

The Influence of Class Structure on Program Comprehension

Ahmed Alardawi

Sheffield Hallam

University

Aalardaw@my.shu.ac.uk

Babak Khazaei

Sheffield Hallam

University

B.Khazaei@shu.ac.uk

Jawed Siddiqi

Sheffield Hallam

University

J.I.Siddiqi@shu.ac.uk

Abstract

We report on a research that aims to investigate the effect of class structure on program

comprehension. The subject groups are novices and the treatments are simple programs

without class structure versus the equivalent programs with classes present; they are termed

respectively as: Non-Class based programs and as Class based programs. Data was

collected from three different sets of studies comprising of a total of 211 undergraduate first

year computer science students from different institutions.

Some findings of these three sets of studies are put together and reported, in particular the

overall results indicate that Class based programs were more understandable, readable, and

accessible than the corresponding Non-Class based programs. Our findings align with and

support those works that claim the cognitive benefits of the OO paradigm. Limitations and

directions for future research are highlighted.

Keywords: POP-II A. novices, B. program comprehension, POP-IV A. object-

oriented design, Pop-V.B. Questionnaire

1. Introduction

Pfleeger (2006) defines OO paradigm as “an approach to software development that

organise both problem and its solution as a collection of discrete objects; both data structure

and behaviour are included in the representation”. She also identifies the OO representation

by seven characteristics: identity, abstraction, classification, encapsulation, inheritance,

polymorphism, and persistence (Pfleeger 2006). These characteristics have changed the

nature of software development; however, they have set a considerable debate about their

appropriateness from both human factors and software engineering perspective. Good

understanding of OO characteristics will positively affect the programmers’ skills. We are

especially interested in the acquisition of programming skills by novice programmers. Our

particular emphasis is on program comprehension since it forms the underpinnings for many

programming activities.

Class structure represents one of the essential concepts of Object-Oriented paradigm and

therefore, a good understanding of this concept will positively affect the effectiveness of

novice programmers. Comprehension underpins many programming activities such as

program design and program implementation. In this context, the comprehension represents

a mental model approach that involves interesting theoretical frameworks of program

comprehension. Our starting point is Burkhardt, et.al (2006) cognitive model for OO program

comprehension that considers two distinct but interacting models: program and situation.

Our focus does not rely primarily in distinguishing between these models, but use both of

them to assess the influence on novices of class structure on program comprehension.

mailto:Aalardaw@my.shu.ac.uk
mailto:B.Khazaei@shu.ac.uk
mailto:J.I.Siddiqi@shu.ac.uk

 2

There is a wealth of literature that put forward a wide range of theories and models devising

an account of text and program comprehension (Brooks 1978; Kintsch et al 1978; Johnson-

Laird 1986; Van Dijk and Kintsch 1983; Pennington 1987a, b, Burkhardt, et.al 2006).

Program comprehension represents in this context a mental model approach that involves

interesting theoretical frameworks of program comprehension.

Section 2 provides a background to the psychology of programming studies of program

comprehension. Section 3 is a brief report of the 3 sets of experiments which were

replication of the same study materials at different institutions. Some conclusions and

observations for future work are given in section 4.

2- Background to the Research

Empirical study of object-oriented programming style began to appear as early as 1995. The

mental model approach has been used to explain the comprehension of procedural

programs (Pennington 1987a, b) and more recently OO programs (Burkhardt, et.al

2006).The studies applied these cognitive models primarily in areas of comparing

comprehension of programs written in different programming paradigms, and investigating

the influence of certain tasks on program comprehension.

Wiedenbeck, Ramalingam, Sarasamma, and Corritore (Corritore and Wiedenbeck, 1999;

Wiedenbeck and Ramalingam, 1999; Wiedenbeck et al, 1999) have completed a series of

studies similar to the earlier Pennington's study. These studies attempted to compare mental

representations constructed by OO programmers with those for procedural programmers.

The overall results of these studies point out that novice comprehending programs written in

OO style form stronger situation model than program models.

Khazaei and Jackson (2002) have also conducted an empirical study to investigate the

program comprehension differences between event-driven and object-oriented styles for

novice programmers. Interestingly, results show that information related to situation model

was more accessible than information related to program model in both styles. Although they

agreed that Pennington model had provided a good framework to investigate comprehension

differences between programming styles, it was limited in the case of these two styles as it

did not cover graphical representation and/or advanced OO concepts.

It is difficult to claim that the OO paradigm is not a "natural" way of conceptualising and

modelling real world situation when the exercise being used is a simple OO program. If the

measures used for verifying the mental representation are not accurately reflecting the

object-oriented mental representation then these types of claims are difficult to support too

(Sajaniemi and Kuittinen 2007; Alardawi, et.al 2010).

Burkhardt, et.al (2006) study of OO program comprehension aimed to examine how the

mental model can be affected by the programmer expertise, programming task, and the

development of comprehension over time, Burkhardt, et.al (2006) claimed that Pennington

model has several limitations with relation to OO paradigm. Firstly, Pennington model does

not examine representations about problem classes and objects or even data structures.

Since objects are central entities in OO programs, the construction of the representation of

objects should be taken into account in a model of OO program understanding, Burkhardt,

et.al (2006) assume that the representation of objects is part of the situation model in as

much as it reflects the objects of the problem situation. Secondly, Pennington model

 3

accounts for understanding of short programs but does not scale up easily to larger

programs. Two important OO aspects are not accounted for: the representation of

delocalised plans and the representation of text macrostructure. Pennington assumes that

plan representations of a program are primarily based on data flow. However, in the case of

long programs, particularly in OO programs, it happens that many plans are delocalised.

According to Rist (Rist 1996), plans and objects are orthogonal, a plan is a set of actions

that, when placed in a correct order, achieves some desired goal. The actions in a plan are

encapsulated in a set of routines, and the routines are divided among a set of classes and

connected by control flow. Détienne (2006) claims that this can reflect the real world, where

a plan can use many objects and an object can be used in many plans. In the Burkhardt,

et.al (2006) OO model of program comprehension, they take the view that the construction

of these complex delocalised plan representations is primarily based on client-server

relationships, in which one object processes and supplies data needed by another object.

Pennington also account for the representation of elementary operations as part of the text

microstructure. However, the macrostructure of long programs which consisting of the

representation of larger text units such as routines is not accounted for in her model.

Burkhardt, et.al (2006) OO model considers that the representation of the macrostructure is

based on the elementary functions of the program model. In summary, Burkhardt, et.al

mental model takes into account the nature of OO programs such as classes and objects,

message passing, and the size of OO programs (For more information about these

categories see Burkhardt et al 2006).

Since we are assessing the effect of the class structure on OO program comprehension, the

investigation framework should take into account the problem class category as well as the

other 5 categories used by Pennington. Table 1 gives a summary of these six category

knowledge. We have used all these categories to formulate our comprehension questions

(see appendix A for a sample of 6 out of 19 questions representing the categorise).

Category

Knowledge
Knowledge structures Mental representation Model

Elementary

operations
Text structure knowledge

Dynamic and functional

views

Program

model

Control flow Text structure knowledge Dynamic view
Program

model

Data flow Plan knowledge
Dynamic and functional

views

Situation

model

Function Plan knowledge Functional view
Situation

model

Problem Classes
Problem and Plan

knowledge
Object view

Situation

model

State Plan Knowledge
Dynamic and functional

view

Prog/Situ

model

Table 1: the 6 categories of Knowledge for Comprehension Questions

The following is an explanation of each category listed in table 1 above:

 4

Elementary operations knowledge: it forms part of the text microstructure, constitute basic

text units usually consisting of one or few lines of code. The feature of this category is that it

is directly available in the source code.

Control flow knowledge: it forms part of the text microstructure, constitutes the links

between text units, which is in the simplest case sequential or in complex situations involves

looping or calls to subprograms, thus this category is procedural in nature.

Data flow knowledge: it relates to Communication between variables, corresponds to data

flow relationships connecting units of local plans within a routine and also changes that

occurs to data variables while they pass through the program. The transformations of the

data are, thus, at the heart of whatever useful action a program achieves. For this reason,

data flow information is considered to be very closely related to a program’s functions and

goals and to form a part of the situation model.

Functions knowledge: explains the goal of the whole program, what the program

accomplishes in terms of the problem situation it addresses. Function information expresses

what the program does in terms of entities, relationships, and actions in the world, this

information is usually not directly available in a program text, but must be inferred from the

program text in combination with knowledge of the real world problem domain of the

program.

Problem Classes Knowledge: it forms a part of problem and plan knowledge, these

classes directly model classes of the problem domain. This information directly reflects the

understanding of class structure in the program.

State knowledge: comprises the state of all aspects of the program at the time a given

action occurs in a program.

Burkhardt, et.al (2006) reported that OO paradigm facilitates the construction of the situation

model most strongly. Although the model could support the claim about the naturalness of

OO paradigm, the generality of the proposed comprehension model is to be questioned. The

situation model is more likely notation-independent whilst the program model is mostly

depends on the notation. Therefore, replicating Burkhardt, et.al experiment across different

OO languages and different problem domains will most likely help in investigating further for

this claim. The work reported in this paper will build on Burkhardt, et.al (2006) experiment

with focusing specifically on the class structure.

Although there are reasonable numbers of studies assessing the novices' program

comprehension of OO concepts, the focus on specific concept of OO is very limited. It is very

difficult to include all the OO features and concepts in a single study. Our earlier work

(Alardawi, et. al 2010) identified encapsulation in the form of class structure and the

hierarchy in the form of inheritance as possible areas for conducting further empirical study.

This study is specifically focused on the influence of class structure on novices' program

comprehension. Section 3 will focus on reporting the conduct of our 3 sets of experiment

based on the same material.

 5

3- Report of the 3 Sets of Experiments

For the purpose of this paper we have combined our data of the 3 sets of the experiments

conducted at different institutions based on the same material.

3.1 Aim

The overall aim of this research is to investigate the influence of class structure on program

comprehension. The research investigates the mental representations constructed by

novices during comprehension of a Class based OO program in contrast to a Non-Class

based OO program. We are focusing on the relevant category knowledge of the previous

study as represented in table 1 of section 2.

3.2 Subjects

211 undergraduate first year computer science students from three institutions participated

in the study. Demographic data were collected via a background questionnaire to highlight

any significant differences among subjects. This revealed that the participants’ gender ratio

was 42% males and 58% females and their average age was about 20.5 years. The majority

of the participants had no previous experience in object-oriented programming and the only

significant current experienced programming languages encountered were Java and/or

Visual Basic. All the 3 sets of subjects were however studying programming when the

experiment took place.

3.3 Materials

Following on from the previous related empirical work, we modified and used the car

problem scenario, which was used by (Ramalingam and Wiedenbeck 1997; Wiedenbeck

and Ramalingam 1999; Wiedenbeck, et.al 1999; Khazaei and Jackson 2002). We modified

the car program to emphasis or de-emphasis class structures for our experimental materials.

Appendix A presents the two Visual Basic (VB) versions used in our studies. The program

first allows the user to create a new car with specific engine and type. The program includes

two variables referring to the speed and the number of passengers. The program then

outputs different messages according to the speed of the car. This exercise is well known as

beginners’ pedagogy example and the problem knowledge used is considered as familiar to

participants at this level.

The Class based versions (there were two, one in VB and another in Java) contained three

classes, each class consisting of private data member(s) and public interface containing

declarations of member functions. The execution starts in the main function, which begin by

declaring objects of the classes engine and body. The engine and body are composed in

Car class. The main function calls the 3 classes’ functions in which the principal

computations were carried out. The Class based versions is using OO features of classes,

objects, encapsulation, and composition. The modification to car program of the previous

studies is that we have introduced engine and body as distinct classes. As a result, the

program size has increased from 28 lines of code into 65 lines of code in VB and 66 lines of

code in java.

The Non-Class versions of the car programs did not use objects, classes or message

passing. The VB program version consists of a graphical user interface and it uses variables

 6

engine and type. Both VB and java versions initialise variables, and then they carry out the

principal computations of the programs. All the other aspects of the two treatments were

made as similar as possible. We have used similar names for the functions and variables of

the two treatments. The Non-Class versions were slightly shorter than the Class based

versions since they did not contain the overhead of classes’ definitions, the numbers of lines

of code in the VB version was 29, and the numbers of lines of code in the Java was 48.

There were a set of 19 comprehension questions based on the category of knowledge of

table 1 section 2 for each of the programs.

3.4 Procedure

We used first year undergraduate students who were learning VB at Sheffield Hallam

University in UK as our first set here by labelled as 'set1'. For 'set2' we used first year

undergraduate students who were also learning VB at the Faculty of Electronics in Libya. For

'set3' the subjects were first year undergraduate computer students who were learning java

at the Faculty of Computer Technologies in Libya. The aim was to gather data from a large

number of subjects.

The studies were carried out as paper-based exercises. At the beginning of each session,

the subject sets were verbally informed about the procedure and explained that they were

participating in an experiment. The subjects were assured that they were not being

assessed.

There were two phases for each set of study. In the first phase, each participant was asked

to fill out a background questionnaire; this phase was done to gather demographic data and

to highlight any significant differences among subjects. In the second phase, the participants

were divided into two matched groups. This division was based on the teachers' prior

assessments marks of the subjects on the courses they were attending. Each participant

was presented with a hard copy of either a Non-Class based program or a Class based

program. Either a VB or a JAVA program was supplied depending on the course studied by

the subjects. A set of corresponding comprehension questions with option of three kinds of

responses for each question (YES, NO, DON'T KNOW) was also supplied. The start time at

the beginning of the study and the end time for each participant were also recorded.

We refer to the means of the total correct responses to the 19 comprehension questions as

a subject's total performance. We also refer to the means of the total correct responses of

corresponding category knowledge questions as a subject's category performance.

The stated null hypotheses of the experiment are:

H01: There is no significant difference in terms of total performance in program

comprehension between Non-Class based and Class based treatments.

H02: There is no significant difference in terms of category performance in program

comprehension between Non-Class based and Class based treatments.

3.5 Results

For logistical reasons, we used different programming languages, as our subjects were

covering different programming languages. In the first two sets of studies, VB was used to

 7

represent the two treatments. In the last set of study, we used Java. The effect of the

syntactical differences between the languages used on the level of comprehension

questions were minimised as much as possible.

Preliminary analysis was done to determine whether there was a significant difference in

total performance among the sets (set1, set2, and set2). A one-way ANOVA was run with

“study set” as the independent variable and “subjects' total performance” as the dependent

variable. The result was not significant. Therefore, the experiment 'set' was not included as a

variable in further analysis. Another preliminary analysis which was also done to determine

whether there was an effect from the programming languages. A one-way ANOVA was run

with “programming language” as the independent variable and the “subjects’ total

performance” as the dependent variable. The result was not significant, thus "programming

language" was not included as a factor in the further analysis. After these analyses we felt

justified that our further data analysis could combine the data.

Since we are not investigating the interaction between different independent factors, one-

way ANOVA was considered as an appropriate statistical test to be used. We took

appropriate advice from statisticians on this.

At the first level of analysis, the analysis was accounted for the effect of the six knowledge

categories (table 1) on different sets of subjects. For all subjects, one-way ANOVA was

used. The independent variable was the “knowledge category”. The dependent variable was

the “category performance" of all the subjects. The ANOVA was significant (F(5,1260) =

10.506, p<0.05). Newman-Keul's test was run as a follow-up. It showed that there was

significantly higher category performance on state knowledge than all other categories

(p<0.05).

For the Non-Class based group, one-way ANOVA was used. The independent variable was

the “knowledge category”. The dependent variable was the “category performance of the

Non-Class based group”. The ANOVA was again significant (F (5,635) =14.121, p<0.05).

Newman-Keul’s test was run as a follow-up. It showed that there was significantly higher

category performance on state knowledge than on all other categories knowledge (p<0.05).

Furthermore, the category performance of the class knowledge was significantly lower than

on operations, control flow, and data flow knowledge (p<0.05).

For the Class based group, one-way ANOVA was also used. The independent variable was

the “knowledge category”. The dependent variable was the “category performance of the

Class based group”. The ANOVA was significant (F (5,629) =5.075, p<0.05). Newman-

Keul’s test was also run as a follow-up. It showed that the category performance of the data

flow knowledge was significantly lower than on the class and state knowledge (p<0.05).

In the second level of analysis, we focused on assessing the effect of the Class/Non-Class

treatments on the subjects' total performance. One-way ANOVA was run. The independent

variable was the "Class/Non-Class" treatments. The dependent variable was the “subjects'

total performance”. The ANOVA result was significant (F (1.201) =11.768. p<0.05), it showed

that there was a significant effect of the Class/Non-Class treatment on the subjects’ total

performance. This could reject the first null hypothesis.

Considering the significant results of the effect of treatment on the subjects’ total

performance between the subjects and the significant results of the effect of knowledge

 8

categories on the subjects, further analysis was accounted for possible treatment effect

between subjects’ category performance. Figure 1 shows the category performance for Non-

Class based and Class based subjects broken down by the knowledge categories.

Figure 2: Graphical Representation of the Performance for each knowledge Category

A one-way ANOVA was run. The independent variable was “treatment”. The dependent

variables were the “subjects' category performance” in each knowledge category. The test

showed that the only significant effect of the treatment between subjects was on the class

knowledge (F (1,210) =53.725, p<0.05). However, test showed that there was no significant

treatment effect between subjects in the other knowledge categories. Therefore, hypothesis

H02 can be rejected only in the case of class knowledge category.

The third level of analysis was done to assess the effect of the programming languages on

the Class based subjects’ total performance. This was done to whether there is an effect of

the way in which classes are represented in these languages. People might expect that

representation of classes in java would have different results to representation of classes in

VB. One-way ANOVA was run. The independent variable was “programming language”:

Java or VB. The dependent variable was the “Class based subjects’ total performance”. The

test showed that no significant effect of the programming language on the Class based

subjects’ total performance.

3.6 Discussion

This investigation has focused on whether introducing class structure can influence the

novices' comprehension of programs and the mental representations formed. In terms of

number of classes used, and the program size, we have used larger programs compared to

those used in prior related studies (Ramalingam and Wiedenbeck 1997; Wiedenbeck, et.al

1999; Wiedenbeck and Ramalingam 1999; Khazaei and Jackson 2002). However, the sizes

we used are still small compared to most OO applications. In designing the treatments, the

intention was made to minimise the effect of domain knowledge. Thus we feel no special

Key to Mental Representation:

EO: Elementary Operations CF: Control Flow DF: Data Flow

GOALS: Program Goals CLASS: Problem Classes

 9

domain knowledge is needed for the car problem as we have kept the scenario as simple as

possible, and the selected domain is well within the normal experience of our subjects. One

potential problem for further investigation of OO program comprehension is the size of the

OO programs especially for novice subjects and a design of a control experiment can

become very difficult. Furthermore, for the car problem that we have used in our experiment,

there is only one kind of semantic hierarchy in the problem in that a car consists of an engine

and body. For many scenarios for OO systems, the hierarchy can be a lot more complicated

and the OO structures could often suffer because there are competing natural hierarchies or

other structures. For example, the parts hierarchy of a car would conflict with a different

hierarchy say car types, seating, fuel system etc, where an OO hierarchy cannot usually

represent both. When there is competition, there could be problems in program

comprehension. Our results might have been different if there had been competition and

therefore we need to be aware of these other factors.

Comparing the performance for Non-Class based and Class based showed interesting

results. The performances of Class based subjects were generally better than the

performance of the Non-Class based subjects. This may be explained as the Class based

programs can make the program more readable and accessible than the Non-Class based

programs. Détienne (2006) claims that the reverse mapping between the problem domain

and the programming domain is more easy and straightforward in the OO paradigm than in

the procedural paradigm. As program comprehension is based on the hypothesis of mapping

from the program domain in to problem domain, our results could support the claims about

the cognitive benefits of the OO paradigm. The mapping from program domain in to problem

domain involves identifying the problem domain objects or entities and the associations

between their structures and functionality. This activity is assumed to be driven much more

by the programmer’s knowledge about the real world structure than the knowledge about a

particular software domains or programming knowledge.

Considering the performance in the different knowledge categories on the Non-Class based

and Class based programs, we find clear evidence of differences in mental representation

between the two. Results show that the patterns of response to comprehension questions on

the two versions were very distinct. For the Non-Class based version, the state category was

dominant in the mental representation. The high performance in this category can be

accounted to high readability nature and clarity of the program structure that notation

provides (Pennington 1987). For the Class based version, both class and state categories

were dominant in the mental representation. The idea behind the class related knowledge

was to reflect on subjects' ability in identifying problem entities. However, Class based

subjects were introduced to class structure for the first time. Our results are similar to

Burkhardt, et.al (2006), where novices scored highest in the class knowledge category

among other knowledge categories. In the case of this study, the characteristics of the

problem type used have facilitated highlighting the information related to this category. As

problem type can be classified as non competing hierarchy, the classes in the Class based

treatment are natural and already existing in the real world, car, body, and engine. This

could facilitate the mapping from the program domain to the problem domain easier, thus

identifying the problem classes used was easier. Moreover, the hierarchical solution

structure in the Class based version (see appendix A) was also essential in the treatment

and thus also played as a cue and helps highlighting the used classes. It would be fruitful to

look at other types of problems for future experiments. In particular, currently we are looking

 10

at Jackson's classification of problem types in order to choose the next problem for our next

set of studies (Bray 2002).

4- Conclusion and Further Works

The presented study is one of what should eventually be an ensemble of empirical studies of

the influence of class structure concept on program comprehension for novice OO

programmers. The study was able to show that the Class based program can be more

comprehendible than the Non-Class based program for novices. Introducing class structure

concept can facilitate the program comprehension. It appears that the OO paradigm, with its

emphasis on objects and relationships of objects, may result in a construction of a strong

mental representation for a certain type of a problem. This is consistent with the naturalness

claims of advocates of the OO paradigm. We can judge that our findings support the

argument about the cognitive benefits of the OO paradigm and their affect on the novice

comprehension. The study was able to confirm that the Class based programs can be more

comprehensible than the Non-Class based programs for novices on the "car programs".

The study also suggests that the Class based treatment facilitates the reverse mapping from

the program domain to the problem domain, especially for programs which are best

understood in the Class based form. These programs’ entities already exist in the real world.

In order to determine whether this flow actually occurs, further research is required by using

programs with different problem characteristics. We have identified Jackson as a good

classification of problem types and we will using a different problem types for our next study.

The study finds clear evidence of differences in mental representation between the Class

based and Non-class based programs. Considering the performance in the knowledge

categories illustrated in table 1 on the Class based and Non-Class based treatments, we

have only found differences in the class category. However, incorporating all the Burkhardt,

et.al models' categories will be on the expense of the program size and complexity and will

be beyond the scope of the proficiency level of our target subjects. We have briefly

mentioned the pitfalls and problems of conducting large size and/or competing hierarchal

structure problems for the future study.

Acknowledgement

We would like to thank all the students and the lecturers at Sheffield-Hallam University and

Faculty of Electronics and Faculty of Computer Technologies in Libya participated in the 3

set of studies reported here.

5- References

Alardawi, A., Khazaei, B., & Jawed, S. (2011). Empirical study of novice comprehension of

object-oriented OO programs. PPIG2010 Work in Progress,

Bray, I., & Bray, I. K. (2002). An introduction to requirements engineering Addison Wesley.

Brooks, R. (1978). Using a behavioural theory of program comprehension in software

engineering. Proceedings of the 3rd International Conference on Software Engineering,

196-201.

 11

Burkhardt, J. M., Détienne, F., & Wiedenbeck, S. (2006). Mental representations constructed

by experts and novices in object-oriented program comprehension. Arxiv Preprint

cs/0612018,

Détienne, F. (2006). Assessing the cognitive consequences of the object-oriented approach:

A survey of empirical research on object-oriented design by individuals and teams. Arxiv

Preprint cs/0611154,

Johnson-Laird, P. N. (1986). Mental models: Towards a cognitive science of language,

inference, and consciousness Harvard Univ Pr.

Khazaei, B., & Jackson, M. (2002). Is there any difference in novice comprehension of a

small program written in the event-driven and object-oriented styles? Human Centric

Computing Languages and Environments, 2002. Proceedings. IEEE 2002 Symposia on,

19-26.

Kintsch, W., & Van Dijk, T. A. (1978). Toward a model of text comprehension and

production. Psychological Review, 85(5), 363.

Pennington, N. (1987). Comprehension strategies in programming. Empirical Studies of

Programmers: Second Workshop, 100-113.

Pennington, N. (1987). Stimulus structures and mental representations in expert

comprehension of computer programs* 1. Cognitive Psychology, 19(3), 295-341.

Pfleeger, S. L., & Atlee, J. M. (2006). Software engineering: Theory and practice Prentice

hall.

Ramalingam, V., & Wiedenbeck, S. (1997). An empirical study of novice program

comprehension in the imperative and object-oriented styles. Papers Presented at the

Seventh Workshop on Empirical Studies of Programmers, 124-139.

Sajaniemi, J., & Kuittinen, M. (2007). From procedures to objects: What have we (not) done.

Proceedings of the 19th Annual Workshop of the Psychology of Programming Interest

Group, 86–100.

Van Dijk, T. A., & Kintsch, W. (1983). Strategies of discourse comprehension.

Wiedenbeck, S., & Ramalingam, V. (1999). Novice comprehension of small programs written

in the procedural and object-oriented styles. International Journal of Human-Computer

Studies, 51(1), 71-87.

Wiedenbeck, S., Ramalingam, V., Sarasamma, S., & Corritore, C. L. (1999). A comparison

of the comprehension of object-oriented and procedural programs by novice

programmers. Interacting with Computers, 11(3), 255-282.

 12

Appendix A

A1- Class based Program Version

Class Engine ' Beginning of Engine class

 'Declare Engine class Attributes

 Private Power As Integer

 ' Class Methods and behaviour

 Public Sub Set_Engine()

 Console.WriteLine("Enter the engine's power")

 ' Assigne the Power value of the engine

 Power = Val(Console.ReadLine())

 End Sub

 Public Sub Engine_Describe()

 Console.WriteLine("Engine power is ="&Power)

End Sub

End Class ' End of class Engine

Class Body ' Beginning of Body class

 ' Declare Body class Attributes

 Private Brand As String

 ' Class Methods and behaviour

 Public Sub Set_Body()

 Console.WriteLine("Enter the Body's Brand")

 ' Assigne the Brand value of the engine

 Brand = Console.ReadLine()

 End Sub

 Public Sub Body_Describe()

 Console.WriteLine("Car Brand is: " & Brand)

End Sub

End Class ' End of class Body

Class Car ' Beginning of Car class

 Private Passengers, Speed As Integer 'Declare Car class Attributes

 Private CEngine As New Engine ' Creates new instant of class Engine

 Private CBody As New Body ' Creates new instant of class Body

 'Class Methods and behaviour

 Public Sub Set_Car()

 CEngine.Set_Engine() 'Instantiate Engine object

 CBody.Set_Body() 'Instantiate Body object

 End Sub

 Public Sub Car_Describe()

 CEngine.Engine_Describe()

 CBody.Body_Describe()

 End Sub

 Public Sub Car_Status()

 Console.WriteLine("Enter the No.of.Passengers")

 Passengers = Val(Console.ReadLine())

 If Passengers = 0 Then

 Console.WriteLine("Car is Stopping")

 Else

 Console.WriteLine("Enter the Car Speed")

 Speed = Val(Console.ReadLine())

 If Speed > 50 Then

 Console.WriteLine("Over Speed")

 Else

 Console.WriteLine("Within Normal Speed")

 End If

 End If

 End Sub

End Class

'the main program start here

Module Module1

 Sub Main()

 Dim CCar1 As New Car 'Create new instance

 CCar1.Set_Car()

 CCar1.Car_Describe()

 CCar1.Car_Status()

 Dim CCar2 As New Car 'Create new instance

 CCar2.Set_Car()

 CCar2.Car_Describe()

 Console.ReadLine()

 End Sub

End Module

 13

Comprehension Questions:

1. Does the user assign a value to variable "Body"? (Elementary Operations)

2. In "Car_Status" method in class "Car", does "Speed" value assigned in the case of

"Passengers" =zero? (Control Flow)

3. Does the value of "Passengers" affect the value of "Speed"? (Data Flow)

4. Does the program allow you to change the car specifications (Type / Power)?

(Functions)

5. Does the program defined class Body? (Problem Classes)

6. When the “Over Speed” statement is reached, is the value of "Speed" = 50? (State)

A2- Non-Class based Program Version
Public Class Car_Program

 Private Sub Set_Car_Click(…) Handles Set_Car.Click

 Dim Power As Integer

 Dim Type As String

 ' Assigne the Power value of the engine

 Power = Val(TextPower.Text)

 ' Assigne the type value of the body

 Type = TextType.Text

 ' Discribe Car's specification

 MessageBox.Show("You have created car" & Type &" Its engine power="&Power)

 Car_status.Enabled = True

 End Sub

 Private Sub Car_status_Click(…) Handles Car_status.Click

 Dim Passengers, Speed As Integer

 ' Assigne the No.of.Passengers valus

 Passengers = Val(TextPassengers.Text)

 If Passengers = 0 Then

 MessageBox.Show("Car is Stopping")

 Else

 ' Assigne the Speed value of the car

 Speed = Val(TextSpeed.Text)

 If Speed > 50 Then

 MessageBox.Show("Over Speed")

 Else

 MessageBox.Show("Within Normal Speed")

 End If

 End If

End Sub

End Class

 14

Comprehension Questions

1. Does the user assign a value to variable "Body"? (Elementary Operations)

2. In "Car_Status" method, does "Speed" value assigned in the case of "Passengers"

=zero? (Control Flow)

3. Does the value of "Passengers" affect the value of "Speed"? (Data Flow)

4. Does the program allow you to change the car specifications (Type/Power)? (Functions)

5. Would class Body be used in designing the same program in Object oriented style?

(Problem Classes)

6. When the “Over Speed” statement is reached, is the value of "Speed" = 50? (State)

