
Teaching Software Testing with a Mutation Testing Game

José Miguel Rojas and Gordon Fraser
Department of Computer Science, The University of Sheffield, UK

{j.rojas,gordon.fraser}@sheffield.ac.uk

Abstract
Software testing is crucially important in a world dominated by software. Software testing is also
inherently difficult and requires theoretical expertise and practical experience. However, standard
testing techniques are often perceived as boring and difficult, and thus do not feature as prominently in
programming education as they maybe should. In order to address this problem, we aim to make testing
education more interesting with gamification. The Code Defenders game uses gameplay elements to
engage students in the testing process in a competitive and fun way. Our hope is that if students perceive
writing tests as a fun activity, they will later become better software engineers, with better testing skills,
and with more inclination to apply thorough testing. In this work-in-progress paper we describe our initial
experiences with Code Defenders, as well as open challenges on the way to making testing education fun.

1. Introduction
It is common wisdom that software needs to be thoroughly tested: Insufficient testing is known to cause
project failures, large economical damage, and can threaten people’s lives. Many large and successful
software companies have made testing an integral part of the day-to-day jobs of their developers. However,
this does not generally hold, and often software developers are not well educated to actually do testing.
Indeed there are reports that testing plays a much less prominent role in the daily activities of software
developers than one would hope it to do (Beller et al., 2015).

One possible root cause for this lies in how software developers are educated: Programming courses in
higher education and outside it generally focus more on the creative aspects of coding, rather than the
analytical process of testing. While some basic testing is usually taught, education rarely manages to get
people “test infected”; that is, it does not convey testing as an enjoyable task (Barriocanal et al., 2002;
Patterson et al., 2003). At face value, this is not surprising, as systematic testing is a comparatively boring
task in the face of more exciting alternatives, such as writing new code.

We aim to make testing education more interesting by applying gamification principles. We want to
engage students with testing by using the human competitive nature as incentive, and by mapping testing
tasks to gameplay components. We hope that if students perceive writing tests as a fun activity, they will
become better software engineers, with better testing skills and more inclined to apply thorough testing.

As a first step towards this goal, we have developed Code Defenders (Rojas & Fraser, 2015), a game that
makes use of a testing technique known as mutation testing. Players of the game can participate in one of
two roles: As attackers, they aim to create mutants, which are subtle modifications of the program under
test. The more difficult it is to reveal a behavioural difference between the original program and a mutant,
the better the mutant. As a defender, players aim to write tests that reveal these behavioural differences,
i.e., kill, these mutants. Both roles encourage and train an understanding of software bugs and how they
are detected by tests, and how to create good tests.

Initial studies revealed that students engage willingly with testing using Code Defenders. However, there
remain numerous challenges on the way to making Code Defenders a viable approach to teach testing.

2. The Code Defenders Game
Code Defenders uses elements of mutation testing to gamify software testing. This section therefore
introduces mutation testing before going into details on the gameplay.



2.1. Mutation Testing
Mutation testing is a software engineering technique aimed at guiding the development of test code and
at evaluating its quality (DeMillo et al., 1978). Given a program under test, mutation testing involves
the automated creation of a set of variants of the program, called mutants, which differ from the original
program by small syntactical changes. The underlying premises are that software developers tend to write
almost-correct programs (known as the competent programmer hypothesis) and that small syntactical
changes can be representative of complex real-world program faults (known as the coupling effect). The
resulting set of mutants can be used to quantify the quality of existing tests by measuring how many of
the mutants are detected: A test is said to kill a mutant when the outcome of executing it on the original
program is different from the outcome of its execution on the mutant. Mutants that are not killed can
guide further test generation efforts. It is possible for a mutant to be semantically equivalent to the
original program, in which case there exists no test that could distinguish it from the original program.
Detecting equivalent mutants is an undecidable problem and typically requires human intelligence.

2.2. Gameplay
Code Defenders implements a gamification approach to mutation testing. The main components of the
technique are built into an intuitive gameplay that allows players to produce mutants, develop tests and
reason about mutant equivalence.

In its current version, Code Defenders is a two-player game, and players use the Java language and the
JUnit testing framework. Each player takes the role of either the attacker or the defender. The goal of the
attacker is to create subtle mutants of a class under test that are hard to kill by editing the source code of
the class under test. The goal of the defender is to create strong JUnit tests that kill the mutants created
by the attacker. The game is played in rounds of attack and defence, where the attacker takes the first turn
of play. Once the attacker has submitted a mutant, the turn is passed to the defender, who then tries to
create a test with the right assertions to detect the mutants. A round is completed when the attacker has
submitted a new mutant and the defender has countered with a new test. The game then proceeds until
the number of rounds chosen when creating the game have been played. Upon completion of each round,
a mutation analysis is performed to determine whether the newly created test has killed any live mutants.
A special scenario arises when the defender suspects a mutant to be equivalent: Instead of providing a
new test, the defender can trigger an equivalence duel, challenging the attacker either to accept that the
mutant is equivalent, or to produce a killing test to prove that it is not equivalent.

The point scoring system of Code Defenders is intended to encourage attackers and defenders to produce
good quality mutants and tests, and to decide the winner of a game. A mutant scores points for the attacker
when it survives long in the game. The more rounds it survives, the more points the attacker scores. On
the other hand, a test scores as many points for the defender as mutants it kills. In the case of equivalence
duels, the attacker can score extra points by submitting a killing test for the mutant claimed equivalent,
but can lose the points scored by that mutant otherwise. More details on the design, implementation
and the point scoring system of Code Defenders can be found in an earlier publication on the gamified
mutation testing system (Rojas & Fraser, 2015).

3. Initial Findings
We performed an initial evaluation using a controlled study with undergraduate and graduate students
from the University of Sheffield. In this section, we present some initial findings from this experiment.

3.1. Evaluation Study
The study consisted of two 30-minute sessions in a computer room, where 38 participants were asked
(using a random task assignment) to write tests manually for two small, yet challenging Java classes or to
play Code Defenders on them—either attacking or defending. In each session, one third of participants
wrote tests manually and two thirds played the game. All participants used the two different classes.

A training phase preceded the two main sessions of the experiment. As part of the training, a brief tutorial
on unit testing and mutation testing was presented, followed by an introduction to Code Defenders.



Through short, intuitive tasks, the participants were guided to familiarise themselves with the main
interfaces of the game. Furthermore, to conclude the training phase, all participants played an actual
Code Defenders game on a simple example class.

In total, 32 games were played and 26 manual testing tasks were completed. On average, 3.8 rounds were
played on each game, leading to 121 mutants and unit tests for two Java classes used as subjects. On the
other hand, the manual testing tasks resulted in 145 unit tests. While a quality evaluation of these tests is
necessary to fully assess the comparison, these preliminary results suggest that the gamification approach
implemented by Code Defenders was able to engage students in the task of writing unit tests.

We are currently working on the analysis of the mutants and tests produced during the study. The research
questions we are interested in answering through the study involve (a) the kind of mutants developers
create on Code Defenders and how they compare with mutants created using state-of-the-art mutation
operators, (b) whether using Code Defenders leads to stronger tests than manual testing, and (c) how
effective developers are at killing mutants and at detecting equivalent ones.

3.2. Student Feedback
At the end of the study, the students were asked to fill in an exit survey reflecting on their experience with
Code Defenders. The survey covered demographics and addressed qualitative aspects of the study from
the participants’ perspective.

52% of the participants were undergraduate students, 37% were Master’s or PhD students and the rest
were either professional developers or academics. All participants are in Computer Science or Software
Engineering-related fields, have a diverse degree of experience programming in Java but generally little to
no industrial work experience (66%). The majority (76%) had used JUnit or a similar testing framework
before and understood well or very well the concept and usage of mutation testing, although most admitted
to only rarely or occasionally writing unit tests when programming.

When asked about their experience with Code Defenders, although a small group had difficulties under-
standing the game (6), all participants claimed having enjoyed playing it and a vast majority (92%) agreed
that writing unit tests on Code Defenders is more fun than writing unit tests while coding. Interestingly,
we observe a strong tendency that creating mutants is more enjoyable than creating tests. Whereas
these responses indicate that the testing task is more engaging for participants when it is performed in a
gamified scenario, supported by most participants acknowledging that they would even play the game
for fun in the future, there is still some disagreement about whether writing tests in a professional IDE
would have led participants to producing stronger tests, possibly due to the sometimes long idle time
when waiting for opponents to play their turns.

The ways in which Code Defenders could be improved were also addressed in the participants survey. A
list of suggested features was presented to participants, who were asked to indicate whether they thought
each suggested feature was important, just nice to have or rather irrelevant. Incorporating the notion of
code coverage by highlighting the code covered by each test seems to be the most important aspect to
improve in the Code Defenders. Almost as important seems to be the creation of a single-player mode
that would avoid having to wait for an opponent to join the game and play turns promptly. Improving the
capabilities of the code editor, a multi-player mode and support for other programming languages are, to
a less degree, also important and nice to have features from the participants’ perspective.

To capture more aspects that were not covered explicitly in the survey, participants also had the opportunity
to suggest improvements for the game in two categories we consider crucial: user interface and point
scoring system. Besides some editor capabilities, there were several comments on the point scoring
system: The way in which Code Defenders rewards players was determined in an ad-hoc manner with
two purposes in mind: fairness and engagement. Some interesting suggestions involve a) making the
scoring system time-dependent, i.e., a test scores less points if it took longer to write it; b) different
number of points depending on the complexity of the mutants; and c) allowing players to gamble on
the number of points to be scored by making trials before actually submitting mutants or tests. Some



participants also mentioned the need for a leaderboard to compare themselves to other players.

Participants were finally given the opportunity to make general suggestions to improve Code Defenders.
One of them is particularly humbling and actionable: “Fix bugs”. Others involve features we are planning
to explore in the near future, such as (a) limiting the time available per turn, (b) allowing defenders to
run a new test on the original code before submission, and (c) improvement of the equivalence challenge
protocol in the hard mode, given that it is a bold move at the moment to claim a mutant is equivalent
when its code is not revealed to the defender.

4. Open Challenges
We envision that Code Defenders can be useful in at least two contexts: Testing education, and crowd-
sourcing test development. In both scenarios, the human factor will play a crucial role in the potential
success of the approach. Although our preliminary experience with Code Defenders suggests developers
enjoy playing the game and also prefer the gamification approach over manual testing, several open
questions and challenges remain:

• Breaking code (i.e., creating mutants) tends to be seen as a more fun task than defending it (i.e.,
writing tests). How to achieve similar motivation levels for both attackers and defenders?

• How to overcome the long waiting times in between turns? Would alternative mechanisms to the
current round-based, such as an asynchronous gameplay for example, be more suitable?

• Our initial empirical evaluation involved two relatively simple classes with no dependencies beyond
standard data structures. Will the game continue to be practical and enjoyable when used on more
complex, real-world programs?

• Code Defenders is currently a two-player game only, but we are working on a multi-player mode
that will allow several attackers and several defenders to play the same game. This poses several
challenges to the current design of the game. Will competitiveness among sides (attackers vs.
defenders) and teamwork within sides complement or conflict?

• Code Defenders can serve as an educational resource to support instructors in delivering theoretical
software testing concepts such as fault-detection effectiveness or code coverage, and it could also
provide meaningful practical experience to the students through one-on-one or multi-player games
in the classroom or even as a self-tutoring tool in a single-player mode. However, the actual
educational value of these alternatives need still to be assessed in the field, and leads to follow-up
questions such as whether Code Defenders can be used for assessment and how to prevent players
from cheating the game in the classroom.

5. References
Barriocanal, E. G., Urbán, M.-Á. S., Cuevas, I. A., & Pérez, P. D. (2002). An experience in integrating

automated unit testing practices in an introductory programming course. ACM SIGCSE Bulletin,
34(4), 125–128.

Beller, M., Gousios, G., Panichella, A., & Zaidman, A. (2015). When, how, and why developers (do not)
test in their IDEs. In Proceedings of the 10th joint meeting on Foundations of Software Engineering
(FSE) (pp. 179–190).

DeMillo, R. A., Lipton, R. J., & Sayward, F. G. (1978, April). Hints on test data selection: Help for the
practicing programmer. Computer, 11(4), 34–41. doi: 10.1109/C-M.1978.218136

Patterson, A., Kölling, M., & Rosenberg, J. (2003). Introducing unit testing with BlueJ. ACM SIGCSE
Bulletin, 35(3), 11–15.

Rojas, J. M., & Fraser, G. (2015). Code Defenders: A Mutation Testing Game. In The 11th international
workshop on mutation analysis. IEEE. (To appear)


