
A Loop is a Compression

Walter Milner

University of Birmingham, Weoley Park Road, Selly Oak, Birmingham B29 6LL w.w.milner@bham.ac.uk

Abstract. An outcome from a larger research project is described. This places work seeking to
understand how novices learn elementary programming notions in a wider framework derived from
cognitive science, and in particular the group of ideas centered on conceptual blends. The
framework is outlined and the research methodology is described, followed by some of the data
gathered. It is suggested that students' consideration of code fragments can be analysed in terms of
mental spaces, and that loop statements represent compressions. The implications for teaching are
discussed, and future work is outlined.

1 Introduction

This work-in-progress report proposes a way of looking at students' understanding of programs which
makes use of a set of ideas from cognitive science which includes frames, conceptual blends and
compressions. In particular it argues that a loop is not literally a loop, but that statements in a loop are
actually compressions, as described below, of statements in the unrolled loop.

The paper describes the background to the current work, and argues for the need to adopt a non-literal
view of meaning. It provides an overview of frames and related ideas in general terms, and suggests a
way of looking at program comprehension using these ideas. This is followed by a description of some
interviews with students, and an exploration of the implications of this way of looking at concept
development for teaching methods and course design. Finally there is an outline of where future work
will proceed.

2 Background

This is concerned with how students with limited or no prior knowledge deal with their first exposure
to some ideas in computer programming. It is part of some work concerned with understanding concept
development in learning object-oriented programming (OOP) in Java, and in a wider context to develop
this within a model of concept development within 'scientific' disciplines such as mathematics and
physics.

There have been several reports of students' problems developing an understanding of OOP in Java
(for example Biddle and Tempero [1], Ragonis and Ben-Ari [2], Eckerdal and Thuné [3], Griffiths
and Woodman [4], Fleury [5]). While it is clear that we (that is, educators) have a clear understanding
of these ideas of computer science, we do not have an understanding of that understanding, and
similarly cannot explain the lack of understanding among some students.

While OOP is the final concern, this paper describes some work concerned with basic control
constructs and simple variables.

3 Nonliteral Meaning

This section argues that program code, and discourse about programs, contains nonliteral meaning,
despite the fact that program code appears to be a good example of literal meaning.

The concern is with the meaning of ideas, and in this context 'idea' is taken to mean a syllabus item,
such as 'array' or 'function' or 'abstraction'. There is a paradox - we tell students what these ideas mean,

yet some of them still do not know. For example, we tell them what 'array' means, but some of them
cannot use them or understand programs which use them. How do we resolve the paradox?

The solution offered is that meaning is not a simple issue, and that a literal Objectivist idea of meaning
is not appropriate.

Firstly, there is an implication that a distinction can be drawn between the meaning of an idea and an
idea itself. For the purposes of this paper, meaning is taken to be a subjective interpretation. For
example the meaning of 'array' is what a student says they think the meaning is. In a class there will be
variations in the meaning given to the term. Among faculty staff there is likely to be much smaller
variation. If we want to know the 'real' meaning of arrays, taken to be 'the idea itself', we can take it to
be the normative view shared by faculty staff. This corresponds to a phenomenographic approach, as
developed by Marton [6] and used for example by Eckerdal and Thuné [3] and by Booth [7]

 Johnson [8] describes an Objectivist idea of meaning:

Meaning is an abstract relation between symbolic representations (either words or mental
representations) and objective (i.e. mind-independent) reality. These symbols get their
meanings solely by virtue of their capacity to correspond to things, properties, and relations
existing objectively "in the world".

and then contrasts this (page 5) with the way people understand each other:

.. meaning typically involves nonliteral (figurative) cognitive structures that are irreducibly
tied up with the conceptual or propositional contents attended to exclusively in Objectivist
semantics.

A computer program appears to be an excellent example of Objectivist, literal meaning. Perhaps the
best instance of this would be code generated by a Java GUI builder - the programmer 'draws' the user
interface with labels and buttons and so on, and the GUI builder generates the code required to produce
this. This means code is both generated and executed by the computer, and human understanding is
bypassed.

It is therefore very tempting to extend this to asserting that discourse about program code can have its
meaning analysed from an Objectivist perspective. In other words that the contents of a student
textbook, or what is said in a lecture, 'means what it says'. But this leads to the above paradox, that
some students do not understand some aspects of programming, even though they have been told all
about it. A good example is given by Fleury [9] where a student is describing his reactions to a program
which has been altered so that the data members are public and there are no accessor methods - he is
asked if this is an improvement:

Millions of times, I've seen an accessor, where it just does nothing but return a value. And I
always thought in my head that that was just kind of goofy, so I really want to say better. But
because of the fact that I've been kind of led to believe that that's not better, I'm not sure what
to say.

The paradox is resolved by the realisation that much of the discourse about programming is nonliteral -
it does not literally refer to what it says. However ordinary discourse about computing is also
figurative, conventionalised so deeply as to make it difficult to recognise. For example, computers do
not actually have memory. Memory is a mental characteristic of humans and other animals providing
for the recall of past experiences, emotions and events. Digital systems have circuitry which is only
metaphorically described as memory. Douce [10] gives many more examples of metaphor use in
software development.

The focus of this paper is that a loop is not literally a loop, but that statements in a loop are actually
compressions, as described below, of statements in the unrolled loop.

4 Conceptual Integration Networks

The idea of a compression is part of the notion of a conceptual integration network, and what follows
is an attempt to give a brief outline of this set of related ideas. A key work in this area is 'The way we
think' [11]. Conceptual integration networks are described in [12], and compressions are described in
[13]. These ideas have been applied to mathematics [14], [15] and [16], and human-computer
interface (HCI) [17]. Veale and O'Donoghue [18] consider the computational requirements of
blending.

4.1 Frames

The term 'frame' is related to that of 'schema', which has been used by several psychologists to denote
variations on the theme of a structured mental representation. Piaget [19] uses the term scheme for
patterns of activity in infants in what he calls the sensori-motor stage, and Bartlett [20] demonstrated
the role of schemata in memory and recall.

Minsky [21] uses the term frame as follows:

When one encounters a new situation (or makes a substantial change in one's view of the
present problem) one selects from memory a structure called a Frame. This is a remembered
framework to be adapted to fit reality by changing details as necessary.

A frame is a data-structure for representing a stereotyped situation, like being in a certain kind
of living room, or going to a child's birthday party. Attached to each frame are several kinds of
information. Some of this information is about how to use the frame. Some is about what one
can expect to happen next. Some is what to do if these expectations are not confirmed.

This is Minsky's meaning of 'frame', written towards the start of the development of artificial
intelligence (AI), when human thought and computing were seen to have a simple correspondence.
Consequently when he says 'a frame is a data-structure' he is implying that human cognition is
appropriately seen in terms of data in computer memory. This is only loosely related to the way frame
is used here.

Related to this is the idea of a script by Schank and Abelson [22], who describe the 'restaurant script'
describing what people do when they eat out, as a way of structuring knowledge of the term
'restaurant'. This is the sense in which Rist [23] uses the term schema when he considers how
programmers learn to develop plans to solve programming problems.

The term frame is used here in the sense of frame semantics, primarily derived from Fillmore [24], and
is the idea that meaning depends on the context of the communication. The most commonly quoted
example is the COMMERCIAL EVENT frame, which has slots including BUYER, SELLER, GOODS
and MONEY. Knowledge of this frame means that

John bought the car for a good price

delivers the meaning that the price was low, while

John sold the car for a good price

means the price was high. The meaning of 'good' depends on knowledge of the BUYER and SELLER
roles in the COMMERCIAL EVENT frame.

Fillmore gives another example [25] of possible frames that live can occur in:

1. Those lobsters are alive - the LIFE-DEATH frame
2. Her manner is very alive - the PERSONALITY frame
3. He gave a live performance - the ENTERTAINMENT-PERFORMANCE frame.

so that the appropriate understanding of live naked girls involves (3) not (1).

Langacker [26] uses the term domain in a sense very close to that of Fillmore's frame.

4.2 Mental spaces, frames and blends

The term mental space was coined by Gilles Fauconnier, and is described in The Way We Think [11]. A
mental space is a transitory 'state of mind' which occurs when someone is thinking about something,
and is a mental representation of that situation. Sometimes these are unique, but they often have
elements in common with previously experienced spaces. For example walking into an unfamiliar
room involves the familiar notions of floor, wall, window and so on, but the arrangement and
occupants of that particular room may be unique to that space.

We can relate the idea of mental space to that of frame as described above, if we think of a frame as an
entrenched mental space. That is to say, if situations are repeatedly encountered with mental spaces
which are structurally similar, a frame can usefully be generated. For an individual this means they 'get
used to' such situations. If in a community this happens for sufficient individuals in it, the entrenchment
occurs for the community as well.

Fauconnier relates mental spaces to each other in 'conceptual integration networks'. This is an
extension and generalisation of Lakoff's [27] characterisation of metaphor as a way of thinking of new
ideas in terms of existing concepts. Fauconnier usually describes these networks as 'conceptual blends'.
A blend results from 2 or more different mental spaces being brought together to produce a new distinct
one - the output space. The output space is not like what a food blender produces - it is not a mushed-
up version of the inputs. Instead it has a precise structure consisting of certain elements from the input
spaces which constitutes an 'emergent structure' - something in some way different from the inputs.

An example of a blend is the Computer Desktop. One input space is the world of the office with files,
folders and trash cans, and the other is the world of computer processes such as deleting or printing a
file, executing a program and so on. When this becomes familiar, we 'live in the blend', meaning that
we think of the elements of the situation in the blend, not in the input spaces they came from. For
example, dragging a file icon to the trashcan is thought of as 'how you delete a file', rather than having
to expand the blend to think of the icon as standing for the file, rather than being the file, and the
dragging as how you delete it, rather than a metaphor for doing so. In fact the Desktop blend is more
complex than this - we are ignoring the visual aspect, and also the fact that a 'computer file' is itself a
blend between binary data and a paper-based file, and in turn a paper file is a blend of paper and ideas.
This exemplifies the typical situation where blends are made of blends.

4.3 Compressions

A compression is the result of a process which takes several mental spaces which are in some sense 'the
same' and yields a new one. This is one of the mechanisms by which these conceptual integration
networks can be creative and imaginative, and enable us to think in a way which would be otherwise
impossible.

Fauconnier gives many examples of compressions [11]. There are many associated with ideas of time.
For example consider

The Sun rises in the morning

Time 'really' has a linear nature - although it is only linear in a metaphorical sense. We experience a
sequence of points in time - Monday morning, midday, evening, night, Tuesday morning and so on.
From these mental spaces we construct a compression of those mornings into a single idea, that of 'the
morning'. In that phrase, 'the morning' is singular - yet it does not refer to a single actual morning. In

fact it is a way of referring to all mornings - but these are thought of (and spoken of) as a single item,
namely a compression.

A second example, taken from a newspaper article about plans to reform mid-wifery services:

Under the plans women will also be attended by the same two or three midwives throughout
their pregnancy, with one of them delivering the baby.

Here 'the baby' is a compression, across the fictive mental spaces containing babies born in the future.

A third example is from a newspaper article reporting an experiment where strong magnetic impulses
impaired arithmetic ability:

The study, which finds that the right parietal lobe at the right/back of the brain is responsible
for dyscalculia, potentially has implications for diagnosis and treatment through remedial
teaching.

Here 'the right parietal lobe" is a compression, referring not to one part of one brain, but a fusion of the
anatomical characteristics of all human brains.

It could be argued that a compression is the same as an abstraction. There are similarities, but the
difference is that an abstraction is a logical process consciously undertaken, whereas a compression is a
way of thinking about a set of things which the individual or the community adopts, but is not aware of.
This corresponds to the distinction between a literary metaphor and metaphorical conceptualisation as
described by Lackoff [27].

5 Frames, mental spaces and programming

This section applies the idea of frames to the process of thinking about programs.

A programming novice considering a short piece of programming code is obliged to think about two
things. These are the program text, and what happens when the computer executes that text. These
correspond to some extent to the common programming concepts of 'compile-time' and 'run-time'.
These refer to two events, when the program is being compiled and when it is being executed. The
distinction is relevant, for example, to memory usage. With static memory usage, such as when a
conventional array is used, the size of the memory used is fixed when the program is written and
compiled, for example by the programmer declaring an array with a fixed number of elements.
However in the case of dynamic storage (such as a Vector in Java) the amount of memory used can
vary at run-time, with elements added to the Vector structure as execution proceeds.

However frames are psychological constructs rather than the 'factual' notions of compile-time and run-
time. What might be called the text frame is the thinking associated with the (high-level) text of the
program, while the execution frame is thinking about the program being executed. These are like the
COMMERCIAL EVENT frame of Fillmore, which had slots for BUYER, SELLER, GOODS and
PAYMENT. What are the slots for these two frames?

The text frame includes the following slots

TEXT - the actual text of the program in high level language form.
CONVENTIONS - conventions associated with program code. These include indentation and
capitalization - for example in Java the convention that classes and interfaces start with capital letters,
and nothing else does.
SYNTAX - the syntactic rules associated with the language in use, such as what type of brackets are
used, how statements are separated, whether the language is case-sensitive, how identifier scope is
established and so on.

PURPOSE - what the author of the code intended it to achieve. For example the purpose might be to
find the maximum of 5 inputted numbers.

The execution frame includes these slots

INPUT - what data values are input as the program runs. This, like the following, is time-dependent, or
more precisely, execution-unit dependent. In other words it makes a difference which point during
execution the data values are presented.
OUTPUT - what data values are output
VARIABLES - what value each variable or storage location will have as execution proceeds.
EFFECT - a characterisation of what the program 'does', in terms of a mapping between input and
output. For example a program might output the minimum of 5 inputted numbers.

For a 'correct' program PURPOSE and EFFECT are identical, whereas a bug yields
an EFFECT which differs from the PURPOSE.

The cognitive difficulty of handling the two spaces depends on the structure of the code.

5.1 Simple sequence - a one-one mapping between spaces

A concrete example of this in pseudo-code would be

x=2

y=3

z=x+y

output z

Most students (even with no experience of programming) find this extremely easy to understand and
predict what the program will do. Why? Because there is a one-to-one mapping between the text and
the execution mental spaces:

Fig. 1. The mapping between text and execution frames for a simple code sequence

This kind of program exhibits the idea of a high level language, namely the program statements in
effect 'say' what the computer will do when they execute.

All the students in the group reported here found this program trivial. However in a separate study of
students with low academic achievement levels on vocational courses, one student was found who said
he was "muddled" by this. This is discussed later.

Regarding the program as a function mapping input to output, there is no input so the domain is the
null set, and the output set has a single element, 5. So this is a constant function. Regarding a program
as a function in this way is a common approach in undergraduate courses. However that is a formal
model, to be compared with what is asserted here, which is a cognitive model. There is a recurring

Text

x=2
y=3
z=x+y
output z

Execution

x is 2
y is 3
z is 5
output 5

Text

c=1
r=1
repeat 3 times:
 c = c + 1
 r = r * c
output r

Execution

c is 1
r is 1
c is 2
r is 2
c is 3
r is 6
c is 4
r is 24
output 24

theme that the student must develop the appropriate cognitive model before the formal model makes
sense.

5.2 Loops

If a program fragment contains a loop, there is no longer a one-to-one mapping between the two
spaces. For example

Fig. 2 The mapping between text and execution frame for a loop

In the interviews described below, the execution frame relates to the program trace which students were
led through. The novice student can (and typically will) mechanically follow through the trace, and say
the program outputs 24. However the question 'what does this program do' elicits from students who do
not understand it no more than the answer 24, in that this is the calculated value when the loop ends.

Literal reality resides in the sequence of executed instructions in the execution frame. This has a
subsequence which in term comprises of 3 sets of 2 instructions which are, to some extent, 'the same'.
This is often referred to as the unrolled loop. These are compressed in the text frame to a loop of 2
instructions iterated 3 times - the rolled-up loop.

Which of course is obvious if you know about programming. However if you are a novice you only
have the text frame, and must 'imagine' the execution frame. With experience of that imagining, the
student can construct the idea that a loop is the compression of a set of instructions. With that idea, the
student can reason about the statements in the loop in terms of what they will do. Without it, the student
only has the rolled out statements in the execution frame, and no reasoning about them is possible,
beyond simply what each individual statement does.

Explicitly, the student who knows that a loop is a compression can see that
 c = c + 1
increases c, not once, but every time - and then
 r = r * c
multiplies r every time by these increasing values of c. In turn they can see that the program calculates
1 X 2 X 3 X 4, rather than 24.

It is interesting to relate this to the idea of loop invariance, which is often used to show what programs
with loops do. For example in this case the loop invariant would be that on the ith iteration, r = i!. This
is true before the loop starts, and if it is true before an iteration, it is true afterwards. And it shows the
fragment calculates n!. However this formal approach is not understood unless the student already has
a cognitive grasp that a loop is a compression. This is an other example of a formal approach lying on
top of an intuitive approach.

6 The data

Fourteen volunteers were interviewed in the autumn of 2007, in what was essentially a pilot study
intended to provide a basis for identifying a suitable theoretical model. These were undergraduate
students, with strong academic backgrounds, starting the first year of a degree in Computer Science.
They were following a module which was an introduction to programming, including OOP and Java,
and a parallel module concerned with data structures and algorithms. Seven of these students had little
or no prior experience of programming, and these interviews took place towards start of the module, at
a time when they had done virtually no programming in the course. Audio recordings of the interviews
were made.

The interviews were semi-structured, starting with general questions about computers, programs and
variables, and they were then presented with 5 short psuedo-code programs like those in 5.1 and 5.2,
and the following:

x = 0

input n

while n is not equal to -99

{

if n > x then x = n

input n

}

output x

They were asked 'what would this program do?' If the student felt unable to answer this immediately,
they were led through several traced runs, and then invited to summarise it.

6.1 Example

This example is chosen as being typical of the responses given. This subject has done no programming
before. He starts by trying to deduce what the program would do - possibly, because he is silent most of
the time. But he makes no progress (student statements are in italics):

So what do you think that program would do?
Basically, because x was already set to zero, and then the while loop, n is bigger than zero, its
going to be put here, .. er.. (15 second pause) I wouldn't know, I'm not sure (12 second pause)
You're not sure?
No it kind of gets me confused, if..

So the interviewer introduces the idea of considering input values. The student needs a lot of help:

OK OK if we.. one way to work this out is thinking what would happen if we put different
numbers into it, so, x equals 0, input n, let's suppose we typed in 4, OK, so n would be 4,
Which is, err which is more than x
OK so it says 4 is greater than x, so
x is going to be 4,
OK so if we just jot that down, x is 4, yeah? Then input another value of n, so lets suppose we
put in 6, OK? What will happen? It will loop around, and say n is not equal to -99, so we'll do
it again,
Is it just going to print out 4?
We haven't got there yet. If n is greater than x, so 6 is greater than x, yes it is, x becomes 6.
And we input another value. Now suppose we input 2, this time.
Still going to, x is going to be 2, its bigger than zero,
OK but x now is 6

Oh yes!
So it will say is 2 greater than 6, and its not
Its not
So that time it won't change x, so x will stay at that. Lets suppose we do it again and put in 3
Still 6
OK suppose we put in 7,
Its going to be print out 7
OK x becomes 7. Suppose we put in 1
7
Stays there, suppose we put next number -99
(5 second pause) Still 7
Yes - and what happens with the loop?
Yeah - its just going to print out the x,
It will come to here, yeah? so the loop will terminate there, OK? and we'll get 7, so it will
output 7 in that situation.

The point here where the subject says 'Oh yes!' is where they are starting to see how x retains the
previous highest value. But immediately after just this first run, the student has 'got it':

OK suppose we put in a different sequence and start again, at the beginning, and we put in 1, 2
, 3, 2 and -99. What output would we get?
3
3? Why would we get 3?
Because its increasing at first, and after 3, its smaller than the x value, so it will keep the 3,
then its -99, and it will output the 3.
Yes OK. Um can we summarise this program then, can we summarise what this program
does? You put some numbers in, what number do you get out?
The maximum number.

This student has understood after one trace run. Others needed up to 4 traces before they could
summarise it correctly. But all followed the same pattern:

1. Carefully read the program text, and fail to understand
2. Follow through some traces
3. Become able to summarise it correctly

7 How does this perspective help?

The perspective of frames, blends and compressions is useful because:

1. It provides a framework for understanding the way novices try to comprehend programs, which
comes from a general view of the way we think, not something which is specifically related to
software. It would be unreasonable to suppose human cognition has characteristics concerned with
programming which are different from general cognition.
2. It explains why some students cannot grasp even very simple programs as in 5.1. This is because
they are only using the program text frame, and are not aware of the need to think about the execution
frame.
3. It explains why some students are unsure about the difference between an 'if' and a 'while' statement.
This seems to be paradoxical, since to us they are completely different. But it implies that some
students do not know what a while loop is. This is possible, if they have not understood that a loop is a
rolled-up version of repeated statements.
4. It explains why some students cannot construct simple code sequences involving loops, or reason
about the effects of statements in given loops, if they have not achieved the implicit realisation that
statements in loops are compressions.

8 Pedagogical implications

Some students find elementary programming very easy, and start to be able to use loops and
conditionals in simple algorithms very quickly. These students grasp the idea of the dual frames of
program text and the execution frame within minutes of their first programming class. But of course
others find it incomprehensible. These suggestions are directed towards them.

1. Some students are not aware that what a program statement will do depends on the values of
variables at that time - in other words they are not aware of the two frames of program text and
execution. The fact that you have to take into account the values of variables is obvious to us, and so
we do not explicitly say it.

A student can be helped to an awareness of the two frames by tracing the execution of program
sections, either on paper or using a debugger. This helps the student to see, literally, the two frames.

2. Loops are typically introduced with examples such that the student must go through the following
sequence:

program text with rolled up loop >> trace to unrolled loop >> compression of execution to loop
statements >> understanding the loop

A more direct pedagogic path is

program text with unrolled loop >> compression >> loop

In other words presenting and stepping through programs with repeated statements, or getting students
to write them, and then leading to the idea of compressing those multiple statements into a loop
structure. This is adopting a constructivist approach, placing the student in a position where the idea of
compressing repeated statements is reasonably obvious, and leading them to invent the notion of a loop
themselves.

9 Developments

The interviews carried out during this pilot work are consistent with the central hypothesis, but there is
not a lot of direct strong evidence to support it - not surprising in that the interview structure was
established before the theoretical framework was selected. There is no part of any interview which one
could point to and say - 'there, that proves that loop statements are seen as a compression'. In view of
this the intention is to design a protocol which will elicit results more focused on the ideas of frames,
blends and compressions with the intention of obtaining firmer evidence. It is also the intention to
extend the scope beyond what is covered here to code structure in terms of functions and parameter
passing, data structures such as arrays, and OOP ideas.

References

1. Biddle, R. & Tempero, E.: Java Pitfalls for Beginners SIGCSE Bulletin, Vol 30 No. 2. (1998).

2. Ragonis, N., & Ben-Ari, M. A. : A Long-Term Investigation of the Comprehension of OOP Concepts by
Novices Computer Science Education Vol 15 No 3 September 2005

3. Eckerdal, A. & Thuné, M. : Novice Java Programmers' Conceptions of 'Object' and 'Class', and Variation Theory
ITiCSE '05: Proceedings of the 10th Annual ITiCSE Conference, Monte de Caparica Portugal (2005).

4. Holland, S., Griffiths, R. & Woodman M. : Avoiding Object Misconceptions SIGCSE '97 : 28th Technical
Symposium on Computer Science Education San Jose California (1997).

5. Fleury A. E. Programming in Java: Student-Constructed Rule SIGCSE 2000: 31st Technical

Symposium on Computer Science Education Austin Texas (2000).

6. Marton, F. & Booth, S.: Learning and Awareness. Lawrence Erlbaum, New Jersey (1997)

7. Booth, S.: Learning To Program - A phenomenographic perspective. PhD Thesis, Acta Universitatis
Gothoburgensis 89:1992

8. Johnson, M.: The Body in the Mind: The Bodily Basis of Meaning, Imagination and Reason. Chicago
University Press Chicago London (1987) xxii

9. Fleury A. E.: Encapsulation and Reuse as Viewed by Java Students. SIGCSE 2001

10. Douce, C. : Metaphors We Program By. Proceedings of the 16th Workshop of the Psychology of Programming
Interest Group. Carlow, Ireland (2004)

11. Fauconnier, G. & Turner, M.: The Way We Think: Conceptual Blending and the Mind's Hidden Complexities.
Basic Books, New York (2003)

12. Fauconnier, G. & Turner, M. : Conceptual Integration Networks. in Cognitive Science. Volume 22, number 2,
pages 133-187. (1998).

13. Turner, M.: Compression and Representation, in Language and Literature (ed. Dancygier B.) vol. 15 no. pages
17 to 27 (2006)

14. Lakoff, G., & Nuñez, R. E.: . Where Mathematics Comes From. Basic Books, New York. (2000)

15. Nuñez, R. E. : Creating mathematical infinities: Metaphor, blending, and the beauty of transfinite cardinals, in
Journal of Pragmatics (eds Coulson, S. & Oakley, T.) vol. 37 no. 10 (2005)

16. Alexander,J.C. Mathematical Blending , draft pdf
http://www.case.edu/artsci/math/alexander/pdf/alexander_blending_mathematics.pdf accessed July 2008

17. Imaz, M. & Benyon, D.. Designing with Blends: Conceptual Foundations of Human-Computer Interaction and
Software Engineering. MIT Press. (2007)

18. Veale, T. & O'Donoghue, D. Computation and Blending, in Cognitive Linguistics (eds Coulson, S. & Oakley,
T.) vol. 11 no. 3 pages 253-282 (2000)

19. Piaget, J.: Play, Dreams, and Imitation in Childhood. W.W. Norton. New York (1962)

20. Bartlett, S.F.: Remembering: A Study in Experimental and Social Psychology Cambridge. University Press
Cambridge (1932)

21. Minsky, M.L.: A framework for representing knowledge. Massachusetts Institute of Technology A.I.
Laboratory. (1974)

22. Abelson, R & Schank R., Scripts Plans Goals and Understanding: An Inquiry Into Human Knowledge
Structures. Lawrence Erlbaum Associates Hillsdale NJ (1977)

23. R. S. Rist: Learning to Program: Schema Creation, Application, Application, and Evaluation. In Fincher S. &
Petre M. (eds.): Computer Science Education Research. RoutledgeFalmer, London (2004)

24. Fillmore C.J.: Frame Semantics. In Linguistics in the Morning Calm. Hanshin Seoul,(1982) 111-137.

25. Fillmore, C.J.: Scenes-and-frames semantics. Linguistic Structures Processing, 59 (1977)

26. Langacker, R.: Foundations of Cognitive Grammar: Volume I: Theoretical Prerequisites, Stanford University
Press, Stanford (1999)

27. Lakoff, G. & Johnson, M.: Metaphors We Live By, University of Chicago Press, Chicago (1980)

