
API Usability at Scale

Andrew Macvean
Google Inc

amacvean@google.com

Luke Church
Google Inc

lukechurch@google.com

John Daughtry
Google Inc

daughtry@google.com

Craig Citro
Google Inc

craigcitro@google.com

Abstract
Designing and maintaining useful and usable APIs remains challenging. At Google, we manage hun-
dreds of externally visible web APIs. Here, we report on our experiences and describe six on-going
challenges: resource allocation, empirically-grounded guidelines, communicating issues, supporting
API evolution over time, usable auth, and usable client libraries at scale.

Introduction
Application Program Interfaces (APIs) are the way in which programmers access functionality created
by others. Every substantive program written in every language today makes extensive use of APIs. It’s
no surprise that their usability often dominates the experience of programmers.

APIs have been used for decades to connect software modules on a single machine. With the rise of web
services and microservice architectures, web APIs have become the primary user interface for many
types of services being offered online. While the paper is not centered only on web APIs, we do focus
on them (as opposed to standard libraries) a few times. When we do, we are generally referring to
representational state transfer (REST) APIs over HTTP. However, the structure of the API (REST vs.,
say, Simple Object Access Protocol [SOAP]) and the communication protocol (e.g., HTTP vs. local
connection) are orthogonal for the discussion.

Despite their importance, there is comparatively little work on understanding API usability. A special
interest group was held at the 2009 ACM CHI conference to discuss this problem, the result of which
was the founding of apiusability.org (Daughtry, Farooq, Myers, & Stylos, 2009). As of the time of
writing, some 50 publications have been listed on this site. A recent paper by Myers and Stylos (2016)
provides a summary of the existing work and outlines the various techniques in use for understanding
and improving API usability.

In this experience report, we describe some of the major challenges that we have faced building usable
APIs at Google and discuss some of our approaches to those challenges. We aim to show the kinds of
problems that Google faces as a major API provider and to start a broader conversation as to how we
might go about addressing these challenges.

1. Challenge 1: UX Resource Allocation
Traditional usability evaluation techniques can be applied to APIs in order to measure, understand, and
improve usability (Clarke, 2004), (Stylos et al., 2008). One of the most cited techniques is running API
usability lab studies. This is effective, but not scalable, as participants with professional software ex-
perience and researchers with a blend of human-computer interaction, domain and technical knowledge
are limited resources (Farooq & Zirkler, 2010). Replacing lab studies with design reviews has been
explored by both Microsoft (Farooq & Zirkler, 2010) and Google (Macvean, Maly, & Daughtry, 2016);
our experience so far suggests this can augment lab studies, but not replace them.

We are beginning to explore having software engineers run their own studies for APIs, which Google
has employed successfully in the past for other domains (Baki et al., 2013). This reduces the need to find
qualified researchers but doesn’t address the time commitment or the burden of recruiting professional
programmers as participants.

Stylos and Myers (2007) described heuristics for how to prioritize research of API design decisions;



Metric Data for a single API
Opened API Explorer 6,067 sessions
Clicked Execute 1,687 sessions
Experienced 4XX error 47% (795 sessions)
Achieved 2XX response 65% (1,099 sessions)

Table 1 – Explorer usage over one week of data for a single Google API.

Figure 1 – Percentage of Explorer sessions that encountered a 4XX error across 26 Google APIs.

namely, prioritizing for decisions that developers make often and that severely affect API use. We are
using two sources to find the APIs which create the most friction for our users: (1) API exploration
usage data, and (2) API Customer Satisfaction surveys.

We can identify invalid API requests by looking for responses with a 4XX status code (i.e. an error in
the client request, as opposed to, say, an issue caused by the server of the API. For example, a 404 or
429 HTTP response code), and we can compute the percentage of these responses across APIs. The
problem with this approach is that API log data doesn’t distinguish between calls that are placed when
the developer is learning the API and calls that are run in production, making it difficult to distinguish
between a hard-to-use API and existing buggy code. However, nearly all modern web APIs have a ‘try
it out’ feature available online, such as the Google API Explorer1 or Swagger UI2. When we examine
log data coming from such a tool, we know that a human is on the other side.

Our hypothesis is that by exposing the Explorer data as usability metrics to the producers of those APIs,
we can shine a light on problems and elicit positive change. As a first step, we explored a set of metrics
for a small set of APIs. We can, for example, look at a success funnel on a per API basis, see Table 1.

In isolation, these metrics are not actionable. While we want success rate to be higher, what constitutes
a good success rate? As a next step, we took a look at the 26 most used APIs in Explorer in a one week
period, see Figures 1, 2 and 3.

We now have actionable information. Each graph exposes APIs that are outliers and need significant
attention, while also showing us which APIs have further room for improvement. In Figure 1, we see
that there are three APIs for whom almost everyone experiences a 4XX error at least once. We now
know which APIs to focus on improving and can set a realistic numeric goal based on the less error-
prone APIs (e.g., 40%). When we look at Figure 2, we see that many of our APIs average two 4XX
errors per session. If you make an error, then the response should include enough information for you
to fix the mistake. So, we know that we should look at the APIs in the > 3 range and try to bring
them down close to 2. Figure 3 shows us the percentage of sessions that experienced success, where
success is defined as achieving a syntactically correct (2XX) request. Again, we see a few APIs that are
underperforming and room for improvement on many others.

There are three downsides to these metrics, which must be remembered during interpretation. First,

1https://developers.google.com/apis-explorer/
2http://swagger.io/swagger-ui/



Figure 2 – Mean number of 4XX errors encountered per Explorer session over 26 Google APIs.

Figure 3 – Percentage of sessions that experienced a 2XX response over 26 Google APIs.

while we know errors are a signal for usability problems, we don’t know exactly what usability issue(s)
led to the erroneous request. Second, the problems they are experiencing could be usability problems
with Explorer itself (the tool) as opposed to API usability issues. Third, we know from other research
we have conducted that not every use of Explorer has a goal of achieving a 2XX response; for example,
you may be trying to intentionally replicate a bug, or exploring the error messages that occur when
you include invalid parameters. In practice, these three problems do not detract from the utility of the
method. As long as the metrics guide follow-up evaluation, human investigation can eliminate false-
positives while also better understanding the specific usability problems.

While we don’t include representative data here, we can also change the granularity of our metrics to
expose problems on a per-method basis as opposed to a per-API basis. This can expose potentially
confusing methods within a single API as well as providing UX researchers and software engineers
more specific targets for lab studies or design reviews.

Our next step is to broaden the scope of the data we include in the analysis to include all of the Google
APIs exposed via Explorer and to expose the metrics to API producers. Having access to so many
APIs will allow us to set benchmarks that the API producers can compare their API against (e.g., more
than one standard deviation above or below the mean). We are also conducting exploratory analysis to
establish whether we can reliably distinguish between the different types of usage we see in Explorer.
Splitting off the data from those, for example, intentionally getting errors to replicate a bug, would help
with the validity of the data, as well as opening up avenues for other interesting analysis.

In parallel to our API log-file analysis, we are also exploring the application of customer satisfaction
surveys to our APIs. Using a simple Likert-scale question (Likert, 1932), which asks users to rate their
overall satisfaction with an API on a 5-point scale between ‘Very dissatisfied’ and ‘Very satisfied’, we
can begin to quantify user sentiment towards a particular API. By distributing surveys across our suite
of APIs, we also begin to get a picture of how users perceive our services, and, as with the Explorer data,
the ways in which one API may stack up against others in order to set benchmarks for improvement.
Furthermore, this lightweight approach to surveying allows tracking against time, allowing us to, for
example, gauge the impact of a new version of an API with the old.

Surveying API consumers is difficult, given the fact that much of their interaction with the API will



be spent within their IDE or text editor, writing code. We are exploring distribution of our surveys
via an unobtrusive intercept survey method (Müller & Sedley, 2014), letting us target API consumers
reading documentation. This approach may introduce a selection bias, as using the documentation is not
a requirement for using an API, and users viewing the documentation may not have any experience with
the API. None the less, when distributed equally and consistently across all of our APIs, we can uncover
interesting trends.

Much like with our API Explorer data, comparing sentiment across APIs provides a reference point for
improvement. It allows us to show a team managing a given API where their API(s) score in relation to
the set of all Google APIs, a set of comparable APIs, or the set of APIs within a given product suite. By
exposing outliers, we also know which set of APIs to study to identify successful patterns and which set
need to be revised.

Customer satisfaction surveys also overcome one of our problems with the Explorer data; they give
us a chance to ask for follow-up qualitative data that helps us interpret the quantitative data. When a
respondent indicates that they are not satisfied with the API, we use an open-ended form asking for
more details, allowing us to uncover pain points, misconceptions, and feature requests. In aggregate,
this exposes cross-cutting issues within a set of APIs. Authentication emerges as a consistent friction
point for our users, and is discussed in Section 5.

In this section, we’ve summarized two approaches we are using to uncover and understand API usability
problems. This allows us to direct limited UX resources to more expensive lab studies where they
are most needed. Our next step is to see what happens when we expose these metrics to the teams
responsible for each API. We hope that providing them with a clearer picture of where they stand with
respect to their peers will elicit self-correction and self-management over time. In the next section, we
explore methods for discovering these issues before an API is released.

2. Challenge 2: Empirically-Grounded Guidelines
We aim to increase success and satisfaction among developers using our APIs by updating the APIs
themselves. Any metrics we can define based on the API surface itself allow us to iterate without
expensive lab studies in the process. This approach has been explored by Scheller and Kuhn (2015),
who developed a framework for evaluation of an API, identifying measurable factors that impact an
API’s usability. Similarly, Rama and Kak (2015) established a set of structural issues affecting an
API definition and mapped them to a set of measurable metrics. While these methods are grounded in
literature, large scale validation remains to be done. Validation often suffers from a lack of empirical
data, a problem well understood in the software engineering community (Kaner & Bond, 2004).

We have started a program of work on API analytics, with the goal of empirically validating structural
measures of API usability. Our primary goal is to get this information to API producers during the API
design and review process, when it’s easiest to make changes.

As usability itself is something that is difficult to objectively measure, we chose to use API error rates
as a proxy for usability during our preliminary analysis. Thus, the usability of an API is captured as the
ratio of client side erroneous requests (4XX) / total requests to the API. In other words, we posit that
APIs which result in more client side errors have a poorer usability.

For this analysis, we chose to use API Explorer usage data. This has the obvious shortcoming that users
are not fully crafting their own API requests, as they are supported by a GUI based form rather than
writing the code themselves. However, this does have the added benefit that we know a human is behind
the call, as discussed in the preceding section. We chose to conduct our analysis at an individual method
level, rather than, say, evaluating an API as a whole. This is due to the fact that individual methods
differ so drastically in structure, that collating across an APIs entire set of methods would likely result
in misleading results. For our analysis, we chose the following structural factors:

1. Number of parameters in the request (required and optional).



2. Number of required parameters in the request.

3. Number of different types of parameters (integer, string, float, etc).

4. Number of methods in the overall API.

5. Whether the API required a request body (True|False).

6. HTTP method for the API request (GET, POST, PATCH, etc).

7. Whether the request mutated server state (True|False).

Using a corpus of one year’s worth of API Explorer data, we built a linear regression model to assess
how much of an API method’s 4XX response (client side error) rate could be predicted based on the
aforementioned structural factors. We excluded methods which had less than 500 requests in the year,
due to the low frequency of traffic. This left us with data on 724 different API methods.

In building our model, we got a coefficient of determination (R2) score of 0.256. While in some respect
this may be interpreted as a poorly fitted model, given the many potential factors that can impact an APIs
usability (both structural and otherwise), we are encouraged by the ability to predict as much as 25% of
the variance.

While these result are early in nature, and further work (discussed below) is required before we begin to
draw strong conclusions, this data leads to two preliminary conclusions. Firstly, objectively measured
structural factors do indeed have a measurable impact on the error rate of API requests, a key determinant
of an API’s usability. This helps to validate both the explorations presented within this paper, and the
prior work in the field. Secondly, this technique, coupled with other algorithms such as outlier detection,
can focus the attention of API usability practitioners. Those methods which stand apart, both positively
or negatively, give cause for further investigation. This can help focus resource allocation, much like the
techniques discussed in Section 1.

While these results are positive in nature, we acknowledge that there are limitations to this work. First,
we wish to replicate this with our live API logs, thus, evaluating its applicability to ‘real’ API request
data. Additionally, we used a small subset of the possible structural information. We will continue to
expand our measures, building upon the literature on API design, software engineering metrics, and
our own first hand experience working on API usability. Importantly, future analysis should evaluate
the predictive value of each of the individual structural factors, and their role in the overall model.
Furthermore, we acknowledge that while API request error rate is an important factor of API usability,
it is certainly not the only metric to consider. We wish to extend our analysis to other metrics, including,
but not limited to, API customer satisfaction as measured by API surveys, and ‘errors on the path to
success’, a measure of how many erroneous requests an individual makes before achieving a successful
call. Finally, linear regression is just one such model we can explore, with its own shortcomings as a
way to predict variance. Future work will continue to explore other approaches to machine learning.

3. Challenge 3: Communicating Issues
The techniques above produce a considerable volume of data about API usability. Just as there are
substantial resource constraints on the researchers studying the usability of the APIs, the engineers who
design and implement the APIs are also busy. Making the information about API usability available to
them in a way such that they can easily comprehend and use it is crucial to building better APIs.

Clarke (2004) describes one approach for doing this, using a Cognitive Dimensions profile and showing
the difference between the ideal properties of an API and the ‘as designed’ properties. We have used
a similar tool for summarizing dimensional profiles, however we have found that whilst they provide a
good synopsis, challenges remain in communication.

Problems with API usability are often made of many small ‘papercuts’. Each individual problem by itself
may not be too severe, however the overall result over many interactions is that the user makes relatively



little progress. To address this we use friction diagrams, such as Figure 4, which are generated based on
observation of a user working with an API in a usability study. These diagrams show the progression
of time from left to right. The timelines can be duplicated to highlight specific issues, as they are here.
The bottom row within each timeline indicates ‘productive working time’, the middle row indicates
‘experiencing a problem’ and the top row indicates ‘not making progress or distracted’. For example,
in this diagram, we were explaining two issues, one was that there are infrastructure problems with the
tooling at that point in time, and the second is that the design pattern in use resulted in developers being
repeatedly confused about the handling of state in the API. Whilst each individual interaction wasn’t too
bad, the overall effect is considerable.

The second technique that we have adopted is to use the outcome of a simplified Cognitive Walkthrough
as an explanatory model rather than a predictive one. Figure 5.(a) highlights the simplified version of the
Cognitive Walkthrough that we have used for summarizing the interaction that a user might have with
an API, derived from (Blackwell, 2008).

This gives us a frame that we can use to explain to engineers the challenges the users are having in
interacting with the API. For example, Figure 5.(b) is used to explain a UX problem caused by an
apparently missing method in an API (the delete method on the File class). The user has observed the
list of available methods, but can’t find what they were looking for. Figure 5.(c) shows UX problem
caused by the user needing to perform many subgoals into order to achieve the task (to write a line to a
file).

These forms of communication have proven reasonably effective at helping engineers understand UX
issues, and work on redesigning their APIs. This then leads to another challenge; once engineers have
decided how they wish to adjust the APIs, how can they do that in a way that assists users?

4. Challenge 4: Supporting Change
In general it is difficult to change the APIs of a service that is used in the wild. APIs are primarily
consumed by computers acting on behalf of their users. Even a small change to the API can result in
outages of these dependent systems. APIs, then, have two groups of users: programmers who write
the code against APIs, and the computer programs that run this code on behalf of their users. The
combination makes safely evolving an API a substantial sociotechnical challenge.

Within Google the source code is largely stored in a single system (Potvin & Levenberg, 2016) which
allows every use of an API to be located. Whilst it is still a considerable effort, this makes it possible to
determine that all usages of an API have been upgraded before the previous version is disabled.

Externally, things are more challenging, as even APIs that have been marked as obsolete for a number
of years show considerable usage. Google’s OAuth 1.0 API sent out a deprecation announcement in
April of 2012 (Feldman, 2012). The primary use case wasn’t turned down until May 2015, and even
then many users had not migrated to the new API (Denniss, 2015). The rest of the API was kept alive
even longer, and will be shut down in October 2016 (Agarwal & Chun, 2016), over four years after the
original deprecation notice. Here again we see a core difference between the defaults for a human and
computer – once a process using an API is automated, it will continue using that API, and it requires a
developer to spend additional effort to stop it.

The challenge of evolving APIs impacts more than deprecation schedules. At the API special interest
group at CHI in 2009, many participants reported that they had seen public APIs withheld from users
far longer than they should have been, due solely to the fact that evolving clients is difficult (Daughtry
et al., 2009). Thus, designers are encouraged to make the API ‘perfect’ before release.

The use of typed APIs is a considerable benefit here. For example, a gRPC3 backed system allows the
tooling to warn, or prevent compilation, when an API has been changed in a manner that is incompatible.
In some cases it can even provide sufficient information that the tooling can rewrite the old APIs into a

3http://www.grpc.io/



Figure 4 – An example friction diagram, highlighting where and when a user experienced friction
during a period of work with a Google API. The bottom row within each timeline indicates ‘pro-
ductive working time’, the middle row indicates ‘experiencing a problem’ and the red row indicates
‘not making progress or distracted’.



(a)

(b)

(c)

Figure 5 – Explanatory models for effectively communicating API usability issues.

new format, for example Gofix4.

It may be possible to extend the potential scope of the types of changes that can be addressed this way
using the kind of techniques outlined by Church et al. (2016). However, despite these tools, designing
systems that support effective dissemination of changes across multiple organizations with legacy code
remains a serious challenge and one that limits our ability to act on broad empirical evidence about API
usability.

Now we have looked at the general challenges that we have faced in this area, let’s look at two specific
questions - usable authentication and client library generation.

5. Challenge 5: Usable Auth
Time to Hello World (TTHW) is one metric regularly cited within industry as a key determinant of
success for an API. The goal is to reduce friction during the getting started phase such that a new
developer can quickly and seamlessly get to a successful Hello World state (or with web APIs, a 2XX
response to their request). However, time is only one factor, and one must be careful not to optimize too
heavily on a quick 2XX call, at, say, the detriment of long term success. Thus, within Google, we have
been advocating that teams instead focus on Pain to Hello World (PTHW) and have been working with
teams to understand how they can apply our study design to expose a more holistic picture of the getting
started experience.

During task-based API usability studies, we carefully evaluate the user’s journeys, tracking the resources
used, context switches, misconceptions, difficulties, mistakes made, feature requests, and task time.
Highlighted in Figure 6, is one user’s unsuccessful attempt to make a 2XX call with a Google API. Each
box represents a different context (code editor, documentation, API tooling, etc), and each line represents

4https://blog.golang.org/introducing-gofix



Figure 6 – The journey experienced by one user when trying to get started with a single API.

a context switch. Lines are color coded to represent the phase of the journey. During the red and green
phases on the journey, which saw many frequent cycles between documentation and our API manage-
ment tooling, this user struggled to understand which type of auth (authentication or authorization) was
required for the API they were using. Through a number of these evaluations, spanning multiple Google
APIs, and approximately 60 participants, we have seen auth emerge as one of the largest painpoints new
and experienced developers face alike, somewhat confirming the results of (Biddle, 2014).

To help remediate these problems, we designed and launched a credentials wizard flow within the Google
API Console that provides you with the correct credential given the answer to a few questions, namely,
which API you are using, in which type of context you intend to use it (e.g. an Android application vs.
as web-application), and what type of data your API will be accessing (e.g. user vs. application data).
This has helped with the problem, guiding users to the correct auth mechanism while educating them on
key decision points which impact auth type. However, it does so by papering over a larger issue; namely,
API auth is hard. Even if you manage to get it set up, it is unlikely that you understand how it works,
and there is a good chance you are still doing something insecure (e.g., exposing a sensitive credential
on GitHub).

When dealing with APIs, you may have to deal with API keys, OAuth clients, and service accounts, with
each broad category including sub-items meant to improve security. Some APIs require working with
multiple types. The complexity has arisen for good reasons and has helped to improve API security,
however it has come at the detriment of developer experience. Most of the attempts to improve API auth
usability that we have seen tackle only a subset of the design space. Such local optimization has led to
more proliferation of credential types, documentation, restrictions, and failure paths.

We believe that the API authentication design space is ripe for improvement. While there may be
more local optimizations that helps, we believe a holistic design would have impact that is orders-of-
magnitude greater over time.

6. Challenge 6: Usable Client Libraries at Scale
An attractive feature of web APIs is that they’re accessible in any language with an HTTP library –
from an AWS Java SDK to a Github client in Emacs Lisp. However, this flexibility comes at a cost: it’s
hard to design an API that feels equally usable across all potential client languages. In particular, we’re
faced with several core design decisions: Do we want a hand-written client library for each language
and API, or are generated client libraries sufficient? If we hand-write our client libraries, how can we
ensure that we’re consistent as we move from language to language or API to API? Generating client
libraries makes it easy to apply a fix across all APIs, but makes it equally easy to invalidate user code or
samples across all those APIs. How do we balance the two?

If developer time were free, hand-writing client libraries for each API and language has significant
advantages because we would have control over what was optimized for each language/API pair. In fact,
one could even imagine multiple libraries for a given language based on disparate idioms (eg callback-



based and promise-based libraries for Javascript). This also affords the possibility of matching particular
API features to language constructs, for example using Python’s with statement to model database-like
transactions.

Providing libraries in multiple languages across hundreds of APIs simply doesn’t scale. For instance,
Google currently supports client libraries in 10 languages across many of our APIs. The problem isn’t
just developer time or the number of APIs that Google supports, even a small team building a single
API backend can’t be expected to understand common idioms, conventions, and packaging across all
languages.

While hand-written code is usually idiomatic, it can also be idiosyncratic. Surveys suggest
(StackOverflow, 2016) that many developers end up working across at least two languages; having
inconsistencies when using two different languages to talk to the same API can be frustrating and error-
prone. A common example in this category is date/time-handling libraries, dealing with the inconsisten-
cies of date libraries from language to language is a common pain point for developers. Generating code
makes it possible to have consistency along two axes: talking to multiple APIs from a single language,
and using the same API from multiple languages.

At Google, we have examples of both auto-generated and hand-written client libraries, and we’ve per-
formed user studies on PTHW for both. In one example, we compared and contrasted the experience of
developers working with the gcloud-node (hand-written) and google-api-nodejs-client (auto-generated)
client libraries within the context of two Google Cloud Platform APIs. Note that the hand-written
libraries also have documentation and samples written specifically for that library, whereas the auto-
generated libraries refer to language-agnostic documentation. In our studies, participants were asked to
implement some canonical functionality with either the auto-generated or hand-written library. We then
compared and contrasted the experience, looking not only at the success and productivity of the study
participants (i.e., how successfully they could complete the study tasks), but also any misunderstandings
or errors that occurred during the session, the number of resources (such as documentation) required,
and the distribution of time during the session (e.g., time spent reading documentation vs. debugging
code, etc).

Although at a small scale, we saw interesting differences in the PTHW journey of the participants.
Those working with the hand-written libraries were more successful in completing the development
tasks, made less erroneous assumptions about the surface of the API, and required fewer resources in
order to successfully complete the tasks.

The contrasting experience highlighted the merits of hand-written libraries, which can be carefully de-
signed to ensure language idiomaticity and nuanced functionality specific to the APIs. In this case,
gcloud-node, our hand-written library, is optimized for a specific subset of Google Cloud Platform APIs,
while the auto-generated node library can be used with any Google API. We believe that the need for
autogeneration of client libraries is clear, but we still have some work to do before the overall developer
experience is up to par for that of hand-written libraries.

7. Conclusion
In this work we have summarized issues that we have faced whilst developing and maintaining produc-
tion APIs. There are more questions and open areas of research than answers, and we’ve shared some
of our approaches to these.

Researchers in industry are in a good position to explore improving designs via usage data. However
there are many other concerns that could benefit from the broader research approach taken in academia.
Some examples include: what would empirically justified guidelines of API design based on data look
like? How might these guidelines be derived from multiple sources of data? How do they relate to
existing design patterns? How should these guidelines and results best be presented to developers? How
might we longitudinally validate the effectiveness of guidelines? How should change of APIs best be
managed and communicated both to developers and to users?



There is clearly much more to be done in this important space.

8. Acknowledgements
We would like to thank Sanjay Ghemawat and Dan Li for their advice and guidance on our research, as
well as for providing feedback on the drafts of this paper; and Tao Dong and Harini Sampath who also
gave feedback on our drafts.

9. References
Agarwal, V., & Chun, W. (2016). Saying goodbye to OAuth 1.0 (2lo). Re-

trieved 06/02/2016, from https://developers.googleblog.com/2016/04/saying
-goodbye-to-oauth-10-2lo.html

Baki, A., Bowen, P., Brekke, B., Ferral-Nunge, E., Kossinets, G., Riegelsberger, J., . . . Mayer, M.
(2013). Project pokerface: Building a user-centered culture at scale. In CHI 2013 extended
abstracts (pp. 2325–2326). ACM.

Biddle, R. (2014). Beyond usable security. In PPIG 2014 - 25th annual workshop.
Blackwell, A. F. (2008). Human computer interaction notes. Retrieved 06/02/2016, from https://

www.cl.cam.ac.uk/teaching/0809/HCI/HCI2008.pdf
Church, L., Söderberg, E., Bracha, G., & Tanimoto. (2016). Liveness becomes entelechy - a scheme for

l6. In International conference on live coding.
Clarke, S. (2004). Measuring API usability. dr dobb’s journal. Retrieved 06/02/2016, from http://

www.drdobbs.com/windows/measuring-api-usability/184405654
Daughtry, J. M., Farooq, U., Myers, B. A., & Stylos, J. (2009). API usability: report on special interest

group at CHI. SIGSOFT Softw. Eng. Notes, 34(4), 27–29.
Denniss, W. (2015). A final farewell to clientlogin, OAuth 1.0 (3lo), AuthSub, and OpenID

2.0. Retrieved 06/02/2016, from https://developers.googleblog.com/2015/04/
a-final-farewell-to-clientlogin-oauth.html

Farooq, U., & Zirkler, D. (2010). API peer reviews: A method for evaluating usability of application
programming interfaces. In CSCW 2010 (pp. 207–210). ACM.

Feldman, A. (2012). Changes to deprecation policies and API spring cleaning.
https://developers.googleblog.com/2012/04/changes-to-deprecation-policies-and-api.html.

Kaner, C., & Bond, W. P. (2004). Software engineering metrics: What do they measure and how do we
know? In 10th international software metrics symposium.

Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 140, 1–55.
Macvean, A., Maly, M., & Daughtry, J. (2016). API design reviews at scale. In CHI 2016 extended

abstracts (pp. 849–858). ACM.
Müller, H., & Sedley, A. (2014). Large-scale in-product measurement of user attitudes & experiences

with happiness tracking surveys. In OzCHI 2014 (pp. 308–315). ACM.
Myers, B. A., & Stylos, J. (2016). Improving API usability. Commun. ACM, 59(6), 62–69.
Potvin, R., & Levenberg, J. (2016). Why google stores billions of lines of code in a single repository.

Commun. ACM, 59(7), 78–87.
Rama, G. M., & Kak, A. (2015). Some structural measures of API usability. Software: Practice and

Experience, 45(1), 75–110.
Scheller, T., & Kühn, E. (2015). Automated measurement of API usability: The API concepts frame-

work. Information and Software Technology, 61.
StackOverflow. (2016). Retrieved 06/02/2016, from http://stackoverflow.com/research/

developer-survey-2016
Stylos, J., Graf, B., Busse, D. K., Ziegler, C., Ehret, R., & Karstens, J. (2008). A case study of API

redesign for improved usability. In IEEE symposium on visual languages and human-centric
computing (pp. 189–192). IEEE.

Stylos, J., & Myers, B. (2007). Mapping the space of API design decisions. In IEEE symposium on
visual languages and human-centric computing (pp. 50–60). IEEE.


