
A case study on the usability of NXT-G programming language

Khuong A. Nguyen

Computer Laboratory, Cambridge University
kan30@cam.ac.uk

Abstract. The release of the Lego Mindstorms kit has carried the flexibility and creativity of Lego
into the world of robotics, whilst targeting a variety of children and adults audiences. To achieve this
goal, a programming language called NXT-G was developed to provide everyone full control of the
Lego Mindstorms kit, regardless of their programming experience. In this project, the programming
language ambition is tested through practical experiments. In a controlled experiment, twelve
participants carry out four tasks using the NXT-G software and a Lego robot. Their performances
are then analysed to confirm the stated claim.

Keywords: Lego Mindstorms, NXT-G, usability, programming language

1 Introduction

For many decades, Lego has been widely known for their creative toy bricks, which are not only
addictive to children but also appealing to adults. The release of Lego Mindstorms carried the
flexibility of Lego into the world of robotics, while targeting the same above users. To achieve
this goal, a programming language called NXT-G was developed to provide everyone full control
of the Lego Mindstorms kit, regardless of their programming experience. In this project, the
programming language ambition is tested. In particular, twelve participants were recruited based
on their programming backgrounds to carry out four small tasks. The experiment results were
then analysed to assess the usability of the NXT-G programming language as claimed above.
It was very surprising that the results suggested even some ‘experienced programmers’ have
problems using the NXT-G software to finish the tasks described in this project. The negative
responses from the participants’ questionnaires mostly affirm the findings of this project. The
logical progression of this report is graphically depicted in figure 1.

Fig. 1. Report progress



2 Lego Mindstorms robotics kit and NXT-G programming language

This section covers the background materials to be used in this report. Particularly, the Lego
Mindstorms robotics kit and the NXT-G programming language are introduced, because the
usability of this language is investigated using a Lego robot. This chapter also discusses several
research papers which are relevant to the research topic.

2.1 Lego Mindstorms robotics kit

Lego Mindstorms NXT is a programmable robotics kit released by Lego in 2001 to replace the
old Robotics Invention System kit. The NXT kit features the new Lego Technic stream, with
the introduction of more sturdy beams in replacement of the traditional bricks (figure 2).

Fig. 2. A Lego Mindstorms NXT robot

In particular, what makes Lego Mindstorms excellent is the ability to interact with the
outside world through the means of sensors. Compared to the old version, the new Lego Mind-
storms NXT kit supports many more sensors such as the Acceleration sensor, the Gyroscope
sensor, the Compass sensor, the EOPD sensor, etc.. These sensors deliver the inputs from the
environment into the robot for processing.

2.2 NXT-G programming language

NXT-G is a visual programming language developed by Lego in conjunction with LabVIEW
for the above Lego Mindstorms NXT kit. The language is targeted at children as well as adults
with no programming background. Figure 3 shows the interface of the NXT-G 2.0 version.

Fig. 3. NXT-G software interface



Since the latest 2.1 retail version, the language is now relatively stable, although there
are still occasional crashes and bugs to be fixed. The whole concept of NXT-G is based on
programming blocks. A block can be customised to perform a specific action. Many blocks can
be chained one after another to perform a series of actions. Figure 4 demonstrates a simple
behaviour to say ‘hello’ and turns the light on with only two programming blocks.

Fig. 4. Programming blocks

To provide a more flexible programming environment, two programming-related blocks are
introduced in NXT-G. The ‘Switch block’ behaves exactly the same as the IF statement in
other programming languages such as Java, C (figure 5). If the condition is true, all blocks in
the upper beam are initiated. Otherwise, everything in the lower beam is initiated.

Fig. 5. The Switch block

Another important block is the ‘Loop block’, which behaves exactly as the DO-WHILE
statement (figure 6). Any blocks being put inside the two ‘square brackets’ of this block are
guaranteed to be performed once, and will be repeated until the condition is false.

Fig. 6. The Loop block

3 Literature review

The idea of using Lego blocks to approach programming has been implemented and tested with
small children [3]. Each physical Lego block contains hidden digital implementation, and can
be chained together to perform a sequence of behaviours. There are also ‘sensor blocks’ which
receive inputs from the outside world, and transform the data into the blocks. Further, the
use of Lego Mindstorms robots as a tool to convey programming ideas has been attempted
[2]. Although the research mainly concentrated on the object-oriented aspect of the program-
ming language, the use of robots provides a physical model to visually observe the results of a
programming code.



4 Experiment plan

In this section, the experiment concept is formed, covering important stages in the process.

4.1 Project goal

With the release of Lego Mindstorms NXT, Lego has claimed that the NXT-G programming
language requires little to no programming experience to program a Lego robot [1]. In this
project, the above claim is tested through practical experiments, in which many participants
are recruited to perform a series of programming tasks to control a Lego robot, as will be
discussed in the next part. It is worth noting that although the Lego Mindstorms robot is
involved in the experiments, it is just a tool to demonstrate the usability of the programming
language. This project does not expect to investigate the usability of the robot itself.

4.2 Experiment brainstorm

To test the above claim, firstly, the overall NXT-G programming language is examined by the
researcher, as an experienced 11 year programmer. This brief overview skimmed through every
aspect of the programming language including the interface, the programming features, to give
the researcher a feeling of the system, which will strongly orientate the design of the experimental
tasks later. At this early stage, the researcher has already identified some confusion amongst the
programming blocks - to be addressed later in this report, as well as some interesting features
of the language such as the ‘Switch behaviour’, and the ‘Loop behaviour’ to be experimented
on.

Since the NXT-G is believed to be suitable for everyone regardless of their programming
background, it would be interesting to focus some of the experiments on the specific features
of any typical programming language such as the IF statement, the LOOP statement, to see
how a non-programmer handles them. Besides, because of the nature of a visual programming
language, the layout of the components, the presentation of the programming features, the ease
of navigation should also be parts of the experiment.

4.3 Recruiting participants

Once it was ascertained that the experiments would focus on the ‘programming experience’
aspect of the claim, two groups of participants were recruited, based on their programming
backgrounds. The first group includes all programming experts. The expertise level in program-
ming is quantified based on the number of programming languages a person knows, how often
he uses it, and how long has he been using it. This information was observed beforehand, and
a decision was taken if a person was to be recruited. The second group simply includes people
who did not know how to program.

Due to time constraints, the original plan to recruit 20 participants could not be achieved in
the given time-frame. Also, it was very hard to recruit non-programmers within the Computer
Lab, University of Cambridge. Thus, the plan was modified to recruit just 12 participants, di-
vided into two 6-person groups. The groups consist of five M.Phil students, four undergraduate
students, two Ph.D students and one high school student. Everyone in the experienced program-
mer group knew at least two programming languages, and they had programmed very frequently
in the past three years. The other group includes geography, biology and music students who
had never used any programming language before. All the participants’ ages varied from 18
to 24, and held at least a high school qualification. The variety of participant types plays an
important role in the experiment results, since there are only 6 participants in each group. This
selection also provides a moderate level of external validity, because the participants come from
a variety of educational backgrounds, but they are still all students.



Also, the original plan was to recruit another two groups who are very familiar with Lego,
and who never played with Lego before. This recruitment plan was abandoned, since it was
virtually impossible to recruit any adult who had never seen Lego before. Although some of
them claimed to have never played with Lego, they actually had seen it and knew how it worked,
which destroyed the idea of the experiment. Small children are the most ideal candidate for this
type of experiment.

4.4 Tasks design

Once the above recruiting process had been finalised, four tasks were carried out. For each task,
a video protocol was used to capture the mouse and the keyboard activities on the screen.

Task 1: The purpose of the first task is to test the ease of recognising a programming block
and the layout of the programming interface. First, a working NXT-G program is given to
the participant, along with a description describing the exact behaviour of the code. Then, the
participant is asked to modify that code to produce a different behaviour. The quantitative data
measured in this task are the time taken (in seconds) to complete it, and the accuracy (correct or
wrong) of the completed program. The qualitative data are the mouse and keyboard activities.
The detailed behaviours of the code and the corresponding NXT-G program are demonstrated
in figure 7.

Fig. 7. Task 1 details

The part which might lead to confusion here is the selection of the ‘Speaker block’ and the
‘Ultrasonic sensor block’, since they look very similar at a quick glance (figure 8).

Fig. 8. Speaker block and Ultrasonic sensor block

The ‘Light sensor’ and ‘Colour sensor’ block can easily be wrongly recognised too (figure 9).

Fig. 9. Light sensor block and Colour sensor block



Task 2: The purpose of the second task is to experience the traditional IF statement, which
is represented by the ‘Switch block’. For this task, the same code which was completed in the
first task was used. In case the participant did not perform the first task correctly, a solution
was provided afterwards. The participant uses the ‘Switch block’ to make the robot produce a
different behaviour depending on the environment condition (figure 10).

Fig. 10. Task 2 details

Task 3: The purpose of the third task is to prepare a set of duplicated actions, so that the
fourth task can then use a ‘Loop block’ to test the effect of the FOR loop. The participant uses
the previous program written in the second task, and creates many duplicated actions without
using the ‘Loop block’ (figure 11). The solution for the second task was provided, in case the
participant did not solve it correctly.

Fig. 11. Task 3 details

A small problem in this task was the navigation issue. When the code spans across the
screen, due to the lack of the slider bar, the arrow buttons on the keyboard were used to shift
the screen to the left or right, which was troublesome at times.

Task 4: The fourth task tests the effect of the FOR loop. It begins with the same program
written in the second task, and repeats the same requirements as in the third task. However,
the participant was requested to use the ‘Loop block’ to complete this task (figure 12).

Fig. 12. Task 4 details



4.5 Experiment hypotheses

Based on the above four tasks, the following hypotheses were devised. These hypotheses are
tested against the results obtained from the experiments.

– The experienced programmer group should complete each of the four tasks faster than the
non-programmer group.

– Everyone should finish the fourth task faster (using the ‘Loop block’) than they did in the
third task (no Loop block), because fewer keystrokes are required to complete the task.

– The more programming experience a person possesses, the less time is required to complete
a task.

A pilot study with the above four tasks was performed by the experimenter to confirm the
possible expected outcomes.

4.6 Experiment process

Once all four tasks are ready, 12 participants are contacted one by one to be interviewed
individually. During the experimental session, which lasts no longer than 45 minutes to prevent
the natural human fatigue effect, the participant first follows a short 10 minute online tutorial
provided by Lego [7] to introduce the main concepts of the NXT-G programming language. This
training session has very good external validity since the tutorial was designed for everyone, even
those who had never used Lego before. Also, it was the necessary step to put all participants
on the same level before conducting the experiments. After the training, the participant carries
out the above four tasks. Through-out the experiments, all participants use the same laptop
and robot. A webcam was mounted on the ceiling to record the user’s activities, while a screen
recorder was installed in the laptop to capture the mouse and keyboard movements. The use
of these video protocols was agreed beforehand with the participants, and mentioned in the
consent form. A quiet room was used to isolate all external noises. At the end of the session,
the participant fills in a questionnaire describing his experience with the experiments thus far.
All participants must also sign a consent form at the beginning of the session.

5 Results analysis

Of the above four tasks with 12 participants, the completion rate was 96%, with the exception
of two participants in the fourth task, which will be explained below. The correctness of all
finished tasks was also 100%.

5.1 Compare the performance of each task between the two groups

The first hypothesis claims that the experienced programmer group should complete each task
faster than the other non-programmer counterpart. For the first task, which tests the layout and
the interface, the Keystroke Level model shows an average of 143 seconds and 179 seconds for
the experienced programmer group and the non-programmer group respectively. Although the
experienced programmer group appeared to be faster (figure 13), the significant test suggests a
t-value = 0.8 and p-value = 0.2, which shows small relative to the variance.

By analysing the qualitative data obtained from the video protocol, it was clear that both
groups had trouble identifying the ‘Speaker block’ and the ‘Sound sensor block’, as well as
between the ‘Light sensor block’ and the ‘Colour sensor block’ as suspected previously. The
participants also had trouble finding the exact location of the blocks they were told to use. The
P operator to point the mouse to the blocks took a considerable amount of 97 seconds and 112
seconds for two slowest persons in each group, because most participants adopted the trial-and-
error approach to go through every block category from top to bottom until they found the
intended block.



Fig. 13. Task 1 comparison between two groups

Another issue observed in this task is the layout of the ‘blocks selection menu’, which is not
logically presented. The ‘Common category’ holds many duplicated blocks from other categories,
with two new blocks - the ‘Move block’ and the ‘Record/play block’ which do not fit syntactically
into this section. Further, there is no reason why the ‘Speaker block’ is considered to be more
common than other sensor blocks to be put in this common category (figure 14). Neither was
it explained in the documentation.

Fig. 14. Common blocks category

For the second task which experimented with the IF block, the experienced programmer
group appeared to be much faster than the other group (figure 15). The mean difference between
the two groups is as high as 91 seconds. The significant test also confirms a p-value << 0.05,
with t-value = 2.4, which re-confirms this mean effect.

Fig. 15. Task 2 comparison between two groups



To explain this difference in performance, the activities from the video protocol of the non-
programmer group were examined to confirm that 30% of the participants within this group
were not familiar with the branch-idea and had problems separating the programming blocks
between the two beams of the ‘Switch block’.

For the third task, the experienced programmer group appeared to be faster again. Although
the mean difference was just 23 seconds, the significant test with t = 1.8 and p < 0.05 suggests
that the experienced programmer group did in fact perform quicker for this task (figure 16).

Fig. 16. Task 3 comparison between two groups

However, it was unexpected that both groups had trouble with the screen navigation when
the long code spans across the screen. Mostly, the fact that the participants had to exchange
between the mouse to drag-and-drop the blocks and the keyboard just to navigate around the
screen, prevented the task being completed quickly.

For the final task, when the two groups experienced with the Loop block, it was clear that
the experienced programmer group performed much better than the non-programmer group,
with a significant effect of t = 2.7 and p < 0.01 (figure 17).

Fig. 17. Task 4 comparison between two groups



In summary, for all of the second, third and fourth tasks which involved the programming-
related blocks, the experienced programmer group did perform better than the non-programmer
counterpart. The first task, which only tested the interface and the layout of the programming
language, received a mixed response from the two groups, with no one appearing to be clearly
faster. The hypothesis, thus, appeared to be justified.

5.2 Compare the performance of the third and the fourth tasks

The second hypothesis predicts that every participant should finish the fourth task faster than
the third task. This is an intuitive thought, since both tasks start with the same base program.
The fourth version benefits from a shorter program with the use of loop, thus the participants
can save more time from using fewer keystrokes.

Surprisingly, this was not entirely correct amongst the experienced programmer group, when
60% of the participants found it harder to implement the Loop block, which results in a longer
task completion time (figure 18). The Keystroke Level model suggested an average of 296 seconds
and 305 seconds for the third and fourth tasks respectively. However, the t-test reveals t = 0.17
and p = 0.75, which shows small relative to the variance for the experienced programmer group.

Fig. 18. Comparison between Task 3 and Task 4 of the experienced programmer group

The result was even more negative for the non-programmer group, when all participants
needed much more time for the fourth task than they did for the third one (figure 19). The
Keystroke Level model shows an average of 322 seconds for the third task and 609 seconds for
the fourth task. The hypothesis is rejected with a strong mean effect of 288 seconds. The Mann-
Whitney test reveals w = 1.5 and p << 0.05, which confirms the rejection of the hypothesis.

Fig. 19. Comparison between Task 3 and Task 4 of the non-programmer group



By analysing the mouse and the keyboard activities of the fourth task, it was observed that
75% of the participants had trouble with the options provided along with the Loop block (figure
20). The cognitive walkthrough method suggested that although all participants knew that they
should use the Loop block, as they have been told to do so, 75% of the participants failed to
recognise the correct option provided in the sub-menu. Only 25% of the participants managed
to associate the correct option with the effect they expected, the rest exhaustively tried every
option provided by the Loop block. This problem showed a poor representation of the block
itself. However, the good thing was all participants quickly understood the feedback from the
robot, and modified the code until the expected behaviour was achieved.

Fig. 20. Options for the Loop block

5.3 The relationship of the programming experience and the completion time

The third hypothesis states that the more programming experience a person possesses, the
quicker he is able to finish all four tasks. The experience level was taken from the questionnaire.
This is the number of years a person has programmed frequently. The result showed a squared
Pearson correlation coefficient R2 at 0.87, giving a p-value << 0.05 which is significant at the
95% level (figure 21). This result provides a strong evidence for the above hypothesis.

Fig. 21. Relationship of programming experience and completion time

5.4 Experiment issues

Despite the careful preparations, there were still several minor issues brought to the attention
of the experimenter. First, two participants’ results of the fourth task were excluded from the
data analysis, because they could not finish the task. The first participant abandoned the task
mid-way due to a fire alarm event. The second person had to stop in the middle of the task,
because of the 20 minute constraint for each task, which had been agreed beforehand in the
consent form, had been triggered. Fortunately, those two persons did not belong to the same
group, so the variation was not influenced too much in the end. The second issue was that
the NXT-G software crashed twice in the middle of the second task and the third task of two
different sessions. The ongoing work was lost as a consequence, and the final completion time
was compensated by resetting the stop-clock of these events.



5.5 Improvement suggestions

To make the NXT-G programming language more usable, some solutions for the problems iden-
tified in this report can be suggested, based on the above analysis as follows. The ‘Common
blocks’ category should be allowed to be customised by the user, or it should automatically be
updated to reflect the most frequently used blocks through-out many sessions. Some program-
ming block icons should be re-designed to avoid confusion in recognition such as the ‘Speaker
block’, the ‘Ultrasonic sensor block’, the ‘Light sensor block’ and the ‘Colour sensor block’. The
internal bugs should also be fixed so the software does not crash in the middle of the work, which
was believed to be caused by poor memory management from the previous version. Finally, one
of the most crucial add-ins required for the programming interface is the slide bars, which would
immensely make it easier for the user to navigate across the screen in a long program.

6 Conclusions

6.1 Research contributions

In this project, the usability of the NXT-G programming language was experimented to test
the Lego’s claim that it can be used by everyone regardless of their programming backgrounds.
Surprisingly, the experiment results suggested that it was not true. The experiments showed that
even some experienced programmers had problems using the software. Some issues addressed in
this report are the robustness of the software itself, the interface and the presentation of some
programming blocks. Ultimately, the use of the traditional FOR loop in the visual programming
language does not seem to be as efficient as in other text-based counterparts.

6.2 Future work

Due to time constraints, a limited number of 12 participants were recruited to perform the
experiments. It would be more ideal to have as many as 50 participants from a variety of
educational backgrounds, as well as different ages, and especially with small children. Also, the
project can be expanded to survey the usability of the physical Lego robot to confirm whether
it has any effect on the usage of the NXT-G programming language.

7 Acknowledgement

The author would like to thank Dr. Alan Blackwell for his insight comments, and the PPIG
referees’ useful suggestions on this work.

References

1. T. Griffin: ”The Art of Lego Mindstorms NXT-G Programming” (2010).

2. P. B. Lawhead, C. G. Bland, D. J. Barnes, M. E. Duncan, M. Goldweber, R. G. Hollingsworth, M. Schep: ”A
Road Map for Teaching Introductory Programming Using LEGO Mindstorms Robots” (2002).

3. P. Wyeth, G. Wyeth: ”Electronic Blocks: Tangible Programming Elements for Preschoolers” (2001).

4. D. Kieras: ”Using the keystroke-level model to estimate execution times” (2001).

5. T. R. G. Green, M. Petre: ”Usability Analysis of Visual Programming Environments: a ‘cognitive dimensions’
framework.” (1996).

6. C. Wharton, J. Rieman, C. Lewis, P. Polson: ”The cognitive walkthrough method: A practitioner’s guide”
(1994).

7. Lego Mindstorms NXT online tutorial: ”http://mindstorms.lego.com/en-us/Software/Default.aspx”.


