

Characterizing Comprehension of Concurrency Concepts

Zhen Li Zhe Zhao Eileen Kraemer

Computer Science Department
University of Georgia

{zhen, zhe, eileen}@cs.uga.edu

Keywords: Concurrency, Software Visualization, Empirical study, Misconceptions

Abstract
A comprehensive understanding of students' common difficulties in understanding synchronization
and concurrency is a prerequisite for developing tools and educational materials to alleviate these
difficulties. In this paper we briefly present a study through which we identified students’
misconceptions about concurrency and synchronization, categorized their misunderstandings into a
misconception pyramid, and built subject profiles through which we were able to discover the nature
and frequency of the misconceptions exhibited by the students in this study. Based on these findings,
we developed metrics to capture the breadth and severity of individual subject's misconceptions. We
describe these metrics and show how they correlate with other measurements of understanding of
concurrency and synchronization.

1. Introduction
As early as 1986, researchers worried that "the complexity of (concurrent) programming--all those
processes active at once, all those bits zinging around in every direction--is simply too great for the
average programmer to bear" [Gelertner1986]. Today, it is generally agreed that multi-threaded
programs are difficult to design and comprehend, and that concurrency and synchronization concepts
are difficult for students to master [1, 2, 3]. We believe that the development and use of appropriate
external representations has the potential to help students better comprehend the dynamic and non-
deterministic nature of these programs. However, to properly design and evaluate such
representations, we must develop a detailed understanding of what aspects of these concepts students
find difficult and what misconceptions they harbor. Prior work by our group [4, 9] and by others [3, 7,
10, 11] provides some insight.

We conducted a new study that sought to obtain detailed information about the reasoning processes
that students engage in when dealing with concurrent software. We analyzed student responses,
identified misconceptions, and then categorized these into a “misconception pyramid.” We then
constructed per-subject profiles that captured the nature and frequency of misconceptions exhibited by
each student, and developed metrics that we believe capture the breadth and severity of
misconceptions held by a particular subject. In this paper, we briefly describe our study, our analysis,
and the misconception pyramid and define the metrics for breadth and severity of misconceptions.
We present the most common misconceptions in the sample group and explore the correlation of our
proposed metrics with other measures of comprehension of concurrency and synchronization
concepts. Finally, we propose new diagrams to aid in the comprehension of concurrent program
executions, and future studies to further evaluate and refine this work.

2. Related Work
In the early 1990s, Resnick[7] recognized that realizing the potential benefit of concurrent
programming would depend on the ability of people to effectively learn, use and understand
concurrent programming constructs and languages. He developed a concurrent extension to Logo
(MultiLogo) and conducted an experiment with a group of elementary school students who used
MultiLogo to control simple robots built from LEGO bricks. He then evaluated their work and found
three types of bugs: problem-decomposition bugs, synchronization bugs, and object-oriented bugs.

While he believed that object-oriented bugs might have been due to aspects of Multi-Logo, he
suggested that difficulties inherent to thinking about concurrency were at the root of the problem-
decomposition and synchronization bugs.

Kolikant performed empirical studies of students learning about concurrency [3]. Her results show
that students develop pattern-based techniques to solve synchronization problems and then have
trouble in solving non-familiar synchronization problems, perhaps as a result of their reliance on those
pattern-based approaches. She found that student misconceptions were often the source of their
difficulties, writing “we were able to uncover reasonable, yet faulty connections that many students
had made ... these connections were the source of their difficulties.”

Fleming, et al. [9] performed a think-aloud study of students in a graduate-level computer science
class to study the strategies that students apply in corrective maintenance of concurrent software. He
collected think-aloud and action protocols, and annotated the protocols for certain behaviors and
maintenance strategies. He looked at whether study participants performed diagnostic executions of
the program and whether they engaged in failure trace modeling (modeling how the system transits
among various internal states, at least one of which is a clear error state, up to the point of failure).
He found two key attributes of the most successful participants: they detected a violation of a
concurrent-programming idiom and they constructed detailed behavioral models of execution
scenarios.

Xie, et al. [4] performed an instructor survey and observational study and identified a core set of
difficulties that students encounter in learning about concurrency. Common problems he identified
included: 1) Thread inter-leavings are difficult for students to comprehend.; 2) Students often forget
that context switches can happen when the thread is in a monitor or critical section and have trouble
correctly applying that knowledge when they do remember; and 3) Students have trouble reasoning
about why the implementations of synchronization primitives lead to correct synchronization
behavior.

Recently, Armoni and Ben-Ari [11] performed an in-depth survey of the concurrency-related concept
of non-determinism, how it is defined and used, and how it has been taught. They present a taxonomy
of the ways that non-determinism can be defined and used, the categories of which are domain,
nature, implementation, consistency, execution and semantics. Their survey of educational materials
and practices on this topic leads them to the conclusion that “the treatment of non-determinism is
generally fragmentary and unsystematic,” and they go on to suggest various strategies for teaching
non-determinism in the CS curriculum.

Lu, et al. [10] studied real-world concurrency bugs rather than student behavior or reasoning. They
looked at four open-source applications and randomly selected 105 real world concurrency bugs.
They found that one-third of the non-deadlock bugs involved violations of the programmer’s intended
order of operation, and that another one-third of the non-deadlock concurrency bugs involved multiple
variables. In examining the bug-tracking records, they also found that many of the fixes to the bugs
they studied were not correct at the first try, providing further support for the idea that reasoning
about concurrent executions is difficult.

Each of the above studies attempts to gain insight into the question of what students and programmers
find difficult in learning about and in managing concurrency and synchronization. Our study is most
similar to that of Kolikant, in that we attempt to identify both the difficulties that students encounter
and the reason for those difficulties. We get at this information by not only asking study participants
to answer questions that evaluate their comprehension of the potential behaviors of a concurrent
program execution, but by also asking them to explain their reasoning. It is in these explanations that
we gain insight into their understanding of the meanings of concurrency-related terms, their mental
models of the relationships among the objects and constructs by which concurrency and
synchronization are achieved, and their comprehension of the consequences of thread activities and
interactions.

Another element of our work is the evaluation of diagrams designed to support comprehension of
multi-threaded program executions. Related work describes concurrency-related aspects of UML
diagrams, proposes variations on UML diagrams to better support concurrency, or evaluates UML
diagrams or their variations. For example, Schader and Korthaus described features of UML that
support the representation of concurrency [12]. Mehner and Wagner [13, 14] added shading
conventions on activations to indicate when, and within which activation, threads are ready or
running. Xie, et al. [4, 15] developed an extension to sequence diagrams that uses colored activations
to indicate the state of each thread (i.e., running, blocking, or ready), among other features. Most
recently, Fleming [16] proposes a variation on UML sequence diagrams in which hatching of the
activation bar denotes thread state and object states denote the effects of operations on mutexes and
condition variables.

3. Experiment
The overall goal of our experiment was to compare the use of different types of UML diagrams (UML
2.0 sequence diagrams and UML 2.0 state diagrams) for different tasks related to the comprehension,
implementation, and debugging of concurrent software. The participants were fifteen Computer
Science students drawn from upper-level undergraduate classes and from graduate classes during the
spring semester of 2010. Students were volunteers and were paid $50 for their time. The study
materials included a demographic survey, six computer-based training modules, five pre-tests (one
quiz for each of the first five training modules), and a post-test. Part I of the post-test comprised 24
comprehension questions that involved reasoning about what could happen next in a particular
execution scenario. Part II questions involved identifying errors, evaluating and creating models and
diagrams, and writing code.

In this paper we provide a detailed analysis of participant explanations of their answers to Part I
questions, in which they were asked to supply both a yes/no answer to whether a particular set of
program events could occur next and in the stated order, and also to explain their reasoning. These
explanations of student reasoning provided the basis for our identification of misconceptions.
Questions in this part of the post-test were based on the “Single-lane Bridge” problem. The problem
states that a bridge over a river is wide enough to permit only a single lane of traffic. That is, the
bridge permits only one-way traffic at any one time. To simplify this problem, we define the cars that
move from left to right as red cars and those that move from right to left as blue cars. To avoid a
safety violation, only one kind of car is allowed to be on the bridge at a time. Cars exit the bridge in
the order in which they entered and the leading car may exit the bridge at any time. We structure this
system so that each colour of car is implemented as a thread, and the shared bridge object is
implemented as a monitor with two associated condition variables okToEnter and okToExit. The
basic functions for entering and exiting the bridge are redEnter(), redExit(), blueEnter() and
blueExit(). We assume a C++ implementation using the pthreads library, in which explicit calls to
lock() and unlock() are invoked on mutex locks. Then for each of the given scenarios, we asked
whether a particular event sequence could happen next.

4. Analysis
Although Part I of the post-test consisted of objective questions, we initially found it difficult to
evaluate the responses in a way that accurately reflected the students’ understanding of the system.
Consider question 1.b, shown in Figure 1 and describing a scenario in which two threads, redCar1
and redCar2, exist in the system. Thread redCar1 invokes the redEnter() method and has already
returned when a context switch occurs and the redCar2 thread begins to run. One of the sub-
questions asks whether it is now possible for the redCar2 thread to invoke the redEnter() method and
block on the monitor lock. The answer to this question should be NO. Only two threads exist in the
system and redCar1 should have released the monitor lock before it returned from the redEnter()
method. Thus, it is not possible for redCar2 to block on the monitor lock.

1. Suppose that only two threads exist in the system: redCar1 and redCar2. Suppose further
that redCar1 has invoked the redEnter() method, and has returned. A context switch occurs
and the redCar2 thread starts to run.

Could the following event sequence happen next? Circle YES if the sequence is possible;
otherwise, circle NO. Then please provide a brief explanation of your reasoning.

(b) redCar2 invokes redEnter(), then blocks on the monitor lock.

YES NO

Figure 1 -- Question 1.b

In answering this question, 9 out of 15 subjects chose the correct answer (NO). However, in looking
closely at their explanations, we found that 7 of them thought that the monitor lock would only block
blue car threads and regarded the monitor lock in the question as an okToEnter condition variable.
One of them misunderstood the meaning of the term “block” as “own” or “has” and thought that
redCar1 already owned the monitor lock since it was on the bridge and that redCar2 could thus not
own the same lock. Another student, however, did not understand the question and thought that
redCar2 should not “block” on the monitor lock but lock the monitor lock. Thus, by reading the
explanations given by the students we found that actually none of the 9 students who gave the correct
answer really understood the monitor lock and its mechanism.

We also found that although each question was designed to test some specific misconceptions, a
failure in one particular question might not actually stem from the misconception the question
intended to examine. Instead, the failure might be rooted in some other misconceptions. We found
further that some misconceptions could cause general failures in reasoning about many different
scenarios. Consider questions 4.d and 4.e as an example (Figure 2).

4. Suppose that only three threads exist in the system: redCar1, redCar2 and blueCar1.

Suppose further that redCar1 is running and has just invoked the redEnter() method and the
redEnter() method has returned. A context switch occurs and the redCar2 thread begins
running and invokes the redEnter() method. redCar2’s invocation of the redEnter() method
has not returned.

Which of the following event sequences could happen next? Circle YES if the sequence is
possible; otherwise, circle NO. Then please provide a brief explanation of your reasoning.

(d) A context switch occurs, and the redCar1 thread begins to run. redCar1 then invokes

redExit() and this invocation returns.
YES NO

(e) A context switch occurs, the redCar1 thread begins to run. redCar1 then invokes the
redExit() method and blocks on the monitor lock.
YES NO

Figure 2 -- Question 4.d and 4.e

These two questions are aimed at testing the subjects’ ability to consider multiple possible inter-
leavings in an execution. The answer to both of the questions should be YES since the question only
describes that redCar2’s invocation of the redEnter() method is interrupted by a context switch but
does not mention whether redCar2 holds the monitor lock or not when interrupted. Three possible
interleavings exist here. One is that redCar2 has invoked the method but has not yet obtained the
monitor lock. The second is that redCar2 invoked the method, holds the monitor lock and has not yet
released it. Another possibility is that redCar2 has already released the monitor but not yet returned
from the redEnter() method. The first and the third situations could lead to event sequences described
in 4.d and the second situation could lead to event sequences described in 4.e.

Organizing students’ answers to these two questions, we have the following table (Table 1).

 4.d 4.e Subjects
1 YES YES 102, 139, 132
2 YES NO 108, 109, 113, 122, 126,138, 141, 142, 145
3 NO NO 110, 119
4 YES No answer 128

Table 1 – Subjects’ Answers to Questions 4.d and 4.e

Apparently, most of the students were not able to answer both of these questions correctly and the
majority failed on question 4.e. However, by looking closely at their explanations, we found the
reason for the failure does not truly stem from students’ inability to consider the possible interleaving,
as expected. Actually, all 9 subjects failed in 4.e because of misconceptions about the monitor lock.
Some of them confused it with the okToExit or okToEnter condition variables. Others were ignorant
of the mechanism of the monitor lock so they succeeded in question 4.d, which does not deal with the
monitor lock concept but failed in 4.e. Also worth noting is that most students reasoning about these
two questions was based on “story-level” understandings, as seen in explanations such as “redCar1 is
free to exit” or “nothing blocks redCar1 to exit”, etc. Actually, none of them considered the event
sequence at the implementation level, which again highlights their misconceptions of the context
switch and its properties.

Thus, we found students’ misconceptions about concurrency and synchronization cannot be captured
in a simple list of confusions or misunderstandings of concepts, terminologies and mechanisms.
Rather, they are correlated with one another, interacting in a seemingly hierarchical architecture so
that it is not possible to examine higher level misconceptions without first teasing out the impact of
lower-level misconceptions, or ensuring that participants first have a firm grasp of lower level
concepts. In other words, to understand higher level concepts, students must first rid themselves of
lower level misunderstandings.

4.1 Misconception Pyramid
We introduce a misconception pyramid (Figure 3), which captures common misunderstandings that
students exhibited when reasoning about a concurrent system, and the hierarchical structure of the
misconceptions according to the difficulty and dependency relations of understanding the concepts in
that level. Understanding concepts at higher levels of the pyramid requires an understanding of the
concepts at lower levels first. Descriptions of the types of misconceptions one might find at each level
are presented in Table 2, which was constructed based on misconceptions identified in the literature
and also those that we encountered in our analysis of subjects’ explanations of their reasoning in this
study.

The bottom level of the pyramid is the description level and includes misconceptions such as
misunderstanding of the requirements, constraints and other details of a concurrent system at the level
of the “story” about the red cars and blue cars. For example, some subjects wrote explanations such as
“redCar2 should wait for redCar1 to invoke redEnter() method first” or “redCar1 should block the
bridge first” demonstrate one common misconception at this level: that the thread labels redCar1 and
redCar2 were the actual running order of the threads.

The next level of the pyramid includes misconceptions related to terminology we used in describing
concurrent scenarios. A typical example is the misunderstanding of the meaning of “block on” a
conditional variable/monitor lock as “hold/own” a conditional variable/monitor lock. This kind of
misconception can be seen throughout the explanations given by subjects in our study. Most students
who held this kind of misconception did so consistently, causing them to fail on a particular group of
questions. Typical students’ explanations that illustrate this level of misconception include but are not
limited to “okToEnter is already blocked” or “monitor is already blocked by redCar2”.

Description

Terminology

Concurrency

Implementation

Uncertainty

Figure 3 -- Pyramid of Misconceptions

The third level of the pyramid is the concurrency level, which includes misconceptions about
basic thread behaviors such as context switching and the thread life cycle. For example, some
students seemed to think that a context switch could not happen while a thread was executing
in a critical section and many students thought that a context switch is not allowed during the
execution of a method and regarded the whole method body as uninterruptible. Some typical
students’ explanations are “redCar2 should receive return call then switch out” or “because
redCar2 has not done its activity (so it cannot be context switched out)”.

Description Level
D1 Misconceptions of system and/or problem descriptions
Terminology Level
T1 Misconceptions of the meaning of “invoke/call” a method
T2 Misconceptions of the meaning of “return” from a method/invocation

T3 Misconceptions of “block” on a monitor lock as “hold/has” a monitor
lock

T4 Misconceptions of “block” on a conditional variable as “hold/has” a
conditional variable

Concurrency Level (thread behavior)
C1 Misconceptions about context switching
C2 Misconceptions about the thread life cycle
Implementation Level

I1 Misconceptions about conditional variables and the wait/signal
mechanism

I2 Misconceptions about monitor lock
I3 Misconceptions about block and unblock mechanism
Uncertainty Level
U1 Confused about space of executions and thread interleavings

Table 2: Misconception Pyramid Table

Invoke
……
Lock the monitor lock
 Check conditional variables
 Access and modify shared variable
 ……
Release monitor lock
 Signal on conditional variables
……
Return

Figure 4 – Basic Monitor Programming Function Structure

The fourth level of the pyramid is the implementation level, which is related to detailed
implementation mechanisms such as the monitor lock and condition variables and their
functionalities. By investigating the subjects’ answers and explanations in our study, we found that
few subjects were clear on the basic monitor programming structure shown in figure 4. We believe
that this is greatly related to students’ misunderstandings in the three previous levels. If students do
not understand the context switch, they are not able to appreciate the actual purpose and
corresponding mechanism of the monitor lock. Misunderstandings of different terminologies also lead
to confusion about the workings of monitor programming structures and functions.

The top level of the pyramid is concerned with failures in dealing with uncertainty; that is, the
inability to envision or manage all the possible threads interleavings and execution scenarios. While

this problem is often cited as the main source of difficulty in the comprehension of concurrent
program executions, we found that this level of difficulty was not seen in our study, as students tended
to fail much earlier in the pyramid, and thus were not even exposed to these higher-level issues.
Whether a detailed investigation of participant reasoning processes would find the same to be true in
other studies of comprehension of concurrent program executions is an open question.

An alternative representation of the pyramid might combine the two lower levels them into a
single level, in which Description and Terminology sit side-by-side, supporting the
Concurrency level. Further, another approach to layering might think of the top layer of the
pyramid, which we term “Uncertainty” as dealing with dynamic analysis issues, and the
second layer of the pyramid as dealing with static analysis issues, with both layers together
dealing with implementation-related issues.

4.2 Subject Profile

Next, we introduce the subject profiles shown in Table 3. These subject profiles reflect the types and
frequency of occurrence of each subject’s misconceptions. The first column of the table indicates the
subjects’ ID number. The other columns correspond to items in the misconception pyramid table.
Each cell of (subject, item) is the number of (answer, explanation) pairs of that subject that
demonstrate the corresponding type of misconception.

Subject D1 T1 T2 T3 T4 C1 C2 I1 I2 I3 U1 Total
102 2 1 2 1 2 1 1 5 9 0 0 24
108 3 2 1 0 0 3 1 3 10 0 0 23
109 3 0 0 0 0 8 1 0 11 0 0 23
110 7 3 4 4 2 2 1 8 9 0 0 40
113 2 2 1 1 1 6 1 12 11 0 0 37
119 1 0 4 0 2 4 1 8 11 0 0 31
122 0 0 4 0 0 1 0 0 9 0 0 14
126 0 7 0 0 0 2 1 4 14 0 0 28
128
132 NA

138 1 4 0 0 1 8 1 2 9 0 0 26
139 1 4 7 1 2 9 1 7 9 0 0 41
141 2 4 5 2 6 4 1 7 9 0 0 40
142 0 0 1 2 0 1 0 3 10 0 0 17
145 0 0 0 0 0 1 1 1 14 0 0 17
Avg 3 3 4 2 2 7 2 9 19 0 0

Table 3: Subject Profile Table

While 13 of the 15 subjects provided sufficient explanations for us to build profiles, 2 out of 15
(subjects 128 and 132) provided almost no explanations for their answers, which made it impossible
to evaluate their misconceptions. Perhaps the most noticeable characteristic of the subject profile is
that no misconceptions of items I3 or U1 are found, but that subjects show a very high frequency in
demonstrating misconceptions in I1 and I2. This reinforces the idea that students’ misconceptions
form a hierarchical structure in which lower level failures not only cause higher level misconceptions
but also isolate students from higher level concepts.

Another interesting characteristic of the subject profile is that the most common misconceptions are
I2, I1 and C1, which are misconceptions about monitor locks, condition variables and context
switching. Causality relations exist among these misconceptions; for example, a subject’s incomplete
understanding of when and how a context switch could occur causes their misunderstanding of the
functionality and mechanism of monitor lock, which thereafter causes them to confuse monitor lock
with condition variable. We plan to conduct additional studies to further explore the validity of this
idea.

Based on the collected data, we can make some statements about particular subject’s comprehension
of concurrency. For example, we could generalize that subject 139 is almost ignorant of concurrency

concepts and synchronization mechanisms since he demonstrated all kinds of misconceptions at
different levels, while subject 122, who just showed consistent misconceptions in a limited range of
items, apparently has a much better comprehension of concurrency. This is also validated by the Part I
scores of these two subjects, as seen in Table 5 and illustrated in figure 8.

4.3 Subject Evaluation

Although a subject profile allows us to characterize both a single subject’s understanding of
concurrent systems and the whole subject sample, we introduce two metrics to better quantify the
evaluation. One is the breadth of range of misconceptions (denoted as Metric B) and the other is the
weighted severity of misconceptions (denoted as Metric S).

Figure 5 – Evaluation Metrics

Metric B for a single subject is the percentage of misconceptions the subject has regarding the whole
pyramid of misconceptions, as illustrated in figure 5. For example, subject 122 exhibited
misconceptions in 3 of 11 categories, so B122 = 3/11 or 0.27, while subject 139 exhibited
misconceptions in 9 of 11 categories for B139 = 9/11 or 0.82. With metric B we are able to evaluate
how many different misconceptions a particular subject has. A larger B illustrates more widely spread
misconceptions of a particular subject.

Level 0: Description Level
D1 0.3
Level 1: Terminology Level
T1 0.067
T2 0.067
T3 0.067
T4

0.268

0.067
Level 2: Concurrency Level
C1 0.1
C2

0.2
0.1

Level 3: Implementation Level
I1 0.045
I2 0.045
I3

0.135

0.045
Level 4: Uncertainty Level
U1 0.097

Table 4: Misconception Item Weight Table

Subject Part1 Metric B Metric S
102 18 0.82 1.832
108 24 0.64 2.086
109 25 0.36 2.295
110 15 0.82 4.036
113 24 0.82 2.67
119 19 0.64 2.057
122 29 0.27 0.773
126 21 0.45 1.579
128 19 N/A N/A
132 23 N/A N/A
138 29 0.64 2.03
139 11 0.82 2.958
141 24 0.82 2.959
142 27 0.45 0.886
145 24 0.36 0.875

Table 5: Subject Performance Table

The S metric, however, evaluates misconceptions on another dimension. It is designed to characterize
the severity of single subject’s misconceptions. Thus, to compute the S metric, we must first assign a
weight to each misconception item. As we pointed out before, lower level misconceptions are likely to
cause higher level misconceptions. Also, lower level misconceptions impede a subject’s
understanding of a system more than higher level misconceptions do. Therefore, we simply use an
inverse ratio of the level to assign weights. Table 4 illustrates how the weights are assigned.

Therefore, the metric S can be calculated as the expected value of severity of different misconception
items according to formula illustrated in figure 5, in which Witem is the weight of the corresponding
misconception item. Applying these two metrics to subjects in our study, we get the subject
performance table (Table 5). For example, subject 122 exhibited 4 misconceptions of type T2
(w=0.067), 1 misconception of type C1 (w = 0.1), and 9 misconceptions of type I2 (w = 0.045). S122
is thus 4 * 0.067 + 1 * 0.1 + 9 * 0.045 = 0.773.

To illustrate the validity of these two metrics, Metric B and Metric S, we explore the correlation
between these values and students’ total score of Part I in the post-test.

Figure 6 illustrates the correlation between metric B and the score of part I. As we see, although the
high scores are not strictly determined by metric B, the metric characterizes how poorly a student may
perform in reasoning about concurrency and synchronization scenarios, and overall shows the
expected negative correlation (the greater the breadth of misconceptions, the lower the score).

Figure 6 – Correlation between Metric B and Part I Score, Pearson correlation = -0.527

Figure 7 illustrates the correlation between metric S and the score of part I. Unlike metric B, the
metrics S seems to have a better (negative) correlation with score when metric S is small. As metric S
becomes large, the correlation becomes random. This is reasonable, since when a subject has no idea
of a concept in concurrency, they tend to reason about the corresponding scenario based on
understanding of one possible sequential execution, which randomly coincides with the actual
execution sequence under concurrency.

By regarding metric B and metric S as two orthogonal vectors that characterize an individual subject’s
misconceptions in concurrency and viewing the origin point in a coordinate system as an ideal expert
who does not demonstrate any misconceptions in understanding a concurrent system, we are able to
calculate the Euclidian distance of a particular subject from the ideal expert. This Euclidian distance
may be regarded as a combination of metric B and metric S. In figure 8, we plot this new evaluation
with the total score of part I for every subject. Regardless of the two subjects, number 132 and
number 128, who did not given enough clues for us to conclude their misconceptions, other subjects
tend to form a reverse correlation of their Part I score and the Euclidian distance from an ideal expert.

Figure 7 – Correlation between Metric S and Part I Score, Pearson correlation = -0.386

Figure 8 – Correlation between sqrt(B2+S2) and Part I Score, with Subject Number

.

Figure 9 – Correlation between sqrt(B2+S2) and Part I Score with Linear Prediction, Pearson’s correlation = -0.476

In figure 9, we plot the linear prediction of data in figure 8, which illustrates an expected inverse
correlation between the evaluation of subjects’ misconception and the actual performance of a subject.

Overall, we believe that metric B and metric S do a reasonable job of capturing the breadth and
severity of misconceptions exhibited by individuals or by a group of individuals. The calculation of
such metrics and the use of the misconception pyramid have the ability to guide instructors in
assessing whether a concept or group of concepts has been sufficiently mastered by a student or class
of students. The structure of the pyramid provides some insight into the order in which these concepts
might be taught and suggests that intermediate evaluations be performed before moving on to higher-
level concepts.

6. Conclusions and Future Work
We have presented here an initial analysis of a relatively small study of students engaged in reasoning
about the execution of multi-threaded programs. We have identified a number of misconceptions
exhibited by study participants, and based on these findings, have proposed a hierarchical structure of
misconceptions, and metrics for evaluating the breadth and severity of these misconceptions. We
present arguments to support the validity of the hierarchy and of the metrics. We propose to conduct
additional studies with larger groups, to further evaluate both the pyramid and the metrics, and to
further flesh out the ways that students think and learn about concurrency and synchronization.

7. References
[1] S. Carr, J. Mayo, and C.K. Shene, “ThreadMentor: A pedagogical tool for multithreaded
programming”, Journal of Educational Resources in Computing, 3(1), 2003.

[2] Cunha, J. C. and Lourenço, J., “An integrated course on parallel and distributed processing” In
Proceedings of the Twenty-Ninth SIGCSE Technical Symposium on Computer Science Education,
Atlanta, GA, 1998.

[3] Kolikant, Y. B.-D., “Learning concurrency: evolution of students’ understanding of
synchronization,” International Journal of Human-Computer Studies, 60(2), 243–268, 2004.

[4] S. Xie, E. Kraemer, and R. E. K. Stirewalt. Design and evaluation of a diagrammatic notation to
aid in the understanding of concurrency concepts. In Proc. ICSE, pages 727–731, 2007.

[5] T.R.G.Green, M. Petre. “Usability Analysis of Visual Programming Environments: a ‘cognitive
dimensions’ framework,” Journal of Visual Languages and Computing, 7(2), 131-174, 1996.

[6] Maria Kutar, Carol Britton and Trevor Barker. “A Comparison of Empirical Study and Cognitive
Dimensions Analysis in the Evaluation of UML Diagrams.” In J.Kuljis, L. Baldwin & R. Scoble
(Eds). Proc. PPIG 14, June 2002.

[7] Mitchel Resnick, “MultiLogo: A Study of Children and Concurrent Programming,” Interactive
Learning Environments, 1(3), 153-170, 1990.

[8] Gelertner, D. “Domesticating Parallelism, “ Computer, 19(8), 1986.

[9] S. D. Fleming, E. Kraemer, R. E. K. Stirewalt, S. Xie, and L. K. Dillon. A study of student
strategies for the corrective maintenance of concurrent software. In Proc. 30th Int. Conf.Software
Eng. (ICSE 2008), pages 759–768, 2008

[10] Lu, S., Park, S., Seo, E., and Zhou, Y. 2008. Learning from mistakes: a comprehensive study on
real world concurrency bug characteristics. SIGARCH Comput. Archit. News 36, 1 (Mar. 2008), 329-
339. DOI= http://doi.acm.org/10.1145/1353534.1346323

[11] Armoni, M. and Ben-Ari, M. 2009. The concept of nondeterminism: its development and
implications for teaching. SIGCSE Bull. 41, 2 (Jun. 2009), 141-160. DOI=
http://doi.acm.org/10.1145/1595453.1595495

[12] M. Schader and A. Korthaus. Modeling Java Threads in UML. In The Unified Modeling
Language: Technical Aspects and Applications, pages 122–143. Physica, 1998.

[13] K. Mehner. JaVis: A UML-based visualization and debugging environment for concurrent Java
programs. In Software Visualization, pages 163–175. 2002.

[14] K. Mehner and A. Wagner. Visualizing the synchronization of Java-Threads with UML. In Proc.
VL, pages 199–206, 2000.

[15] S. Xie, E. Kraemer, and R. E. K. Stirewalt. Empirical evaluation of a UML sequence diagram
with adornments to support understanding of thread interactions. In Proc. ICPC, pages 123–134,
2007.

[16] Scott D. Fleming, Eileen Kraemer, R.E.K. Stirewalt, and Laura K. Dillon. Debugging Concurrent
Software: The Importance of External Representations. To appear, VLHCC10.

