \) > lDecode ."_ Decode ~ @, Decodé @ l
I Decode . I l . I
‘ s L 4 1 4 | 4
I ' I The interactions are regisFered to reyeal thelblueprint of the I Mernbers of the group who need to know the software I
| software comprehension heuristics applied by each
Software Comprehension programmer e e — -~

tasks to be performed Resulting Visual Scenarios

Figure 3b: A Cognitive Model for Software Compresgien - visual scenarios built by novel
programmers

4. Building an Extensible Infrastructure

In 2007 we developed a software visualization fatsr called SourceMiner (Carneiro et al. 2007).
This interface uses treemaps (Shneiderman 199®)pi@sent and explore large volumes of source
code. The interface shows the code structure asemarthy of recursively nested rectangles
representing software modules. Source code meduicl as cyclomatic complexity and module size
can be visually represented by attributes likearegie color and size.

More recently, we decided to implement this integfaas an Eclipse plug-in and ceased the
opportunity to integrate it with other source catialization interfaces (Carneiro et al., 2008&®
ended up producing an extensible infrastructure ¢ha integrate new open code plug-ins for source
code visualization. Currently we have integrateduirBeMiner’s treemaps with the University of
Lugano’s X-Ray (polymetric and graph dependencws)e(Lanza e Ducasse 2003) (Malnati 2007).
Our final goal is to study the use of static souwrgée visualizations in software maintenance tasks.

Considering the elements, concepts and the proposedel, this Section explains the overall
visualization structure design implemented in oxteesible infrastructure (an Eclipse plug-in). We
then map it to the requirements that it intendaddress. Figure 4 gives a high level view of this
infrastructure.

In accordance with Figure 4, we used Eclipse’'s Jaeaelopment Tooling (JDT) to build the
proposed infrastructure. JDT provides APIls to malaiie Java source code, detect errors, perform
compilations, and launch programs. Eclipse's JDF itsaown Document Object Model (DOM) with
the same purpose as the well-known XML DOM. The ASih be used to exam the structure of a
compilation unit down to the statement level. Basedhe information available from the AST, it is
possible to build the model to make up the viewse Tiser can than select the appropriate set okview
to accomplish a given task.

Figure 5 presents a snapshot from SourceMinexhibés a possible scenario that comprises two of
the four plug-in views. We are still planning toglament, adapt and integrate a number of other
source code visual paradigms to our infrastruc{@&neiro et al. 2008b). The views are arranged
side by side and marked as (B) and (C) in the @gliris up to the programmer to layout the views o
the screen to cope with a specific maintenance. taskseen in the example, these views can be
complemented by other views, such as Eclipse’soedi) and package explorer (A). This fulfills
Baldonado’s (2002) selection and presentationraitiscussed previously.

Using controls like range sliders and checklistegion (D) from Figure 5, the user can configurd an
filter the information presented simultaneouslytbg views (Carneiro et al. 2008b). These controls

PPIG, Lancaster 2008 WWW.ppig.org

filter the modules based on their name or softveatdies attributes (e.g. LOC and complexity). Thei
response time is instantaneous by all practicapgaes. With just a few clicks, one can select the
modules that fulfil certain search criteria.

Software Analysis V?O:IWZ?OH \Lnsforalraatlogn Scenarios
Domain : Du zall ! Du zall Created and
omain omain Adjusted by
the
AL AL AL Programmer
s Y Y Y
Java Source Abstract Syntax Tree |
Code provided and used Model Scenario Visual
by Eclipse : Scenarios
' [
|)
Information! Model | | I
Extraction Mapping | | [
| | | + [
| [|
| Ly |
Y A |
L — — —— I [J | | e =
. |
Software Maintenance Control | Software Maintenance
Activity | | | Filters | Activity
I I _____
| | Building
! | | Scenario 4
L / TXT Log File
\ N) / for Data
N i)) vz Acquisition of
N ~ Views selected in accordance with a Pl Primitive
~ given maintenance task — - Operations
= ~ -~ - -

-~ -

Software Comprehension Efectiveness due to Software

Visualization Support
Figure 4: Multi-view Software Visualization Infrastture

We call this dynamic filtering. In order to complent his mental model about the software, the user
can select a specific module directly over the alisnterface — regions (B) or (C) — to access its

corresponding source code in the editor — regignTRe mapping works both ways, as modifications

done in source code are automatically refreshedupated in the selected views. These features
fulfils Baldonado’s interaction criterion.

Treemaps, a space-filling method of visualizingyé&ahierarchical data sets (Shneiderman, 1992), are
one of the four views (C) available in the plugdtigure 5). It shows packages, classes and methods
as nested rectangles. Using this metaphor, clésaeare in a specific package are presented tegeth
in the visual representation. In the same waythalmethods declared in a class are presente in th
same rectangle area related to its class. The azerdecide at any time, the association between
rectangles colour and area with software entitigghates (e.g. LOC and complexity). New software
entities attributes can be easily added to the tool

The other three views integrated to the infrastmgctare the polymetric, package and class
dependency views. They were implemented originalyMalnati 2007). The polymetric view (B)
(Lanza e Ducasse 2003) is particularly efficient g§pot disharmonies in the design and
implementation of a system. It is easy to find aehtify big modules or anomalies in the shape of
the project (provided by the source code inhergaimee). The user is therefore able, with a single
picture, to analyze and understand complex systeit@sms of methods, lines of code and inheritance
hierarchies without the need of reading source dddalnati, 2007). The class dependency and
package dependency views arrange classes and pacikag radial graph, linking them together by
dependency links. Each of these links has a cenaight highlighting how strength is the
dependency between entities (Malnati, 2007).

The data acquisition of primitive operations is @ahfobtrusive way to capture user activities in a
software interface. It complements traditional ul#glassessments like surveys and questionnaires.

PPIG, Lancaster 2008 WWW.ppig.org

= Java - org.carneiro.SourceMiner/src/ iner/vi ap/T pView.java - Eclipse SDK = [w
Fle Edit Source Refactor Navigate Search Project Run Window Help
e %0 Bdae 28es & PP HIe e B 5 | 8! ava
[2 pack &2 18 Her | = O || Polimetric Paradigm 53 = O || P8 TreeMap Paradigm 53 = O || s Paradign's Fiters &2 =0
= - i EETE = —_ = FTE .
= DE,: Filters | Visual Attrbutes |
v | H 5 r I =, — Class(es) &
© g JEdit [~ |) [l = gl 5 L
= 2 org.carmerra.SourceMn| | A
=B e i Abstractanchor
=-#3 org.cameiro.s0 I i ZoomltemMentProvider
- [J] SourceMine| |
@ (4] SourceMine S0 e [pestere]
-} org.cameira.so| e B
g nterface (s
- org.cameiro.so ___F!:-E:)
- org.carneira.so _ = T 7
-} org.camneiro.so| IClassiade
B g B £
B org camero.so i T JavaParserConstan
@8 org.cameiro.so|
- org.cameiro.so B TR
& [# org.carneiro.so = o o i
® # org.cameiro.so Padkage(s)
& [org.cameno.so = = G————
& 3 org.cameiro.so 5
- org.cameiro.so! = org.carneiro.sourceminer
-3 org.cameiro.so! i ‘ S = [-F%_ sourceMiner.view. reemap
&8 org.cameiro.s0 =l - | :
" 7 7 Restore
&} org.cameiro.so A -] =
& f# org.cameiro.so

. — (e = B i
== =ET |- oLines
Gl i] O

& [org.cameiro.s0 4|

Ee g sourceMiner. ooy [3] SourceMiner java 1) TreeMapView.java 53 =i * PRl

3 sourceMiner.mc T MinVale: |1 | MaxValue: | 5863

B soecatiner e -getbredicate()): = e S

R st ZndPredicate dataFilterComplexidade = new AndPredicate e
T FME priceBi plexidade.getPredicate())
o S0 N Methods
F forch ’% i dataFilterTamanho.addExpressionlistener (new Updatelistener() {
“ = S i X ; 71
© M RE systefibrary | public woid vpdate(Object sre) | 0 385
)-mh Plug-n Denendencid®) try { . il MinVale: |0 | Max Value: | 385 =
[i > < [2

Writsble SmartInsert | 1:1

m e Casus | Earrois | Eaiediose [@ webiess [[T consss | 8 somvice | b opesion [2 davaee e TR0 R AS IO s

Figure 5: A snapshot from SourceMiner plug-in

We have implemented data acquisition in our plugAlhuser activity on the interfaces is recorded a
ASCII text file. The file registers view selectigmesentation and interaction events. Furtherntbee,
data log also registers the selection of otherpSelresources activated to perform a given task.

The log is a dense source of information that chy @n important role in an experimental
environment. From these logs one can better uradetdtiow developers build a mental model from
the available views complemented by source codefignde out what were the heuristics used to
accomplish specific tasks.

This experimental environment and the data acqumem the programmers (participants) are then
helpful to study (characterize and evaluate) hovefulsvisual interfaces are in supporting
maintenance tasks.

5. Experimental Environment

The existing studies on software visualization seéerfocus on several aspects related to software
comprehension, but there is a lack of environmspezcially built to characterize and evaluate how
useful multiple visualizations are in supportingtaare comprehension tasks.

In order to assemble such an experimental envirabmee selected a set of software maintenance
tasks and artefacts that could be used in in-@xmeriments with students, our typical experimental
participant. The goal is to produce a meta-expartaigpackage that can be instantiated for specific
experimental designs (Carneiro et al., 2008c).

The central part of this package is the objechefdtudy and the tasks to be performed on it. We
selected a program called Paint (Ko et al., 2006is is a Java Swing application, implemented with
nine Java classes across nine source files witmdA3domments lines of code. The application
allowed users to draw, erase, clear and undo abkirekes on a white canvas.

The tasks to be performed on the programs weretedldpm (Ko et al., 2006). They compose a
sequence of perfective and corrective maintenaastestto be performed by the participants: a) Task 1
— The scroll bars do not always appear after pagnutside the canvas, but when they do appear, the
canvas does not look right. Participants should tfig program so that the scroll bars appear
immediately when painting outside the visible canJa) Task 2 — Users can not select the yellow

PPIG, Lancaster 2008 WWW.ppig.org

10

color. Participants should fix Paint so that usss use it; ¢) Task 3 — The undo last stroke button
does not always work. Participants should fix tleénPso that the button undoes the last stroke or
clear the canvas; d) Task 4 —There is a radio buditoline drawing, but it does not work. Partigipa
should create a functionality that allows userdriw a line between two points; Task 5 — Partidipan
should create a thickness slider that controlsstheke thickness for all drawing resources; Task 6
Participants should apply the Model View ControM®) Pattern to the Paint program.

The tasks represents software comprehension expaainscenario that follows the principles
presented in (Knodel et al., 2006). Task 1 is gintask that everyone should be able to solve. If
there are persons that do not solve this task sheyld be taken out of the experiment as an outlier
that probably did not understand the instructioniack basic programming skills. Tasks 2to 5 can b
solved by analyzing the code and extracting fadmfthe visualization and enhancing the source
code accordingly. Task 6 is a complex task thattmansed to recognize outliers on the end other end
of the spectrum. It can also be assigned to loegeerimental studies.

5.1. Characterization Pilot Studies

Our first studies aim at testing the experimenttfats and to baseline the dependent variables fo
future controlled experiment. The dependent vaesioheasured were the number of tasks concluded
correctly, the time to perform each task, the vieesources utilized by the programmers. The
independent variables to be considered are: therigmpntal object (in this particular case the Paint
program) and the participant’s experience, captbyed questionnaire.

We adopted a very simple design, intended to §iilngle 3.5 hours lab session and to account for a
limited number of participants. The participantekgart in a 30 minutes training session on how to
use the interfaces and a description of the taskset performed, followed by a 3.0 hours for the

execution of the tasks. To conclude, we askegéngcipants to answer a feedback questionnaire on
the use of the interfaces and the task execution.

5.2. Pilot Studies Results

We execute two pilot studies. The both studies ys@idr professionals taking a post-graduate course
at the university. The students were split in teafrthree that worked together to solve the tatke.
student participation was required but no gradiag associated with their performance.

Both studies involved eight teams. In the firsdgtuhe teams executed on average 3.0 tasks and two
teams manage to finish five activities. All teamd th fact use the visualization interfaces. In the
second pilot study, the teams executed on averdgégks and two teams did not even finish the
filter task. Our logs shows that those two tealss did not even used the interfaces.

The results for the first pilot study indicated ttloairr experimental environment was consistent and
could move to a full scale controlled experimeriie Becond pilot study showed exactly the opposite.

Although the experimental set ups were quite simtl@e groups involved in the second study were
slightly less experienced than the first. Howeteis difference was not enough to cause the dispari
observed in the results. Analyzing the results #mel questionnaire answers more closely, we
concluded that motivation was the key issue.

6. Conclusions and Future Work

This paper presents some of the key usability amghitive principles to build a multiple view
software visualization infrastructure. We presennalti-view software visualization infrastructure
model and instantiated it to build an Eclipse pilugThis plug-in currently offers four views that
fulfil typical software comprehension needs such \dsualization of hierarchical structures,
relationships between software entities and artgfand entities attributes (e.g. size and compylexi

In order to explore how specific sets of visualguigms or multiple views can be applied in the
context of software comprehension activities, wsoalleveloped an experimental infrastructure to
support empirical studies. This infrastructure eletgrizes tool-supported comprehension activitjes b
logging all user actions on the IDE and was alreagiyd in two pilot studies. The results of thetfirs

PPIG, Lancaster 2008 WWW.ppig.org

11

pilot study indicated that our experimental envimamt was consistent and could move to a full scale
controlled experiment. The second pilot study shibwee opposite. Analyzing the results and the
guestionnaire answers more closely, we concludatrttotivation was a key issue. We decided to
execute another pilot study to further charactetize use of the interfaces, now grading the
performance of students. We hope that this willimadé them better and help us to gather trustworthy
data on the interface usage. We are currently dpirej data analysis and mining techniques to
evaluate the extensive log files we obtained inpila studies.

At this time, we have a complete experimental desa evaluate the IDE with the visualization
interfaces against the regular IDE. Our goal imtp high level comprehension tasks with sequences
of events on the log files. The plug-in can be doaded from http://www.nuperc.unifacs.br/tools.

References
Parnas, D. L. (19948 oftware AgingICSE, 1994, 279-287.

2. Baldonado, M., Woodruff, A., Kuchinsky, A. (200Guidelines for Using Multiple Views in
Information VisualizationProceedings of ACM AVI 2000; Palermo, Italy. 1109.

3. Hundhausen, C., Douglas, S., Stasko, J. (2802gta-Study of Algorithm Visualization
Effectivenesslournal of Visual Languages and Computing, pp2%92

4. Mayer, R., Anderson, R. (199Animations need narrations: an experimental test diial-
coding hypothesislournal of Educational Psychology.

Cooper, C. (1997ndividual DifferencesOxford Illustrated Press. Oxford.

Letovsky, S. (1986 ognitive Process in Program ComprehensionEmpirical Studies of
Programmers. Pages 58-79. IEEE Computer SociegsPre

7. S.O. Tergan, T. Keller (Editors). (200&howledge and Information Visualization: Searchiag
SynergiegLecture Notes in Computer Science). Springer.

8. Shneiderman, B. (1992yee Visualization with Tree-Maps: 2-d Space-FgliApproach ACM
Transactions on Graphics, Vol. 11, No. 11. JanuRages 92-99.

9. Lanza, M., Ducasse, S. (20@3plymetric Views - A Lightweight Visual ApproaciReverse
Engineering In IEEE TSE, Vol. 29, No. 9, pp. 782 - 795, Seqber.

10. Malnati, J. (2007X-Ray: An Eclipse Plug-in for Software VisualizatiBachelor Project.
Lugano University. July.

11. G. Carneiro, A. Orrico, M. Mendonca. (20@&npirically Evaluating the Usefulness of Software
Visualization Techniques in Program Comprehensictivaies In JIISIC, Lima, Peru, January.

12. Carneiro, G.; Magnavita, R.; Spinola, E.; Spinéla,Mendonca, M. (2008&@n Eclipse-Based
Visualization Tool for Software Comprehensibn22nd Brazilian Symposium on Software
Engineering 2008. Campinas, Brazil.

13. Carneiro, G.; Magnavita, R.; Mendonc¢a, M. (2008bjmbining Software Visualization
Paradigms to Support Software Comprehension Aietivin ACM Symposium on Software
Visualization. Herrsching am Ammersee, Germanys{(&.

14. Carneiro, G.; Magnavita, R.; Spinola, E.; Spin®la,Mendonc¢a, M. (2008c) Evaluating the
Usefulness of Software Visualization in SupportBaftware Comprehension Activities. In 2nd
ESEM. Kaiserslautern, Germany. Accepted as ShaePa

15. Ko. A. J., Myers, B.A., Coblenz, M. and Aung, H. (2006)An Exploratory Study of How
Developers Seek, Relate, and Collect Relevantrirgton during Software Maintenance Tasks
IEEE TSE, 32(12), 971-987.

16. Jens Knodel, Dirk Muthig, Matthias Naab. (20Q@6)derstanding Software Architectures by
Visualization--An Experiment with Graphical EleneeWCRE : 39-50.

PPIG, Lancaster 2008 WWW.ppig.org

17.

18.
19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.
30.
31.

32.

33.

34.

35.

36.

12

North, C., and Shneiderman, B. (198/Jaxonomy of Multiple Window Coordinatidgniv.
Maryland Computer Science Dept. Technical Repo8-#R-3854.

Fowler, M. (1999Refactoring: Improving the Design of the Existingd€ Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., Vlissides, Bj%1Besign Patterns: Elements of Reusable
Object-Oriented Softwaréddison-Wesley, Reading, MA.

Tidwell, J. (2005Designing Interfaces0’Reilly. November.

Lehman, M. (1996).aws of Software Evolution Revisit&toceedings of thé"European
Workshop on Software Process Technology.

SGC Smallwiki. (2008A non-exhaustive list of Software VisualizatioridoAvailable at
http://smallwiki.unibe.ch/codecrawler/anon-exhausistofsoftwarevisualizationtools.

CodeSurfer - a maintenance, understanding, anceictsgn tool (2007) Available at
http://www.grammatech.com/products/codesurfer/aggnhtml.

Sotograph. Analysis of large-scale object-oriergeftware systems, reverse engineering,
architectural verification, code smells, trend aysik (2006) Available at
http://www.sotograph.com/.

S.K. Card; J.D. Mackinlay; B. Shneiderman (ed4990)Readings in Information Visualization
— Using Vision to ThinkMorgan Kaufmann, San Francisco, CA.

Ben Shneiderman. (199Pkesigning the User Interface - Strategies for BffecHuman-
Computer InteractionSecond Edition. Reading, MA: Addison-Wesley Psitilng Company.

Deborah J. Mayhew. (199PFinciples and Guidelines in Software User Integddesign
Englewood Cliffs, NJ: Prentice Hall.

S.K. Card, J.D. Mackinlay, and B. Shneiderman. @®&adings in Information Visualization
Using Vision to ThinkEds. San Francisco: Morgan Kaufmann.

TouchGraph. (2008) Available http://www.touchgraph.com

SpotFire. (2008) Available #ttp://spotfire.tibco.com/index.cfm

J.T. Stasko, J. Domingue, M.H. Brown, and B.A. @(Eds.). (1998%oftware Visualization —
Programming as a Multimedia Experien®@IT Press.

Roschelle, J. (199®esigning for Conversation®&AAlI Symposium on Knowledge-Based
Environments for Learning and Teaching. Stanforél, C

Hundhausen, C. (1999pward Effective Algorithm Visualization Artifac@@esigning for
Participation and Communication in an Undergraduaigorithms CoursePhD Dissertation.
Department of Computer and Information Sciencevehsity of Oregon.

R. Riding, S. Rayner. (1998)ognitive Styles and Learning StrategiBswvid Fulton Publishers,
London.

Les, Z., Les, M. (2008) Shape Understanding SysTédra:First Steps toward the Visual Thinking
Machines. Springer-Verlag Berlin Heidelberg.

Li, Q., Bao, X., Song, C., Zhang, J., North, C.q2PpDynamic query sliders vs. brushing
histograms. Conference on Human Factors in Comp@&ystems (CHI'03). Florida, USA.

PPIG, Lancaster 2008 WWW.ppig.org

