
Gaze Evidence for Different Activities in Program Understanding

Kshitij Sharma, Patrick Jermann, Marc-Antoine Nüssli, Pierre Dillenbourg

CRAFT, École Polytechnique Fédérale de Lausanne
<firstname>.<lastname>@epfl.ch

Abstract We present an empirical study that illustrates the potential of dual eye-tracking to detect successful
understanding and social processes during pair-programming. The gaze of forty pairs of programmers was
recorded during a program understanding task. An analysis of the gaze transitions between structural elements
of the code, declarations of identifiers and expressions shows that pairs with better understanding do less
systematic execution of the code and more “tracing” of the data flow by alternating between identifiers and
expressions. Interaction consists of moments where partners’ attention converges on the same same part of the
code and moments where it diverges. Moments of convergence are accompanied by more systematic execution
of the code and less transitions among identifiers and expressions.

1 Introduction

In the last decade, off the shelf screen based remote eye-trackers have become readily available. These
devices offer system designers and social scientists unprecedented access to the users’ attention. Our
long term goal is to use automatically collected gaze traces to provide feedback to the users and adapt
the system to their level of expertise. A prerequisite for such undertakings is that we better understand
the relationships between gaze-based behavioural indicators and task-based performance.

In this contribution we propose an analysis of pair-programming that illustrates the sensitivity of gaze
traces to different levels of understanding as well as to different modes of interaction. This problematic
is a two sided coin: it involves cognitive aspects related to program understanding and social aspects
related to the interaction of two programmers.

Program understanding is central in many programming tasks, for example during software main-
tenance or software evolution where programmers have to read and extend code that they did not nec-
essarily produce themselves. Program comprehension is a goal-oriented, problem-solving task that is
driven by preexisting notions about the functionality of the given code [10]. It can be thought of a pat-
tern matching at different levels of abstraction [20]. The different abstraction levels help understanding
a program at different levels, for example, at syntactical level programmers can understand the relation
between different programming constructs and at semantic level they can relate different programming
structures to their real world counterparts. The potential of eye-tracking in diagnosing the quality or the
strategies of understanding relies on the assuption that understanding strategies are reflected by different
ways to “read” the code.

From the point of view of the interaction between pair programmers, we are interested in finding the
effect whether different types of collaboration strategies are reflected by gaze indicators and whether they
are linked to a program comprehension strategy. Previous experiments carried out using cross-recurrence
[17] as a measure of gaze coupling showed that the higher the coupling, the better the outcomes of col-
laboration. This might not be true for more specific problem solving tasks. For example, in collaborative
program understanding the task requires the participants in collaborative environment to develop their
own understanding as well as to agree upon a solution. During an extended pair programming session,
programmers do not necessarily attend to the same information at all times. In terms of interaction, this
translates to the requirement for different phases in the interaction. During convergent phases, they look
at the same part of program. During divergent phases, participants look at different parts of the pro-
gram. Both of them can contribute to understanding a program in different ways. These phases might
reflect different understanding strategies in program comprehension, for example individual hypothesis
building and collaborative verification.

In next section we present related work about program understanding and dual eye-tracking for pair
programming. We then describe the problem statement and research questions. The Methods section



gives the details of the experiment and the algorithm that was used to find different phases of interaction.
We then present and discuss the results from the experiment.

2 Related Work

2.1 Program Understanding

Program understanding is a special kind of problem solving. Like any problem solving task, program
comprehension has a problem statement (to understand the given program) and a solution (description of
functionality of the program) and different approaches to get the solution. The main approaches include
top-down and bottom-up. Top-down approach involves decomposition of the problem in sub-problems
and solving the sub-problems, while bottom-up approach involves integration of low-level details to
come up with a solution.

J.Larkin [11] found in her studies about solving physics problems two approaches of problem solv-
ing; first, to approach the solutions from the problem givens(top-down) and second, to backtrack from
the solution to the problem givens(bottom-up). Similarly, J.R. Anderson [1] found in his studies two
ways to write programs; first, writing code line by line(bottom-up) and second decomposing the goal of
the program into subgoals and implementing the subgoals(top-down).

In the case of program understanding, there are many strategies to understand a program, a top down
approach [19] consists of starting with a hypothesis about the program and then validating or “end mark-
ing” the hypothesis with the individual components of the program. A Bottom-up approach [18] starts
from a series of code fragmentation and then assigns a domain concept to each fragment. An Iterative
approach [4] includes a ”while” loop of top-down process, i.e., having a set of preexisting notions or hy-
pothesis, their verification and modification, until everything in the program can be explained within the
set of notions with which the iteration started. There are some more strategies that are a hybridisation
of top-down and bottom-up [13] [14]. These two strategies are used interchangeably during program
comprehension as and when needed [13].

S. Letovsky [13] proposed a typical set of mental models needed to understand a program which
includes specification, implementation and annotation of different parts of the program. [13] also em-
phasised that mental model for implementation consists of actions and data structures of a program.
Understanding the entities/data/variables and relationship amongst them inside a program is very im-
portant in order to assign them a concept from the domain knowledge [21]. [8] advocates for having
a programming plan to understand the program text (what is written?) and the program intent (why is
something written?), and then divides the programming plan into two major parts “Variable plan” and
“Control plan”. [8] then proposes the use of variable plan to understand the relation between program
text and program intent.

In two different studies [3] and [10] describe the particular strategies for novice and expert program-
mers respectively. On one hand, [3] finds that for the understanding of novices while loops sometimes
become ”while demons”. Novices have ”conflicts” in the strategies to be applied for giving the ”Natural
Language Description” of a program. Novices tend to follow the ”systematic execution” of the program
and increase their chances to get stuck. On the other hand, [10] finds that experts go for ”as-needed”
strategy, where they limit their understanding to only those parts of the program that they find relevant
to a given task. Experts do not follow a predefined strategy to understand a program. For example, ex-
perts do not decide beforehand to understand a program in ”top-down” or ”bottom-up” manner. Experts
tend to use both of them as and when needed.

2.2 Dual Eye Tracking for Pair Programming

Two synchronous eye-trackers can be used for studying the gaze of two persons interacting to solve a
problem. It gives a chance to understand the underlying cognition and social dynamics when people
collaborate. Nüssli [15] gives a two way motivation for dual eye-tracking. Using statistics to find the
relation between the gaze features and collaboration events and using machine learning for prediction of
some collaboration attributes from gaze patterns. In their study of collaboration amongst a pair Richard-
son and Dale [5] found that when two persons talk about something they see, they tend to look at the



same thing in the stimulus. [17] measured the ”togetherness” of the participants in a ”speaker-listener”
pair using cross-recurrence plots and found that when the listener follows the gaze of the speaker (s)he
had a better comprehension. This idea of ”looking together” may not be true to a pair of programmers
looking at a program and trying to understand it because the task of program understanding is more
specific than the task of listening to a speaker. ”Togetherness” of their eye-movements can help to de-
fine different phases of interaction the pair undergoes during the task of program comprehension. These
different phases occur when the participants are looking at the same part of the program as opposed to
the case when they are not. Both types of the phases play there role in the understanding of a program
as we mentioned in the introduction.

Pair programming is usually done with co-located programmers. They play the roles of driver (actual
typing) and navigator (more like a organisational activities). Spatially distributed pair programming
have been studied with satisfactory results showing that the distance factor can be neglected [2]. Pair
programming leads to high quality programs [15], hence a pair of expert programmers can obtain a
better understanding of a program as well.

3 Problem Statement

3.1 Program Understanding and Gaze Transitions

Is it possible to detect different strategies for program understanding between the pairs with perfect ver-
sus low levels of understanding ? Do they build their understanding based on different semantic elements
in the program than the pairs with the low level of understanding? There are many ways to go about solv-
ing the problem of program understanding as we mentioned in the related work. We also mentioned that
program understanding strategies are different for the people who have better understanding than others
who don’t. We are interested in finding this difference in terms of their eye-movements.

To measure exploration strategies, we adopt an approach based on gaze transitions between different
types of program elements. More precisely, as a stimulus for eye-tracking, a program can be divided in
three main semantic classes (or Areas of Interest). These semantic classes are identifiers (I), structural
(S) elements and expressions (E) in the program. Typically, identifiers are the variable declarations,
structural elements are the control conditions of the program and expressions represent the data flow
and relationship amongst the variables. Thus we propose to say that a ”to and fro” shift in gaze between
identifiers and expressions will depict the attempt to understand the data flow and/or the relation among
the variables. Similarly, a gaze shift among all the three semantic classes will translate in an effort to
understand the data flow according to the conditions in the program. In terms of program understanding
strategies this behaviour is attributed to ”Systematic program execution”.

Our analysis aims at finding which type of transitions characterise pairs with different levels of un-
derstanding. Table 1 shows the categorisation of different transitions among different semantic classes
in the program into data flow, control flow and data flow according to control flow. We consider ”3-way”
transitions among the semantic classes as one 3-way transition reflects one unit of program understand-
ing behaviour. For example, a 3-way transition ”E− >I− >E” reflects the ”reference lookup” for a
variable in an expression.

Question 1 Is there a relation between the transitions among different semantic classes in the pro-
gram and the levels of program understanding ?

3.2 Convergent and Divergent Episodes of Interaction

Collaboration consists of a series of convergent and divergent phases. When partners work as a team
and put their joint efforts to understand the code we say that they are convergent in their interaction and
we have a convergent episode of interaction. In a convergent episode participants in a pair look at the
same part of the program in a ”stable” manner. ”Stable” manner of looking at a program is reflected by
fixations in a small range (less than a threshold) of tokens (see section ”segmentation of eye-tracking
data” for more details). On the other hand when the participants try to build their own understanding
and they are looking at the different parts of the program, we say that they are diverging and we have a
divergent episode of interaction.



Table 1: Categorization of different transitions among different semantic classes in the program into dif-
ferent types of flows in the program. (I=Identifier, S=Structural, E=Expression).− > denotes transition.

Type of flow in the program Types of transitions

Data flow
I− >E− >I
E− >I− >E

Control flow
I− >S− >I
S− >I− >S

Data flow according to Control flow
S− >E− >S, E− >S− >E
S− >I− >E, E− >I− >S

(Systematic execution of program) S− >E− >I, I− >S− >E
I− >E− >S, E− >S− >I

The basic question related to episodes is whether individuals use different reading strategies during
convergent and divergent episodes. A complementary question is whether pairs with different levels
of understanding behave differently in convergent and divergent episodes. To define convergent and
divergent episodes of interaction, we need to segment the eye-tracking data for individual participants
and then align them in time; so that we can compare the segments of the two participants on the scale of
vicinity in terms of fixations.

Question 2 How do convergent and divergent phases of interaction affect the program comprehen-
sion strategies of pairs with different levels of understanding?

3.3 Segmentation of interaction

The segmentation of interaction into segments or ”meta-fixations” during which attention is focused
on a stable set of objects is a novel approach in gaze analysis. Usually, fixation time is aggregated in
predefined areas of interest and researchers report global proportions of attention time dedicated to the
different types areas. To measure coupling, cross-recurrence analysis quantifies as a global measure how
much the gaze of the collaborators follow each other with a given lag. These fixation based measures
aggregate indicators measured in the 100ms range to the whole duration of the interaction. The segments
that we propose to detect on the other hand are situated in between the short time range of a fixation
and the long time span of the whole interaction. Figure 1 shows the conceptual difference between the
fixations and segments. The main difference is in their respective durations in time and their use to
analyse different types of behaviours.

We considered different time series segmentation algorithms [16] [9] [22] to implement a method
that would segment the date into meta-fixation but none of these methods carried the notion of meta-
fixations or a hierarchy of segments in terms of their duration. Hence, we computed the segments from
the fixations using a very simple procedure. This procedure computes segments from the fixations in a
similar way as fixations are computed from the raw gaze data. Moreover, none of the methods for seg-
mentation or change point detection describe method for finding the segmentation on two simultaneous
time series and to align the segments in terms of time. We give details of this procedure in next section.

4 Methods and Materials

4.1 Experiment

In the experiment, pairs of subjects had to solve two types of pair programming tasks. The first task was
to describe the rules of a game (e.g., initial situation, valid moves, winning conditions, and other rules)
implemented as a Java program. The only hint to the pairs was that it is a turn based arithmetic game.
The second task was to find errors in the game implementation and to suggest a possible fix using a few
lines of output to analyse the error and to find the location of it in the code.

Subjects Eighty-two students from the departments of computer science and communication science
of the École Polytechnique Fédérale de Lausanne, Switzerland were recruited to participate in the study.



Figure 1: A typical Diagram to show the conceptual analogy between the fixations and the segments,
and to show the analogy between different levels of raw gaze aggregation and the behaviour dimensions

They were each paid an equivalent of 20 USD for their participation in the study. The participants were
typical bachelor and master students. The participants were paired into forty pairs irrespective of their
level of expertise, gender, age or familiarity.

Procedure Subjects had to read and sign a participation agreement form, when they came to laboratory.
Then, for the next 3 minutes, the experimenters calibrated the eye-trackers for each of the subjects.
This simple procedure consists of fixating the centre of nine circles appearing on the screen. Once both
subjects were ready, they individually filled a short electronic questionnaire about their programming
skills and previous experience. The pretest which followed, consisted of individually answering thirteen
short programming multiple choice questions.

Apparatus and Material Gaze was recorded with two synchronised Tobii 1750 eye-trackers that record
the position of gaze at 50Hz in screen coordinates. The eye-trackers were placed back to back and sep-
arated from each other by a wooden screen. The synchronisation of the eye-trackers was done by using
a dedicated server to log gaze via callback functions from the low-level API of the eye-trackers. The
subjects heads were held still with an opthalmologic chin-rest placed at 65 centimetres of the screen. An
adaptive algorithm was used to identify fixations and a post-calibration was done to correct for system-
atic offsets of the fixations with regards to the stimulus (see [10] for details about these procedures).

The JAVA programs were presented in a custom programming editor based on the Eclipse develop-
ment environment. Text was slightly larger (18pt) than it is usually on computer screens and was spaced
at 1.5 lines to facilitate the fixation hit detection at a word level precision. Scrolling was synchronised
between the participants, such that when programmers scrolled, their partners’ viewport was also up-
dated at the same time. All other highlighting, search and navigation functionalities were disabled in the
editor.

Level of Understanding We distinguish between three levels of understanding based on how well they
performed the description task.

Good Pairs with a good understanding are able to describe the the rules of the game (initial situation,
valid moves, winning conditions).

Medium Pairs with a medium level of understanding only describe partial aspects of the game
structure, and often give algorithmic descriptions of the program and try to guess the detailed rules from
the method names; but they failed to get the winning condition.

Poor Pairs with a poor understanding are not able to describe the functionality of the code. During
analysis we saw that the pairs with poor level of understanding were only those pairs which had novices
as both the participant and their gaze pattern was as good as a reading plain text and not a program.



Moreover, they could explain only some of the the syntactical things properly (e.g., they say that there
is a while loop that runs until some condition but could not explain what it is doing), so we decided to
analyse with only two levels of understanding.

Tokens, Semantic Classes and Transitions The program is comprised of tokens. For example, a line
of code ”int i = 5;” contains 8 tokens (int, i, =, 5, ;, and 3 spaces). We recorded the time spent on the
various tokens in the program and categorised them into three semantic classes:

Identifier this class includes the variable declarations.
Structural this class includes the control statements.
Expression this class includes the main part of the program, like the assignments, equations, etc.
We took the change of gaze from one semantic class to a different class as the transition between the

semantic classes. Here, we do not consider the change of gaze position from one token of a particular
semantic class to another token of the same class.

4.2 Segmentation of Eye-Tracking Data

In this section we present the approach to aggregate the fixations into the segments. The existence of
segments first came to our attention when looking at the evolution in time of the JAVA tokens looked at by
the programmers during a program understanding task. The curve in the figure 2 represents the evolution
of the average token identifier in time (tokens were numbered in order of appearance in the code), for a
particular pair. Stable exploration episodes clearly appear as ”plateaux” separated by ”valleys” and are
reminiscent of the data patterns that characterise the organisation of raw gaze data into fixations and
saccades. Deep valleys are due to programmers scrolling through the code while looking for particular
methods whereas smaller valleys correspond to focus shifts between areas of code visible on one screen.
Segmenting the fixation data into interaction episodes is a two step process; first we find the segments
for individual participant in the pair and then we align them in time to find the episodes of interaction
for the pair.

Finding Segments in the Gaze of Individual Participants For finding the segments from the individ-
ual fixation data, first of all we smooth the fixations using moving averages; and then used the following
steps to find the segments from the individual fixation data:

1. Divide the smoothened fixation data into non-overlapping windows.
2. For fixations in each window find a best fitting line.
3. For each fitted line find the angle it makes with the time axis and for each window find the range of

tokens looked at by the participant.
4. For each window find whether the angle between the line and the time axis and the range of tokens

looked at are both less than the respective thresholds; if yes, then the window is deemed to be a part
of a segment.

5. once we have the potential portions of a segment; we merge such windows that are consecutive in
time, only if they are overlapping in terms of the range of tokens looked at.

6. The output of this step is the segments or the merged windows for both of the participants in a pair.

Figure 2 shows the segments computed from the fixation data (sampling rate 5Hz) for two partic-
ipants in the same pair. The black lines depict the segments. These individual segments are used to
define a set of different episodes of interaction during the whole interaction, we describe this step in
next section.

Temporally Aligning the Segments for the Pair Using the segments for both the participants we align
them in time and then again merge the segments so that we have longer (in terms of time) episodes of
interaction to analyse.

For finding the episodes of interaction we use the following steps:



Figure 2: Segments computed for individual participants of a pair in the program understanding task.
The x axis represents time (sampling rate 5Hz). The y axis represents the average token ID that was
gazed at. A horizontal ”plateau” (black horizontal lines) means that the subject has been looking at a
stable range of tokens.

1. Input to this step is the segments for both the individuals in a pair that we get as the output of the
previous step.

2. For each segment of one participant find the temporal overlap of this segment with each of the
segments of the second participant and make a binary overlap matrix where each element indicating
whether the ith segment of first participant overlaps (more than a threshold) with the jth segment of
the second participant,in terms of time and the range of tokens looked at (intuitively we can say that
there is no temporal overlap between the non-consecutive segments).

3. Once we have the overlap matrix, we take the intersection of the segments for the two participants
(in terms of their duration) and define the intersection to be the convergent episodes of interaction.

4. The output of this step is the set of convergent episodes of interaction for a pair.

Figure 3 shows an example of temporal alignment of the segments for the two participants in a pair
and the episodes of interaction in terms of time. The episodes of interaction are then used to form a
Contingency Table (see section 5.1) which is used to analyse the gaze inside an episode and overall
interaction. We give details about the contingency tables and the analysis in next section.

Figure 3: Segments of both the participants aligned in time and the episodes of interaction; time on
X-axis; Y-axis: 1 for first participant, 2 for the second participant, 3 for the episodes of interaction



4.3 Data Preparation for Analysis

In this section we describe the pathway from raw gaze data to the contingency tables of transition be-
tween the semantic classes.

Raw Gaze and Fixations Raw data from eye-trackers come at a high sampling rate that is well
above (typically at 50Hz and higher rates) the rate of gaze fixations. Hence, the first step in the analysis
of gaze aggregates the gaze points given by the eye tracker into fixations (moments of relatively stable
gaze positions).

Determining Areas of Interest : Tokens Once we have the fixations from the raw gaze data we
define the areas of interest in our stimulus i.e., in the program.

Episodes of Interaction From the fixations we get the episodes of interaction using method de-
scribed in section ”segmentation of eye-tracking data”.

Tokens to Semantic Classes After defining the tokens as our areas of interest we categorised them
in 3 categories Identifiers, Structural and Expressions (see section ”program understanding and gaze
transitions” for details).

Sequence of Semantic Classes looked at We took the sequence (time series) of the Semantic classes
fixated during the interaction for our analysis (we took the data inside and outside of the ”segments”
while analysing convergent and divergent episodes respectively), for example sequence ”IIIESSEESS-
SIIIE” (I = Identifiers, S = Structural and E = Expressions) tells us that first 3 fixations were on iden-
tifiers, 4th fixation was on an expression then next 2 fixations were on the structural elements and so
on.

Lumping of Sequence As we are interested in the transitions between the semantic classes and not
in the duration of time spent on the different semantic classes. We took the continuous fixations on the
same semantic class to be one fixation and thus the above example sequence turned into a ”lumped”
sequence as ”IESESIE”.

Lumped Sequence to ”3 way” Transitions Once we had the lumped sequence we simply counted
the number of transitions from one semantic class to other and then to another one. For example the
lumped sequence ”IESESIE” has 5 transitions ”IES”, ”ESE”, ”SES”, ”ESI” and ”SIE”.

Transitions to Control Flow Transitions ”ISI” and ”SIS” depict the activity of tracing the control
of the program with the different states of the variables.

Transitions to Data Flow Transitions ”IEI” and ”EIE” depict the activity of tracing the data flow of
the program. This reflect the task of looking for different variables and their interdependencies.

Transitions to Systematic Program Execution All the transitions involving the three semantic
classes and the transitions ”ESE” and ”SES” reflect gaze transition amongst all the semantic elements in
a program. This translates to the task of considering the modification of an entity as per the control flow
of a program.

5 Results

5.1 Question 1

We return to our main interest of finding the difference between gaze transitions for the pairs with
different levels of understanding. We first report a relation between the level of understanding of the
pair, the pair composition and the gaze transitions using log linear models [6]. Log linear models use
contingency tables [12] to find the relation between different variables and for comparing the two models
for same contingency table [6] used a new statistics, called G2 the ”likelihood statistics” (or LRX2),
which is asymptotic to ”chi square”. G2 can be calculated as following:
G2 = 2

∑
i(observed)ilog

(observed)i
(expected)i

There are two main methods for fitting the log linear model to a given contingency table. ”Forward
Selection”, where we fit all hierarchical models that include the current model and differ it by one
effect; and ”Backward Elimination” leaves the term that incurs the least change in the LRX2 value (for
details see [6]). We combined both of the methods to achieve a fast consensus. According to the forward
selection we fit all the hierarchical models that differ the current model by one term; and for the next



iteration we keep the model with least change in the LRX2 value (opposite to the backward elimination,
but the idea is to delete the least change incurring term). The finally selected must have the maximum
degrees of freedom with the least change in the ”likelihood statistics” (or LRX2).

Table 2: Hierarchical linear model fitting for Contingency Table with dimensions Transition (T), Pair
Type (P) and Level of Understanding (UND), for the combined gaze of all the pairs

Model G2 DoF Terms Deleted 4G2 4DoF
[T ][P ][U ] 7503 57
[TPU ] 0 0

[TP ][TU ][PU ] 32 22 [TPU ] 32 22
[TP ][TU ] 7267 24 [PU ] 7235 2
[TP ][PU ] 103 33 [TU ] 71 11
[TU ][PU ] 54 44 [TP ] 22 22

[TU ] 8026 48 [PU ] 7972 4
[PU ] 8487 66 [TP ] 8433 22

Table 2 shows the log linear model fitting using the method proposed above. The first 2 models
[T ][P ][U ] and [TPU ] are the ”independence model” and the ”saturated model” respectively. We can see
that the saturated model fits the data perfectly (DoF = 0, G2 = 0). On the other hand, independence
model shows a big variation (DoF = 7503, G2 = 57) from saturated model. Removing the 3-way
interaction term results in the model [TP ][TU ][PU ] (DoF = 32, G2 = 22). Now, we see the effect of
removing one 2-way interaction term at a time. Removing term [PU ] causes a big deflection from the
all 2-way terms model with a small increase in the degrees of freedom (4G2 = 7235, 4DoF = 2).
Removing [TU ] also causes some deflection from the all 2-way terms model (4G2 = 71,4DoF = 11);
but removing [TP ] term causes the smallest deflection and increases the degrees of freedom as well
(4G2 = 22, 4DoF = 22). Further removing terms from [TU ][PU ] causes greater deflections. The
best fit model for a given contingency table is the one with the least 4G2 and largest 4DoF with
respect to the saturated model ([TU ][PU ] in this case with4G2 = 22 and4DoF = 22).

It is clear from finally selected log linear model that there is a dependence between ”Transitions” and
the ”Level of Understanding” as well as between the ”Pair Type” and ”Level of Understanding”.The first
dependency is reflected by the term [TU ] and the later one is depicted by the term [PU ]. Where [PU ]
reflects the fact that a pair of two experts can understand a program better than a pair of two novices.
To better understand the dependency between transitions and levels of understanding we use ANOVA.
Here, instead of using the transitions, we grouped them in categories as depicted in table 1. Figure 4
shows the differences between the two levels of understanding (medium and high) for the different types
of flows in a program.

Table 3: Summary of results of ANOVA for the transitions from the whole interaction
Transition Type µUND=1(σUND=1) µUND=2(σUND=2) F[1,28] p

Data Flow 0.4 (0.018) 0.45 (0.016) 65.5 < .01

Systemaatic Execution 0.55 (0.020) 0.51 (0.017) 32.1 < .01

Pairs with medium level of understanding have relatively more transitions amongst all three semantic
classes.In terms of gaze transitions this behaviour translates to reading each line of the program and
trying to understand it. This shows that these pairs look simultaneously at the conditions in the program
as well as the modification of the data elements according to them. They try to understand the data flow
in accordance to the control flow of the program. This attempt of program understanding is similar to
the ”Systematic execution of program”. This method is not very characteristic of the pairs with high
level of understanding, as shown in an experiment by [10]. The pairs with high level of understanding
have relatively more transitions among the identifiers and the expressions. They concentrate more on



Figure 4: Mean plots for different transitions for the whole interaction (Level of Understanding 1 =
Medium and 2 = High)

the variable/entities and the relationship among them. Building up their understanding in this manner
the pairs with the higher level of understanding are able to do a proper concept assignment from the
program domain to the world domain [21].

5.2 Question 2

Taking our analysis one step ahead, to find the effect of the convergent and divergent episodes of in-
teraction, we carried out 2 × 2 ANOVA for data flow and data flow according to control flow with two
factors level of understanding and convergent/divergent interaction episodes.

Table 4 shows the descriptive statistics for the proportion of data flow transitions in different types
of interaction episodes and for different levels of understanding. There were two single effects for the
type of interaction episode (F [2, 28] = 121, p < 0.01) and for the levels of understanding (F [2, 28] =
10.86, p < 0.01), and there was no interaction effect. From figure 5 we see that all the pairs in divergent
phases of interaction spend more time on understanding the data flow than that in convergent phases.
The effect of the level of understanding on data flow is visible by the fact that the pairs with high level
of understanding follow the data flow more than the pairs with medium level of understanding.

Table 4 shows the descriptive statistics for the proportion of systematic execution episodes in dif-
ferent types of interaction episodes and for different levels of understanding. There were two single
effects of the type of interaction episode (F [2, 28] = 106, p < 0.01) and of the levels of understanding
(F [2, 28] = 8.36, p < 0.01), and there was no interaction effect. From figure 5 we see that the pairs
in convergent phases have a high ratio of transitions that correspond to systematic program execution.
There is also an effect of levels of understanding on systematic program execution depicting more effort
put by the pairs with medium level of understanding on systematic program execution.

Table 4: Proportions of data flow and systematic execution transitions (mean and standard deviation) by
type of episode and level of understanding.

Transition Type Episode Type Understanding
Low High

Data Flow Convergent 0.59 (0.04) 0.56 (0.03)
Divergent 0.51 (0.02) 0.49 (0.02)

Systematic Execution Convergent 0.35 (0.04) 0.38 (0.03)
Divergent 0.44 (0.02) 0.47 (0.02)



Figure 5: Mean plots for data flow and systematic execution of program for the episodes of interaction
and levels of understanding (Level of Understanding 1 = Medium and 2 = High)

6 Discussion and Conclusion

Concerning our first question, we have found evidence for the sensitivity of gaze patterns to the level
of understanding. It appears that the gaze of individuals who understood the program better transition
more frequently between identifiers and expressions, a transition type that reflects a data flow centred
reading of the code. Conversely, individuals with a who got a sense of what the program is doing but
were not able to provide the exact explanation, spent relatively more time parsing the program by sys-
tematically looking at all types of semantic elements. These findings are compatible with the findings
from Jermann and Nüssli (2012) [7] who found that for individual programmers, experts look less than
novices at structural elements (type names and keywords) which are not essential when understanding
the functionality of the code. Experts look more than novices at the predicates of conditional statements
and the expressions (e.g. v /= 10;), which contain the gist of the programs. Our current findings confirm
these findings in the context of pairs by using an analysis of gaze transitions between semantic elements .
Pairs with high level of understanding put relatively more individual efforts on understanding the entities
and their relationships (data flow).

A possible explanation for this difference would be that for the pairs with medium level of under-
standing some structural elements can act as ”while demons” [3]. On other hand, pairs with high level
of understanding show ”as-needed” strategy for building their understanding of the program based on
their understanding of the relation between variables in the program [10].

We presented our study for getting the underlying process of the collaborative program comprehen-
sion using the eye-tracking data. We put our efforts to distinguish the strategy used for understanding the
program by pairs having medium level of understanding from that of pairs having high level of under-
standing. Pairs with high level of understanding put relatively more individual efforts on understanding
the entities and their relationships (data flow). In a convergent episode of interaction, pairs with high
level of understanding try to understand the data flow of the program according to the control flow of
the program (Systematic program execution). This is attributed to their gaze transitions among all the
semantic elements of the program in a convergent phase of interaction and ”to and fro” gaze transitions
between expressions and identifiers in the program for the whole interaction (when taken as a whole and
in the divergent episodes of interaction).

On other hand, pairs with medium level of understanding put efforts in simultaneous understanding
of data and control flow in the program without understanding the meaning of the data variables. This
is depicted by their ”back and forth” transitions between expressions and structural elements of the



program while they are in a convergent episode of interaction. This behaviour shows that for the pairs
with medium level of understanding some structural elements can act as ”while demons” [3]. On other
hand, pairs with high level of understanding show ”as-needed” strategy for building their understanding
of the program based on their understanding of the relation between variables in the program [10].

Concerning our second question, we have shown that in convergent episodes of interaction, pairs
with high level of understanding as well as pairs with medium level of understanding try to understand
the program via a strategy of systematic program execution. This is depicted by their ”back and forth”
transitions between expressions and structural elements of the program. In comparison, the data flow
transitions are less frequent in divergent episodes.

A possible explanation for the differences between convergent and divergent episodes is that pro-
grammers are visually searching the code for variable and method names during the divergent phases
and that in this case the augmentation of data flow transitions stems from a selective exploration of
the code. Another explanation is that during divergent episodes, programmers focus on building basic
knowledge about variables and expression which is then discussed during convergent episodes where
structural elements of the code are used to define the joint focus of attention. An analysis of the dialogue
between partners will help to understand these subtle differences.

Since there were no interaction effects between these factors, we can conclude that both the level of
understanding and the type of episode affect the types of gaze transitions that are observed. It is striking
that the differences between convergent and divergent episodes are twice as large as the differences
between levels of understanding. This seems to indicate that gaze indicators are more sensitive to task-
related aspects than to levels of expertise.
References

1. J.R. Anderson. Cognitive Psychology and its Implications. Worth Publishers, 1985.
2. P. Baheti and L. Williams. Exploring pair programming in distributed object-oriented team projects. In In Proceedings of

XP/Agile Universe 2002. Springer Verlag, 2002.
3. J. Bonar and E. Soloway. Uncovering principles of novice programming. In Proceedings of the 10th ACM SIGACT-

SIGPLAN symposium on Principles of programming languages, POPL ’83, 1983.
4. R. Brooks. Towards a theory of the comprehension of computer programs. International Journal of Man-Machine Studies,

18(6), 1983.
5. R. Dale D. C. Richardson and N. Z. Kirkham. The art of conversation is coordination. Psychological Science, 18(5):407–

413, 2007.
6. J. M. Gottman and A. K. Roy. Sequential Analysis - A Guide for Behavioral Researchers. Cambridge University Press.
7. P. Jermann and M.-A. Nussli. Effects of sharing text selections on gaze cross-recurrence and interaction quality in a pair

programming task. In In Proceedings of Computer Supported Collaborative Work 2012, 2012.
8. W.L. Johnson and E. Soloway. Proust: Knowledge-based program understanding. Software Engineering, IEEE Transac-

tions on, SE-11(3), 1985.
9. Y. Kawahara. Change-point detection in time-series data by direct density-ratio estimation. Direct, 4(2), 2009.

10. J. Koenemann and S.P. Robertson. Expert problem solving strategies for program comprehension. In CHI ’91 Proceedings
of the SIGCHI conference on Human factors in computing systems: Reaching through technology, 1991.

11. J. Larkin. Cognitive Skills and Their Acquisition, chapter Enriching Formal Knowledge: A model for learning to solve
textbook physics problems. Lawrence Erlbaum Associates, 1981.

12. S. L. Lauritzen. Lectures on Contingency Tables. University of Aalborg, 1989.
13. S. Letovsky. Cognitive processes in program comprehension. Journal of Systems and Software, 7(4), 1987.
14. A. Von Mayrhauser and A.M.Vans. Program comprehension during software maintenance and evolution. Computer,

28(8), 1995.
15. M.-A. Nussli. Dual-Eye Tracking Methods for the Study of Remote Collaborative Problem Solving. PhD thesis, Ecole

Polytechnique Federale de Lausanne, 2011.
16. R. P. Adams and D. J. C. MacKay. Bayesian Online Changepoint Detection. ArXiv e-prints, October 2007.
17. D. C. Richardson and R. Dale. Looking to understand: The coupling between speakers’ and listeners’ eye movements and

its relationship to discourse comprehension. Cognitive Science, 29(6):1045–1060, 2005.
18. B. Shneiderman and R. Mayer. Syntactic/semantic interactions in programmer behavior: A model and experimental

results. International Journal of Parallel Programming, 8, 1979. 10.1007/BF00977789.
19. E. Soloway and K. Ehrlich. Empirical studies of programming knowledge. Software Engineering, IEEE Transactions on,

SE-10(5), 1984.
20. S. Paul S.R. Tilley and D.B. Smith. Towards a framework for program understanding. In Program Comprehension, 1996,

Proceedings., Fourth Workshop on.
21. B. G. Mitbander T. J. Biggerstaff and D. E. Webster. Program understanding and the concept assignment problem.

Commun. ACM, 37(5).
22. E. Terzi and et al. Efficient algorithms for sequence segmentation.


