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Abstract 

Software architecture and its related documentation are acknowledged as some of the most important 

artefacts created during system design. However, often the implemented system diverges, over time, 

from the designed architecture. This phenomenon is called architectural drift and is either a result of 

inconsistent evolution of the system, or a failure to keep the architectural documentation up to date.  

A case study, performed at IBM, over two years showed how architectural drift can occur in small 

development teams over time. It suggested that even when approaches are in place to identify 

architectural drift, they may prove insufficient for subsequent removal of the drift, and some possible 

reasons for this were derived. Consequently, this document outlines the resultant design requirements 

for an approach to inhibit architectural drift, primarily by identifying it as, or before, it is introduced. 

1. Introduction 

Software Architecture has become an important asset in the design of modern software systems [1, 2]. 

Design decisions made at the architectural level affect systems’ properties, such as, its ability to 

accept changes and to adapt to changing market requirements [3, 4]. That is, these decisions directly 

affect system maintenance and evolution, activities which have become a primary focus of software 

development [5]. Thus, a significant effort is spent on designing architecture to facilitate future 

evolution. 

However all the effort put into this design may be lost, if the implementation diverges from the 

designed architecture [1]. Such discrepancies between the design and implementation are referred to 

collectively as architectural drift and this is a well documented phenomenon [3, 4, 6, 7]. Architectural 

drift means that the system’s ability to accept change and adapt can be compromised, significantly 

contributing to the increased cost and difficulties in system maintenance [6, 8]. In addition, 

architectural drift often results in a situation where the existing architectural documentation is of less 

use or possibly even harmful for developers [6, 8, 9].  Maintainers can be confused because they are 

faced with two inconsistent representations of the system (the source code and the architectural 

documentation) and this may also lead to increased maintenance time and costs [3]. In fact, studies 

have shown that programmers tend to rely more on the source code because they distrust such design 

documents [10, 11]. 

Architectural drift is most often attributed to the side-effects of continuous change [3, 6, 7, 9, 12]; 

change which is inevitable in the software application’s life-cycle [5]. However, the system may also 

deteriorate in the initial stages of its implementation because the developers are unfamiliar with the 

design, because they prioritise certain aspects of the system over adherence to the architecture or 

simply through negligence. This drift is of relatively greater importance, as it may render the designed 

architecture redundant, even before it is fully realised, wasting all the effort put into its creation. 

Several techniques have been designed to analyse and evaluate discrepancies that can arise between 

design and the implemented system [2, 3, 4, 6, 13, 14, 15, 16]. The evaluations of these techniques are 

mostly performed as single-session experiments on a finished version of the system and seem to 



concentrate on the discovery and evaluation of drift only. That is, they did not study the impact of 

drift identification on subsequent drift removal.  

In earlier work the authors performed a longitudinal, in-vivo case study of a commercial software 

system's re-development using one such technique, to assess its effect on discrepancy removal [17]. It 

illustrated that identification of discrepancies does not necessarily lead to their removal. This research 

builds on the findings of this study to present several requirements for a tool which will heighten 

consistency between the implemented system and the designed architecture. It then discusses the 

design of this resultant tool.  

Section 2 presents some relevant terms from the domain. Section 3 describes the initial approach we 

employed in the case study, with the aim of reducing architectural drift. This approach emerged from 

the literature, as the most established and successful architecture evaluation technique to date. Section 

4 briefly discusses the in-vivo case study that used this technique and subsequent sections discuss the 

requirements and design that arose as a result of the study's findings. 

2. Relevant Terms 

Several reports show [3, 9, 15] that, no matter how much effort is spent on designing a system’s 

architecture, it is common that the resulting implementation diverges from that architecture over time 

[6]. Indeed, a system’s implementation can diverge from the intended architecture during the system’s 

initial implementation [17]. This phenomenon is referred to as architectural drift [3, 4, 9]. It may be 

also referred to as architecture degeneration, or system degeneration
1.  

Given the negative implications of such a situation (as described in the introduction), we argue that 

control should be exercised over the architecture of the system during the system’s development and 

subsequent maintenance, with the aim of enforcing consistency: that is, trying to inhibit discrepancies 

between the current, as-implemented, design and the original, as-intended, design. 

Hence, we define Architecture Consistency (AC) as the task of assessing and achieving consistency 

between the designed architecture (DA) and the implemented architecture (IA) in an on-going fashion 

over the entire life-span of a system. The designed architecture is represented by design 

documentation and can also be referred to as high-level architecture [12] or hypothesised architecture 

[18]. The as-implemented architecture, also referred to as the source-code architecture [12] and 

concrete architecture [18], is represented implicitly, in the implementation. 

AC implies that implementation entities (elements of the IA) can be mapped on to design entities 

(elements of the DA). Elements of the IA which cannot be mapped on elements of the DA are called 

architectural violations. Likewise relationships between elements of the IA (such as invocations) not 

present in the DA are called architectural violations. Finally, elements of the DA which have no 

representation in the IA can also be thought of as architectural violations. However, this latter class of 

violations, if found during development, usually represent (as yet) missing functionality. Hence, these 

are typically of lesser concern. 

AC differs from architecture evaluation [13, 15] mainly in that architecture evaluation has been 

associated with detecting the divergence between DAs and IAs as a one-off exercise, sometime after 

system deployment [6, 9, 15, 16]. Instead AC, in this work, refers to a more continuous approach 

during development and evolution, and aims not just to evaluate architectural drift, but to correct it. 

3. Reflexion Modelling for AC 

In order to be able to exercise control over the design of a software system, a suitable AC technique is 

required. As mentioned above, several techniques have been proposed in the literature [9, 14, 15, 16] 

for architecture evaluation. Typically, little explicit detail is given on the individual processes adhered 

to, but a general pattern does seem to emerge [15]: 

                                                           

1  A more precise term would be “non-conformant architecture” but the literature tends to refer to this 

phenomenon using these three terms. 



1. Define the DA and realise it in a supporting tool;  

2. Recover the IA from the system’s current implementation assets;  

3. Compare the two architectures and identify the violations, ideally with tool support;  

4. Analyse and verify the violations; 

5. Suggest changes to either the IA, the DA or both;  

6. Repeat steps 4-6, after these changes have been implemented.  

We chose to use Reflexion Modelling as an initial approach to AC, as it is a successful design 

recovery technique [6, 12, 18, 19, 20, 21] which also closely adheres to the above schema. In addition, 

it allows the developers to define their own personal perspective on the architecture. An adapted 

Reflexion Modelling process, for the purpose of limiting architectural drift, was first made explicit by 

[22]:  

 

 

 

 

Figure 1: An Example Reflexion Model of the DAP system 

 

1. Before implementation of the system commences, the designer creates a hypothesised 

architectural model, the High-Level Model (HLM) - or DA in the terminology of section 2.1; 

2. During the implementation phase, developers and/or architects, update a set of mappings 

which assign newly implemented source code entities (IA entities) to HLM (DA) entities; 

3. At any point during implementation or subsequent maintenance, a dependency graph of the 

system’s sources can be extracted, creating the Source Model (SM), - or IA in the terminology 

of section 2.1; 

4. The relationships defined by the engineer in the HLM are compared with those extracted from 

the implemented system in the SM. Results of that comparison are presented to the developer 

through the means of a Reflexion Model (RM) (see the stylized RM in figure 1). The 

following relationships are represented in this model: 

• A solid edge represents a relationship present in both, the HLM and the SM. 

(convergence); 

• A dashed edge represents a relationship present in the SM, but not present in the 

HLM. (divergence); 

 



• A dotted edge represents a relationship present in the HLM, but not present in the 

SM. (absence) ; 

 

By analysing particularly the inconsistent relationships in the RM, engineers can choose either to alter 

the mappings, the HLM, or the SM (the latter through re-factoring the source code). 

There is already existing tool support for the Reflexion Modelling process in the form of a tool called 

the jRMTool [23], a lightweight plug-in for Eclipse that facilitates the creation of the HLM, the 

mappings and the resultant RM. It also allows users to explore the divergences by listing the source 

code relationships underpinning unexpected edges. Figure 2 presents a screen-shot of the jRMTool. 

4. The Case Study 

The principal objective of the case study was to evaluate the selected AC approach (see section 3) in a 

real-life scenario, over a realistic drift period. That is, the case study focused on determining if 

violation identification and feedback to developers through this tool would lead to violation removal 

and, if not, how the current approach could be improved towards this end. 

 

 

Hence a two-year, longitudinal case study was performed in an in-vivo industrial setting (at IBM 

Dublin) [17]. During this period, at approximately four month intervals, three developers, who were 

re-developing a commercial software system, would perform the evaluation process outlined in 

section 3.1 using the JRMTool. Through these evaluations feedback was given on several of the 

architectural violations they had introduced into the system during redevelopment. However, while 

many architectural violations were identified in this fashion, the approach wasn’t as good at achieving 

architectural consistency. Most of the violations discovered remained until, and beyond, the final 

session. Indeed, the violations which were removed, were removed as a side-effect of other actions, 

rather than by explicit developer action aimed at their removal.  This suggests that identification of 

violations periodically is not, of itself, sufficient to ensure architectural consistency.  Additional 

measures have to be employed to ensure violation removal with this approach.  

Also in the case study, certain violations were added to the architecture based on specified and valid 

rationales. After some time however, the rationale for such changes was lost, due to a combination of 

personnel changes and a lack of annotation facilities in the jRMTool.  

Figure 2: A screenshot of jRMTool, an Eclipse plug-in 



Another important issue which arose in the evaluation was that of false negatives. This is where 

expected edges in the RM represent both expected and unexpected relationships in the code-base. The 

most graphic example of this in our study was where an edge represented three desired source-code 

relationships, but 41 undesired source-code relationships. This edge was not explored by the 

developers because of its 'expected' nature, (even though the RM did show that there were 44 

underpinning source-code relationships). Hence, rather than highlighting architectural inconsistencies, 

the RM served to obfuscate some of them. Murphy et al. [6] acknowledge this failing of the approach 

implicitly (in an architecture recovery context) when they describe Reflexion Modelling as 

“approximate”.  

Other tool-related problems were discovered during the case study. The provisional nature of the 

supporting tool proved to be problematic, as it sporadically crashed or performed very badly. 

Additionally some of the models had to be edited by hand using a plain text editor, as opposed to 

being edited through the supported model editor. Finally, the automatically generated RM differed in 

topology significantly from the developer-generated HLM, resulting in difficulties comparing the two. 

Although the tool-related issues described here may be considered technical only, it is our belief that 

they are an important factor contributing to whether the particular technique will be adopted or not.  

Similar conclusions are drawn from different case studies performed by our team, [20, 24]. In support 

of this position, Tvedt et al. [15] claims that poor tool support was one of the limiting factors in the 

application of their technique (during one of their case studies). 

There is no doubt [2, 3, 15, 16] that an AC technique would be a useful addition to existing design and 

development techniques. However, for such a technique to be successful the problems discovered 

during this first evaluation have to be addressed. 

5. Requirements 

The evidence gathered during the case study suggests that the initial “batch-processing” (four-

monthly) approach should be refined and integrated more fully into the software implementation 

process. This section describes the overall approach that the tool should support and the various 

principles that the tool should embody. 

5.1 Approach Overview 

Consistent with other techniques used in evaluation contexts [2, 15, 16], it is envisaged that the 

proposed approach will use static structural analysis techniques. Static techniques are those which 

extract information only from ‘static’ system assets like source code and documentation. In contrast, 

dynamic techniques combine this information with the information extracted from the running system. 

Unfortunately, as the approach will concern itself with systems' initial development (as well as 

evolution) the approach will not always have access to a running system, and thus will have to rely on 

static information. In the future however, this could be extended to utilise both static and dynamic 

information - when dealing exclusively with the consistency of evolving systems (similar to the 

approach presented by Sefika [16]). 

Structural analysis techniques are those which analyse the assets of the project and try to extract 

structural information about the system: its decomposition into modules and the dependencies / 

interconnections between these modules. As this information is extracted directly from the system and 

not based on documentation, it represents the IA.  

5.2 Continuous Consistency Checking 

In designing the approach for the initial case study, an assumption was made: that periodic 

evaluations of architecture compliance were sufficient to maintain control over architecture drift [17, 

22]. This position was supported by the literature [2, 15]. However, according to other work [25, 26] 

the longer an issue persists in the source code, the harder it is to fix. Thus discovering the violation at 

the very moment of introduction should increase the chances of the violation’s removal. This is 

supported in the findings from the case study where most of the discovered violations were considered 

trivial. This in turn implies that they would have been trivial to fix. Real-time alerts (as proposed by 



Eichberg and Knodel [27, 28]) should serve to inhibit these trivially-avoidable violations while also 

increasing the architectural awareness of developers who sometimes introduce violations because they 

are not fully aware of the architectural constraints under which they should program [7].  

In contrast, when using periodic evaluations, it is likely that the primary focus of development has 

switched to other parts of the code-base, increasing developers’ reluctance to revisit already “closed” 

code. This argues for real-time notification of architecture violation to developers. Thus, a continuous 

checking of consistency between the DA and IA is envisaged. This should allow for discovering the 

violation at the very moment it is introduced. Such an approach should heighten the architectural 

awareness of the developers as they work on the code, not in retrospect. Consequently, the supporting 

tool should analyse the source code while it is being written or modified by the developer. When 

inconsistencies are detected, they should be highlighted to the developer immediately, through 

warnings or through highlighting of the problematic areas in the source-code editor. Such a process 

would allow for robust continuous monitoring of the consistency. 

An extension of this ideal would be to alert programmers of potential architectural violations before 

they are introduced. Aids such as IntelliSense (which prompt developers as to the features - functions, 

data structures - available to them in given contexts) could highlight, or remove those items which 

would introduce architectural inconsistencies. Thus, such a facility would give programmers prior 

warning as to the appropriateness of forming relationships between specific methods, classes or 

packages in advance. However, it is also important that care should be taken to report such potential 

violations in a non-intrusive manner. 

 

 

Figure 3: A workflow for AC tools that separates architect and develop roles  

 

5.3 Role Separation and Change Validation 

In the initial process there is no means of enforcing the removal of the violations, even if they are 

detected. When a developer finds an architectural violation he is not forced to remove it, or even 

comment on it. Indeed, he could 'hide' it in the RM by introducing it into the mapping between the IA 

and the DA. In three instances this caused architectural misunderstandings within the case-study team. 

This argues for the ability to annotate edges with rationale and for the separation of architect and 

developer roles; a separation that was not evidenced in the initial process. A workflow that clearly 

demonstrates this separation is presented in Figure 3. 

However in some projects due to factors like small team size, no clear separation of architects and 

developers may be feasible. Thus, we envisage that individual team members may have different 

rights within the approach. For instance a junior developer may only be allowed to modify source 

code, a senior developer might also be allowed to modify mappings and an architect might 

additionally be allowed to modify the architecture (DA).  Thus, rather than introducing a strict 



architect/developer segregation, we envisage that access control could be permitted on an individual 

team member basis, where each team member may be given appropriate rights. This separation is 

introduced to prevent a situation where inappropriate team members can change the architecture 

unilaterally and without notifying the team. 

5.4 Refined Architectural Representation 

To address the approximation and obfuscation issue we plan to enhance the edge notation used by the 

initial technique when modelling systems’ architectures. This enhancement is envisaged as the ability 

to introduce multiple edges and multiple categories of edges between the same nodes in the RM, 

probably on the basis of separating edges that connect different node ‘interfaces’. This, in turn, will 

allow for better representation of real-life systems, while alleviating the problem of false negatives 

somewhat. 

As mentioned in section 5.3, this increased granularity of edges should be connected with edge 

annotation. Annotating of edges in the model will allow other developers or architects in the team to 

understand the rationale for introduced edges quickly. If a seeming violation is introduced or allowed 

to persist in the source code, it should be annotated and clearly distinguished from other edges, so that 

it can be easily identified. In this way accepted violations wouldn’t remain unnoticed when personnel 

changes occur, as was the case in this study. A similar method to this is described by Hassan and Holt 

[8] where developers could extract information about an edge from a version control system with the 

aim of being able to reason about them. 

However, as a key factor contributing to the popularity of the technique is its lightweight nature, it is 

envisaged that the enhancements will be optional and minimal. That is, depending on the project’s 

needs, the architecture can be modelled as a simple box and edges diagram or by using more 

sophisticated structures with edge sub-typing end explicit interfaces.  

 

6. Design of the AC Tool 

6.1 Implementation Overview 

The Eclipse platform [29] has been selected as a platform for the implementation of the AC tool.  

Eclipse is a widely used, open source IDE for software developers and so provides software tool 

developers with the foundation of a familiar environment for these programmers, a favourable 

indicator for adoption [30]. But it is also a development platform comprising of extensible application 

frameworks, tools and a runtime library for add-on software development and management. These 

allow for easy implementation of additional features (in fact, the jRMTool used in the initial version 

of the technique is also implemented as an Eclipse plug-in).  Additionally the ‘continuous 

compilation’ work-flow within Eclipse makes it an ideal candidate for our continuous, consistency-

checking approach. Finally, as this IDE is open-source, any changes required in the core of the IDE 

can be freely applied, as the source code is freely available. 

A rich set of generic extensions already exists for Eclipse which is designed as helpers in creating 

other, more complicated plug-ins. We envisage using at least two such extensions, namely the 

Graphical Editing Framework (GEF) and the Eclipse Modelling Framework (EMF). The GEF allows 

developers to create a rich graphical editor from an existing application model. The developer can 

take advantage of the many common operations provided in GEF and/or extend them for the specific 

domain. GEF employs a Model-View-Controller architecture which enables simple changes to be 

applied to the model from the view. 

The EMF is an Eclipse-based modelling framework and code generation facility for building tools and 

other applications based on a structured data model. From a model specification described in XML, 

EMF provides tools and runtime support to produce a set of Java classes for the model, a set of 

adapter classes that enable viewing and command-based editing of the model, and a basic editor. 



Models can be specified using annotated documents, or modelling tools, and then imported into the 

EMF. 

The main components of Eclipse are implemented using the Java programming language and this 

enforces the implementation language of the AC tool. Even though the Eclipse IDE provides support 

for development using languages other than Java, like C++ and Python, the first version of the tool 

will only support Java as a target language for AC control. This is primarily a scoping consideration 

but Java was selected due to its widespread use and its interpreted nature, which makes it an ideal 

candidate for static analysis. 

6.2 Integrating the Tool 

The initial technique (employed in the case study [17]) used a separate view (the RM) to convey 

architectural information and warnings. This requires the developer to switch his attention from the 

main development view (source code) which involves undesirable overhead [25]. In addition, 

although a separate view which is specifically designed for such a task may convey architectural 

information better, it will be useless if a developer chooses not to disrupt his main development task 

to view it. Thus, along with this separate, holistic view it is planned to adopt two existing features of 

Eclipse already used by developers. 

The first such feature is compiler warnings. Modern IDEs display compiler warnings in a window 

below the source code and also highlight problematic source code sections in the source code editor 

itself. Developers typically react to such warnings, as they indicate problems in the code. By 

introducing the notion of architectural warnings, we plan to reuse this feature (and the associated 

views). As the source is compiled, it will be also analysed for potential architectural problems and 

architectural warnings will be presented in the same manner as the regular compiler warnings.  

The Eclipse IDE uses a notion of incremental builders to provide continuous compilation of the 

source code. When a developer writes a line of code, the affected code is recompiled and possible 

problems and errors are communicated to the developer. This incremental compilation uses delta 

computation to detect affected source code areas and compiles only modified fragments of code 

reusing already compiled chunks of unaffected code from previous compilations. This results in fast 

compilation time and real-time feedback. As this functionality is extensible, this provides the 

capability for real-time architectural warnings. 

Another feature we plan to reuse is IntelliSense. This feature prompts the developer with the available 

methods and data structures that are available in a given, source code context. If real-time static 

analysis information is available and coupled to the RM, then the IntelliSense list can be filtered to 

remove violating code or, can highlight it in different colours. It is envisaged that this will prompt 

architectural awareness in the developers and discourage the introduction of architecture violations.  

The reuse of these features should allow for an increased level of architectural control over the 

implementation of the software system in real-time while, at the same time, minimising 

familiarisation overhead, as analogue functionality is already commonly used by developers who use 

the Eclipse IDE. 

6.3 Essential User Interface Components 

The user interface of the proposed plug-in is composed of a set of interacting views. Through these 

views, users can interact with the underlying model and also receive architectural warnings. Some of 

the views will be new additions to the Eclipse IDE while other, standard views will be reused, and 

only adapted for the task of AC control. 

 

The Architectural Editor / View is a combination of two views (models) from the jRMTool: the 

High-Level Model and the Reflexion Model (which is depicted in figure 1). In the original Reflexion 

Modelling technique, the High-Level Model is used to create and edit the DA and the Reflexion 

Model displays the results of the analysis in read-only mode. However, this Architectural Editor will 



be used for both tasks, as this enforces consistency between the typology of the two models, 

facilitating comparison. 

Mappings between the DA and IA can be created manually in a text editor but, the main mode of 

operation should be a drag-and-drop interface where elements of the IA are dropped into the DA 

elements. Eclipse already supports drag and drop for Java elements. Thus, this view only needs to be 

adapted to accommodate this functionality. 

The Source Editor in Eclipse is used to edit source code. This view already has a feature that 

displays compilation errors and warnings by underlining the affected line of code and providing a 

pop-up explanation of the problem. This is shown in figure 4. This notification is connected with the 

Problems View where a full description of the error is available (see figure 5). These features of the 

IDE will be reused to show architectural errors. When a programmer accesses a source code entity 

which is architecturally forbidden in the current context, the offending line of code should be 

highlighted and the appropriate errors displayed in the pop-up explanation and the Problems View. In 

this way, developers do not have to switch attention to a separate view to check for architectural 

violations as they develop the system. 

 

 

Figure 4: The Eclipse Source Editor showing a Compilation Warning 

 

 

 

The Outline View is another, existing view of Eclipse. This view shows the hierarchical 

decomposition of Classes: their member variables and methods in the form of a tree. The contents of 

this view change with the file being edited. That is, when a user edits a file, the contents of this file 

are shown in the view. 

When the developer switches and starts to edit a different file, the view will display the contents of 

that other file. Thus, when a developer edits the architecture, architectural elements should be 

displayed in this view, giving an outline of the area of code being worked on at that given moment. 

These elements will include nodes, node interconnections and Java elements mapped to given nodes. 

 



 

Figure 5: The Associated Problem View 

 

7: Envisaged Execution of the approach 

7.1 Continuous Consistency Checks 

Our approach is envisaged as two-pronged: continuous consistency checks during the system's 

development and maintenance and commit-based consistency checks. To achieve the best results it is 

envisaged that the continuous consistency checks will be tightly integrated with normal development 

practice, ideally becoming a part of it. The consistency checks are performed in the background, 

concurrent with the main development task. Thus checking does not require any explicit action on the 

part of the software engineer. The control flow of a generic consistency checking approach, where a 

pre-defined DA exists, is shown in figure 6. 

When a software engineer writes a line of code the new IA entities and dependencies will be extracted 

from the modified code base. These will be compared with the previous set of dependencies and 

entities, as not all changes to the source code will introduce/remove entities and dependencies.  If a 

different set of entities and dependencies is detected, and/or the engineer alters the mappings, the IA 

model will need to be re-computed. This model will then be compared with the current DA and the 

results presented to the developer. 

Note that, even though certain modifications may be prohibited for given user rights, no check as to 

whether that person is allowed to apply given changes is performed at this stage. This is to prevent 

excessive interruptions to the development process and also to allow for experimentation on the local 

copy. A final check will be performed when changes are committed to a central code repository which 

is described in section 7.2. 

The results of the consistency check are presented to the developer in several ways, as discussed 

earlier: 

• The Architecture View – this view is updated to show the current state of the architecture 

and also to highlight any discrepancies between DA and IA, on-demand; 

• The Source-Code View – this view provides non-prompted, immediate feedback; 

• Problems View – likewise, this view will provide non-prompted, immediate feedback;  

An additional, helpful view during the development may be that of IntelliSense. Based on the internal 

IA and DA models, a list of available choices in IntelliSense pop-ups may be filtered or colour-coded 

to highlight only architecturally correct choices. This way, architectural awareness is heightened in 

advance of decisions and premature commitment is avoided [31].  
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Figure 6: Control flow for envisaged continuous checking 

 

When the developers get this feedback, they can choose to ignore the violation (defer the fix) and 

finish their current task or try to fix the violation immediately. If they choose to act on the violation, 

one of the following situations may apply: 

• They may Alter the Source-Code – here the developer attempts to remove the offending code 

or re-factor it. This will alter the IA which will trigger another consistency check. When the 

new check confirms that the architecture is consistent, the development can continue; 

• They may Alter the Mappings – another cause of violation may be that certain IA entities 

have been mapped to the wrong DA entities. By altering the mappings the architecture may be 

made consistent again. Not all developers may be allowed to alter the mappings and commit 

their changes without the validation of a system architect; 

• They may Alter the Architecture – during the development, further implementation-driven 

insights into the design may occur. These may in turn call for a change to the architecture. 

Thus, one of the ways of fixing a violation is to alter the DA to accommodate these insights. 



As with the mappings, only selected developers should be allowed to modify and commit the 

violations without an architect’s consent; 

• They may Annotate the Violation – sometimes, a developer may wish to preserve a violation 

for pragmatic reasons like performance. Such violations have to be annotated to preserve the 

rationale for allowing them to persist. 

 

This concludes the “non-commit phase” of the approach. As mentioned before, during this phase no 

checks are performed to validate whether the developer is allowed to make certain changes. These 

changes are allowed in the user's working copy of the project. However, ideally these should be 

resolved and validated before the developer commits the code to the central repository. 

7.2 Committing the Changes 

When a developer decides to share their changes with the other team members, their code base should 

be free of violations. In addition, if that developer is not allowed to change mappings or the DA, no 

such changes should be allowed. Thus, another part of the approach has to be integrated with a 

version control system and consistency checks should be performed before the commit is allowed. 

The commit will only be allowed if the code base is free of any offending changes (see fig 7). 

Apart from the conventional consistency check, run before allowing a commit to proceed, several 

additional checks have to be performed.  If the consistency check or any of the additional checks fail, 

the commit will be cancelled and the developer will have to resolve the problems before attempting 

another commit. 

If any violations persist when the developer attempts to commit the source code, provided that 

violations are allowed (which in turn depends on the project's configuration) all of these violations 

would need to be annotated. It is forbidden to commit an un-annotated violation, as they may confuse 

other team members and trigger more serious problems in the future [17]. 

Then, if the developer has applied any changes to the mappings or the architecture, a check is 

performed to validate their authority to do so. If such a check fails, the commit will be aborted and the 

developer should talk to the person allowed to introduce such changes; usually the team's architect. 

Otherwise such changes will not be committed. Even if the developer is allowed to commit such 

changes, they will not become effective before they are validated by the architect. An architect can 

validate such changes and re-commit them to the repository. Then these changes will become 

available to other team members. 

8. Conclusion 

This paper has presented the empirically derived requirements for an architecture consistency tool. 

These include continuous architecture consistency monitoring, non-disruptive alerts, user-role 

segregation and optional edge sub-typing. It builds on these requirements to present a proposed design 

for the tool, which aims to minimise cognitive disruption and premature commitment. But these 

proposals require further evaluation from the cognitive community. Evaluative issues include: 

• what, if any, is the cognitive overhead in switching from developing with a source-code view, 

to evaluating an architecture through a separate graphical view? 

• does the claim that ‘advance indications of architectural violations’ are desirable over 

‘retrospective error alerts’ stand up to cognitive scrutiny?  

• are there any other cognitive issues of which we should be aware in our proposed design?  

 

In presenting our work at the PPIG forum we hope to get feedback on these questions. 
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Figure 7: Envisaged Control Flow for Commits 
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